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Background and motivation

Human-driven Car-following Behavior

 Relay on driver’ s perception and driving experience

 Safety problem. No system effect control. 

Existing Adaptive Cruise Control

 Ensure individual vehicles’ mobility and safety.

 No system effect control 

Connected and autonomous vehicle (CAV) 

 V2V enables information exchange 

 Local computation enables autonomous drive

 Enable traffic safety and efficiency of the entire 

platoon, sustaining individual vehicle’s mobility



Cooperative Adaptive Cruise Control (CACC)

State of the Art:

 Study in transportation community: keeping safe or stable gap

• Focused on neighborhood traffic safety and efficiency 

• No system effect control

 Study in control community

• Focus on asymptotic string stability

• Miss the consideration of the transient process which may affect 

traffic flow stability significantly.

 Data structure has been applied

• Immediate preceding (IP) vehicle

• Multiple preceding (MP) vehicles

• Preceding (one or multiple) and one following (FP) vehicles

• Not fully take advantage of the connectivity yet
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Coordinated Platoon Car-following Control 

Assumptions

 A pure CAV platoon, including a leading vehicle and several following 

vehicles

 Global information structure: A well-connected platoon thus enables a 

vehicle share information with all other vehicles in the platoon.

Objectives

 Design a closed loop control so that vehicles coordinately determine their 

movements to approach desired system performance

 Develop distributed computation to conduct the control algorithm

……

Flow directionWell connectedLeading vehicle
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Close-Loop Control for CAV Platoon
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Decision Variables: acceleration/deceleration of following vehicles at each 

time step

Procedure:

Predictive Model

Past inputs and outputs Predicated outputs

Optimizer

Future error

Constraints

Safety, acceleration , 

and speed limit

Cost function

System 

performance 

Future input

Vehicle movement states 

Acceleration or 

deceleration

Vehicle movement 

states

The gap to desired 

performance 



Prediction Model: Vehicle Dynamics

 The speed of vehicