
Resource Utilization of Differentiable Logic Gate
Networks Deployed on FPGAs

Stephen Wormald, Gilon Kravatsky, Damon Woodard, Domenic Forte
Florida Institute of National Security

University of Florida
Gainesville, Florida, USA

Email: stephen.wormald@ufl.edu

Abstract—On-edge machine learning (ML) often strives to
maximize the intelligence of small models while miniaturizing
the circuit size and power needed to perform inference. Meeting
these needs, differentiable Logic Gate Networks (LGN) have
demonstrated nanosecond-scale prediction speeds while reducing
the required resources as compares to traditional binary neural
networks. Despite these benefits, the trade-offs between LGN
parameters and resulting hardware synthesis characteristics are
not well characterized. This paper therefore studies the tradeoffs
between power, resource utilization, inference speed, and model
accuracy when varying the depth and width of LGNs synthesized
for Field Programmable Gate Arrays (FPGA). Results reveal
that the final layer of an LGN is critical to minimize timing
and resource usage (i.e. 28% decrease), as this layer dictates the
logic size of summing operations. Subject to timing and routing
constraints, deeper and wider LGNs can be synthesized for FPGA
when the final layer is narrow. Further tradeoffs are presented to
help ML engineers select baseline LGN architectures for FPGAs
with a set number of Look Up Tables (LUT).

Keywords—Differentiable Weightless Neural Networks, Dif-
fLogic, edge computing, resource utilization, FPGA acceleration

I. INTRODUCTION

Edge machine learning (ML) increasingly demands models
that are both computationally efficient and capable of high-
speed inference under strict power and resource constraints
[1]. Traditional neural network architectures, while accurate,
often require significant hardware resources and energy, lim-
iting their deployment on small or embedded devices [2].
Differentiable Logic Gate Networks (LGNs) offer a promising
alternative by combining the expressivity of neural networks
with the resource efficiency of logic-based circuits [3]. LGNs
are neural networks trained to learn combinations of logic
gates (i.e. AND, OR, XNOR gates, etc.) that easily map to
hardware implementations, and have achieved nanosecond-
scale prediction speeds [3] and reduced resource requirements
compared to traditional binary neural networks [4] while
remaining explainable [5], making them attractive for deploy-
ment on FPGAs and other low-power hardware accelerators.

Despite these advantages, the relationships between LGN
model size, inference latency, FPGA resource utilization, and
power consumption remain poorly characterized. Engineers
lack clear guidance for selecting network depth, width, and
bit precision to satisfy specific design constraints. The work

presented (see Figure 1) helps address this gap by system-
atically studying tradeoffs between LGN design variables and
hardware metrics when targeting the Alveo-U200 [6]. Through
a set of complementary studies evaluating accuracy, latency,
resource usage, and power, this paper is the first to provide a
practical methodology for mapping the number LUTs on an
FPGA to baseline LGN architectures which may act as starting
baselines when training LGNs for novel tasks. This paper is
also the first to highlight the importance of final layers in
LGNs when minimizing resource utilization on FPGAs as they
connect to summation operations. The insights provided apply
to a variety of edge computing applications, including low-
power medical devices, autonomous vehicles, and embedded
robotics, where efficient inference is critical.

Baseline
LGN Guide

Architecture
Insights

Design
Tradeoffs

W

LUT
Properties

LUT

01
10

1

1
LGNn

Fig. 1. Overview of the paper, showing how design tradeoffs may be used
to identify constraints for baseline LGNs and resulting architectural insights

II. METHODOLOGY

Directed toward practical design insights, the methodology
produces design tradeoffs between LGN architecture varia-
tions, model accuracy, circuit inference speed, resource uti-
lization, and device power. A set of LGN models were trained
to perform classification on common image datasets using the
open source repository called DiffLogic [3] before evaluating
each model’s accuracy (see Section II-A). Each trained LGN
was converted into hardware description language (HDL) code
before performing synthesis (see Section II-B). In this study,
all designs target the Alveo-U200 as it holds an XCU200
FPGA with a logic fabric containing 892,000 LUTs [6],
making it possible to test large LGN architectures. Resulting
hardware kernels helped characterize the LGN performance
tradeoffs, and are used to present a notional methodology for
selecting baseline LGNs for novel applications (see Section
II-C).

A. Design of LGN Architectures to Study Hardware Utilization

LGNs were trained with key architectural variations to
test the impact on synthesis and utilization. The experiment
design considers that basic LGNs may be converted into HDL
using three main blocks of logic which use separate LUT
resources: (1) LUTinput for input streaming, (2) LUTlogic for
combinatorial decision logic, and (3) LUTsum for performing
classification based on the groupsum and argmax operations.
Here, the total number of LUTs (or LUTtotal) is roughly
LUTtotal = LUTinput + LUTlogic + LUTsum + δ, where δ
consists of the logic needed for passing inputs and outputs
to and from Double Data Rate memory (DDR) memory.
Considering this division of resources, four LGN variations
were designed per Figure 2. Baseline models have a constant
layer width (LW) across assorted layer depths (LD), where
variations from this baseline either add “end caps,” “front
caps,” or both (i.e. “dual caps”) as a strategy to reduce routing
issues that emerged for larger models. This strategy is tested
for larger values of LW , as summarized in Table I. Here, model
caps are appended to baseline models as additional layers.
Front caps are set at constant widths Lfront while end caps
are set as fraction of the baseline layer width (i.e. fend, where
Lend = LW ∗ fend) to ensure layers are never less than half
the width of prior layers, per recommendations from [3]. The
network parameters are varied per the ranges in Table I.

TABLE I
LGN DESIGN PARAMETERS WITH DESIGNATED RANGES

Study LW LD Lfront fend

Baseline [1000,64000] [1,8] – –
Front Cap [8000,64000] [3,6] [2000, 4000] –
End Cap [8000,64000] [3,6] – [0.5, 0.75]
Dual Cap [8000,64000] [3,6] [2000, 4000] [0.5, 0.75]

Added
Front Cap

Added
Dual Cap

Added
End Cap

Baseline
Models

X Y

X Y

X Y

X Y

Fig. 2. Summary of the model types trained using the DiffLogic library [3]

Models were trained on the MNIST [7], FashionMNIST [8],
and Cifar10 [9] datasets using a range of bit depth (i.e. b) of
1 through 8. Model training consistently used an 80/20 split
across training and testing data, using 5-fold cross validation
and a batch size of 64. Models were trained using the Adam
optimizer with early stopping with a patience of 10 epochs
and a learning rate of 0.01. In total, 390 models passed
both training and synthesis, consisting of 280 baseline model
variations, and 110 variations using the cap variations (i.e.
26 front, 33 end, and 51 dual cap variations). The model to
FPGA implementation conversion process is described in the
following section.

B. Hardware Synthesis Targeting the Alveo U-200

Each LGN model was converted into C++ and then into
Verilog HDL using Xilinx Vitis HLS [10]. Note that larger
models (i.e. when Lend >∼100,000 gates) failed in pre-
synthesis or experienced large synthesis times. When Lend

is large, the groupsum operations require additional LUT
resources (i.e. LUTsum). Hypothesizing that issues resulted
from LUTsum resources inspired the design of the “capped”
experiments described in Section II-A. The synthesized LUT
usage (LUTsynth), Flip Flop (FF) usage (FFsynth), and
number of compute cycles (#Cycles) were calculated for
each LGN to study design trade-offs. Hardware builds were
performed for all jobs, but only 31.2% of models finished
this step due to failures during routing. Further inspection
revealed that the The XCU200 FPGA inside the Alveo U200
accelerator uses stacked silicon interconnect (SSI) technology
to combine three Super Logic Regions (SLRs) into a single
logical device, effectively splitting the logic fabric across three
die regions connected on an interposer. Routing between these
dies produced congestion approximately at the point where
the resources needed for a synthesized model could not all
fit in a single SLR. As the number of LUTs and FFs on
a hardware design (LUTHW and FFHW , respectively) are
linearly proportional to their synthesized counterparts (see
Figure 3), LUTsynth and FFsynth are reported in Section III.
The successful hardware designs inform the power tradeoffs.

Fig. 3. Comparing FF and LUT usage predicted in synthesis and realized
in hardware, showing dependable synthesis predictions

C. Studying Tradeoffs Between LGN and Kernel Properties

The synthesized LGNs were examined to identify trade-
offs between model and hardware properties. These trade-
offs consider: (1) Hardware design tradeoffs which study
the relationship between model size, performance, data input
variables, and hardware utilization; (2) Kernel performance
tradeoffs which study the interplay between kernel power,
latency, and hardware utilization; (3) LGN architecture trade-
offs which reveal the correlation between LGN parameters
and kernel properties; and (4) LGN performance tradeoffs,

which explore the relationship between resource utilization
and model accuracy. These tradeoffs are combined into a
notional methodology to help engineers identify application-
specific baselines of LGN architectures for applications with
known hardware and latency constraints. Results are provided
in Section III.

III. RESULTS AND DISCUSSION

The following sections present the LGN design tradeoffs
alongside a methodology for designing LGN architectures
when design constraints are known. At a high level, results
show: (Section III-A) LW and Lend most strongly impact
latency, likely due the impact on the Lsum logic. (Section
III-B) Power usage is minimal for the studied LGNs, and may
generally be ignored for the range of LGNs studied except for
highly efficient designs or large FPGA clusters. (Section III-C)
LGN design freedom is high as few variables impact resource
usage, aside from LW , where b and the total number of logic
gates are useful for LGN design. (Section III-D) End caps
effectively reduce latency and resource utilization, and front
caps are less impactful. Each result provides constraints when
searching for LGN architectures as summarized in Section
III-E and more generally discussed in Section III-F.

A. Hardware Design Tradeoffs: Accuracy, Latency, Resources

The objective of an LGN is generally to achieve high per-
formance, or accuracy, while minimizing latency and resource
usage for a given design. Here, accuracy generally increases
with increased resource usage for a given input width (shown
per the number of LUTs in Figure 5). However, models that
spend resources processing larger inputs do not categorically
perform better. For the studied models, LGNs trained with
larger bit depths, or b, often performed worse while consuming
additional resources. Deeper LGNs generally achieved better
accuracies than shallow networks though LD has little-to-no
impact on resource utilization and latency as the decision
logic is implemented using combinatorial logic (see Table
II), making LD valuable when increasing model accuracy,
though results vary per dataset1. In the context of this paper,
accuracy is considered an objective rather than a constraint
when designing baseline LGN architectures.

The latency of a synthesized design is strongly correlated
with the width of an LGN (Table II), often ranging from 7
to 17 cycles (Table 4.d), which results from long data paths
through a LGN. This finding is expected as LW determines
the number of bits that are summed to classify an input,
where large sums tend to rely on deep sequential logic.
Pipelining can improve data throughput where latency is a less
important. When latency acts as a design constraint, end caps
provide a solution. Figure 4.d shows how #Cycles increases
logarithmically with Lend. End caps limit the size of the last
layer, effectively moving the latency profile of an LGN to the
left along this curve (e.g. by ∼2-3 clock cycles when using

1Note that CIFAR10 represents an image dataset which is known to
challenge feed forward LGNs [3] which explains the relatively low accuracy

Fig. 4. Synthesis design tradeoffs which may used to identify constraints when
searching for baseline LGN architectures. Results show tradeoffs between the
total number of LGN logic gates and the input data size for constant numbers
of (a) LUTs and (b) FFs. Here, (c) the power increases with LUT and FF
usage, and (d) the number of compute cycles mainly changes with Lend

fend = 0.5, per Table III). Latency limitations may be used
to identify constraints on Lend per Figure 4.d.

Fig. 5. Accuracy change with respect to the model size, reported in the #LUTs for synthesis. Here, and when b=1, MNIST and FashionMNIST have 784
bits per image, and CIFAR10 has 1024 bits per input

B. Kernel Performance Tradeoffs: Device Power Results

The difference between the maximum and minimum power
usage in LGNs examined is less than 2 Watts (Figure 4.c). As
such, the impact of potential power optimizations is minimal
and may be less important as a constraint when designing
baseline LGN architectures. Power optimization may be im-
portant for edge or low-power devices as well as large scale
deployment in data centers. Though in these scenarios, other
factors such as cost or overall power consumption may make
FPGA implementations of LGNs less attractive.

C. LGN Architecture Tradeoffs: Impact of LGN Variables

The LGN architectural tradeoffs verify that Lend is impor-
tant to minimizing resource usage, which provides freedom in
designing LGN architectures that maximize LGN-intelligence
while minimizing FPGA resources. For example, Table II
shows that b and LD hold a weak correlation with LUTSynth

when compared to Lend-associated variables (i.e. Lend, LW ,
and #Gates). Here, LW and #Gates impact resource usage
because they either impact or are derived from Lend. This
observation indicates that other variables, like b, LD, or
LGN wiring (i.e. how to connect two layers when routing
information between LGN layers), need not constrain the
search for LGNs targeting a given FPGA with limited LUTs.

TABLE II
CORRELATION MATRIX FOR DESIGN PARAMETERS ACROSS BOTH

BASELINE AND END CAP EXPERIMENTS

Metric b #bits LD LW Lend #Gates
LUTSynth 0.38 0.28 0.36 0.35 0.80 0.72
FFSynth 0.76 0.64 0.12 0.30 0.33 0.28
#Cycles -0.14 -0.14 0.24 0.74 0.76 0.55

Figure 4.a and Figure 4.b seek to leverage this design
freedom by providing constraints that help in searching for
LGN architectures when limited by FPGAs with a set number
of LUTs and FFs. Here, tradeoffs between the #Gates and
#bits are plotted for constant values of LUTSynth and

FFSynth. While other variables correlate more strongly to
resource usage, the tradeoff between #bits and #Gates helps
engineers specify input properties (e.g. to help determine data
collection and bandwidth properties) and set design budgets
for the number of logic gates in certain LGN submodules.

D. Results of Model Caps on Accuracy and Resource Usage
While the tradeoffs between #bits and #Gates constrain

the space of models compliant with a given FPGA, further
constraints may may help optimize the performance of indi-
vidual designs. Comparing the baseline models against front,
end, and dual capped models helps explore such optimizations.

End caps reduced latency and resource utilization more
effectively than front caps (see Table III). Specifically, models
with end caps and without front caps reduced LUTs and FFs
usage by ∼28% and ∼10%, respectively. These models also
reduced latency by up to 4 cycles when compared against
baselines (or µ = 1.4 ± 1.3 (see Table III)). Note that front
and end caps suffer a nominal accuracy penalty, generally
in the range of 0-2% (see Table III). Given the magnitude
of improvement, LGN optimization routines may employ
soft constraints which seek to minimize Lend when a small
reduction in accuracy is acceptable. Viewed alongside the prior
constraints, these tradeoffs help in selecting LGN baselines for
novel applications.

E. Resulting Method to Select Baseline LGN Architectures
Synthesizing the design tradeoffs from the prior results

sections produces a notional design methodology for identify-
ing candidate LGN architectures based on a FPGAs available
resources, design latency constraints, and target power require-
ments. This methodology integrates the results from each study
as follows, and as summarized in Figure 6:

• Step 1 - Identify Edge Application and Data Constraints:
For a given edge application, any data constraints should
be identified (e.g. data size, bandwidth, etc.).

• Step 2 - Identify Available Resources: An engineer may
determine the number of LUTs and FFs available on a

TABLE III
MEAN CHANGE FROM BASELINES (Metric± STD. DEV.) ACROSS ALL

CAPPED MODELS (E.G. FRONT, END, DUAL)

Metric fend Lfront = − Lfront = 4k Lfront = 2k

LUTS.

(%∆)

– 0.0 ± 0.0% −6.0 ± 14.7% 1.1 ± 15.0%

0.75 −8.5 ± 4.7% −20.1 ± 8.3% −11.5 ± 3.3%

0.5 −28.1 ± 14.4% −11.0 ± 6.5% −23.2 ± 7.7%

FFS.

(%∆)

– 0.0 ± 0.0% −1.3 ± 5.6% −0.5 ± 6.7%

0.75 −2.0 ± 3.7% −7.5 ± 4.4% −2.5 ± 3.6%

0.5 −10.2 ± 6.3% −4.2 ± 6.7% −10.4 ± 6.2%

#Cycles
(∆)

– 0.0 ± 0.0 0.0 ± 1.2 0.5 ± 0.9

0.75 0.1 ± 0.8 −1.2 ± 0.9 −0.1 ± 1.0

0.5 −1.4 ± 1.3 −0.2 ± 1.3 −1.5 ± 0.9

Accuracy
(∆)

– 0.0 ± 0.0% −0.2 ± 1.3% −0.3 ± 1.5%

0.75 −0.3 ± 1.7% 0.3 ± 1.3% −0.5 ± 2.0%

0.5 −0.2 ± 1.6% −0.7 ± 2.9% −1.0 ± 2.6%

candidate FPGA device. These values may be used to
approximate the maximum power draw for the Alveo-
U200 from Figure 4.c.

• Step 3 - Determine LGN Architecture Constraints: The
selected FPGA may be used to determine either LUT or
FF limitations and identify the corresponding tradeoffs
between #bits and the #Gates. If data constraints are
known for a given application, a target number of logic
gates may be derived for searching for LGN architectures.
Else, the trend between #bits and the #Gates for a
target LUT or FF may be derived from the corresponding
equation and used as a constraint for architecture search.

• Step 4 - LGN Architecture Search: An optimization rou-
tine may be used to identify candidate LGN architectures
for a given application using: (1) The tradeoff between
#bits and the #Gates; (2) A soft constraint to minimize
Lend from Section III-D, or a hard constraint based on an
objective latency defined as #Cycles from Figure 4.d;
(3) A design objective to maximize accuracy. Baseline
architectures may be down-selected from the trace of fea-
sible model designs explored by a given search algorithm.

• Step 5 - LGN Conversion and Optimization: Baselines
may be synthesized to determine the true number of LUTs
and FFs required for a given design, and used to update
the target number of LUTs and design tradeoffs, per Step
3. This method may be repeated until achieving a LGN
with suitable baseline characteristics.

While variability is expected depending on the targeted
FPGA, once setup the proposed methodology helps engineers
quickly propose candidate LGN architectures and converge on
application-specific designs.

F. Discussion on Generalizability of Results

While the prior methodology is designed using models
trained for small-scale image classification and the accuracy
results do not generalize beyond the studied datasets, the rela-
tionships found between model input, logic gates, and resource
usage remain dataset agnostic. Several further limitations are
of note to aid the use of results and inspire further study:

Figure 3.d

(FPGA  # LUT)
Gatesend = fn(# Input Bits)

LUTTotal = LUTsum + LUTinput + δ
Architecture ConstraintSTART: LGN Use Case

Input
Bits

Device Constraints

Gatesend

Baseline
LGN Architectures

for Initial Testing

Compute
Cycles

Figure 3.c
Alveo U200

Power Estimate

fn

D
at

as
et

LGN Training Routine

b

Figure 3.b

Data
Constraints

START/END STATES VARIABLEDETERMINISTIC

Fig. 6. Flowchart showing how key results from Figure 4 may be used in a
notional optimization routine when designing baseline LGN parameters

• On Placement, Routing, and LUT Mapping: Two different
FPGAs given the same synthesized design will yield
different resource utilization’s. Different FPGAs have
different resources, such as LUT3 vs LUT4, and will not
have the same hardware implementation. Furthermore, it
is possible that when implementing a synthesized design
on a single FPGA multiple times, the placement and
or routing algorithms may result in a different imple-
mentation. Additionally, there are many possible LUT
mappings for a given net list. Given the large combi-
natorial networks required for LGNs and the different
LUTs available, it is unlikely that an implementation on
another FPGA will have the same LUT mapping. For
these reasons, the specific number of LUTs and FFs for
a given LGN would differ on alternate FPGAs.

• Power Disparity for Alternate FPGAs: The power usage
results studied are generated by Vivado’s power tools
using our LGNs implementation on the Alveo-U200. The
results are expected to hold some error when compared
against real-world power usage, which also varies per
clock speed. Since different FPGAs run at different clock
speeds, the power usage for a given LGN would likely
vary from this study. Additionally, the LUTs, FFs, and
other resources on the Alveo-U200 will likely not have
the same power usage as on another FPGA.

• On Timing Closure: To implement a design, it must meet
timing requirements of the targeted FPGA. The timing
of a design is a function of the target clock speed, the
speed of LUTs and FFs, as well as the speed of resource
interconnects. Give these variables, LGNs implemented
on alternate FPGA will require unique techniques to
optimize timing.

• Method of input: Many architectural decisions to be
made when implementing LGNs on FPGAs. This study
employs a software accelerator model where a host PC
would place input data in the Alveo U200’s DDR memory

via PCI-E. This data was retrieved and passed as input
to the datapath, where it flowed through the LGN and
other necessary elements. The output of the datapath was
then written to DDR, where it was read from by the
host PC via PCI-E. Fetching data from and writing data
to memory is resource intensive and may vary between
LGN implementations. For example, cameras connected
to a FPGA could stream inputs to the data path via a
FIFO buffer, which may be less resource intensive. These
architectural decisions can impact the performance and
resource utilization of a given LGN.

In light of these shortcomings, the presented work is useful
for establishing baseline LGN architectures, though device
specific optimizations should be expected. The findings in this
study hold value in minimizing the work engineers need to
perform when working with novel applications of LGNs in
edge environments.

IV. CONCLUSION

This study systematically studies tradeoffs between LGN
design variables and the properties of synthesized hardware
metrics, culminating in a notional methodology to identify
baseline LGN architectures for novel applications. This study
is the first to investigate the impact of LGNs final layers on
hardware metrics. The value is in clarifying the influence of
design and architectural variables when deploying LGNs on
FPGAs. Focusing on small scale image classification tasks
and synthesized hardware designs, this study helps establish
a foundation for more robust LGN design and deployment
strategies. In this study:

• 390 LGN variations were trained to test the impact on
synthesis and hardware utilization (see Section III-A),
revealing that minimizing the end layer of a network (or
Lend) can decrease latency while reducing LUT usage by
up to 28%. These results indicate that larger LGNs may
be placed on relatively small FPGAs by reducing Lend.

• HW power usage was analyzed for 122 models to show
the impact of increased resource utilization on increasing
power demands. In this study power utilization is minimal
(∼12.5-13.5W, per Section III-B).

• Design tradeoffs are provided for targeted FPGAs with
known numbers of LUTs and FFs, helping engineers
determine objective model sizes (i.e. the total number of
gates) based on application-specific constraints on data
(like the number of input bits, per Section III-C). These
results help engineers budget the number of logic gates
which may be used in LGN submodules.

• The design tradeoffs found through this study are synthe-
sized into a notional methodology for selecting baseline
LGN architectures when targeting FPGAs with known
resource limitaions for novel applications (Section III-E).

These findings may be extended to compare LGN imple-
mentations on FPGAs and microcontrollers, evaluate design
rules for LGNs designed into application specific integrated
circuit (ASIC), and determine the value of LGNs architectural
variations which are specialized for certain applications.

• There is room to explore and compare hardware utiliza-
tion across smaller FPGAs and microcontrollers which
have fewer resources to develop upon optimization tech-
niques which help in deploying LGNs on edge devices
(extending work from Section III-A-E).

• The design tradeoffs in Section III-A-D are specific to
LGN implementations on FPGAs. Future work could
investigate how LGNs may hold value in designing
ASICs for applications where large LGNs are needed
while maintaining super low power usage.

• The findings on LGN model variations in Section III-D
indicate that continued research into specialized LGN
architectures may further optimize resource usage and
latency for small devices.

Following this work, ML engineers can implement and
extend the design methodology outlined in Section III-E to
specialized applications and devices which hold unique con-
straints. Streamlining this approach for niche tasks holds the
potential to improve the intelligence density deployed on small
devices, which holds value in numerous applications across
the Internet-of-Things, micro-robotics including autonomous
vehicles, and personalized devices in the medicine.

REFERENCES

[1] M. Kumar, V. Sharma, and M. Srivastava, “Edge intelligence for
resource-constrained devices: A survey,” ACM Computing Surveys,
vol. 56, no. 1, pp. 1–36, 2024.

[2] Y. Xu, X. Zhang, Q. Wang, and L. Li, “Approximate computing for edge
ai: Opportunities and challenges,” IEEE Transactions on Computers,
vol. 72, no. 1, pp. 17–32, 2023.

[3] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Deep differen-
tiable logic gate networks,” Advances in Neural Information Processing
Systems, vol. 35, pp. 2006–2018, 2022.

[4] Z. Susskind, A. Arora, I. D. Miranda, L. A. Villon, R. F. Katopodis, L. S.
De Araújo, D. L. Dutra, P. M. Lima, F. M. França, M. Breternitz Jr
et al., “Weightless neural networks for efficient edge inference,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2022, pp. 279–290.

[5] S. Wormald, D. Koblah, M. K. Maldaner, D. Forte, and D. L. Woodard,
“explogic: Explaining logic types and patterns in difflogic networks,” in
International Conference on Information Technology-New Generations.
Springer, 2025, pp. 282–292.

[6] X. Inc., “Alveo u200 data center accelerator card product brief,”
Online, 2021, available: https://www.xilinx.com/products/boards-and-
kits/alveo/u200.html.

[7] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
1998, available: http://yann.lecun.com/exdb/mnist.

[8] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Technical Report, University of Toronto, Tech. Rep., 2009.

[10] AMD / Xilinx, Inc., Vitis High-Level Synthesis User Guide, UG1399,
Online documentation, AMD / Xilinx, Inc., 2025, version 2025.2.
[Online]. Available: https://docs.amd.com/r/en-US/ug1399-vitis-hls/

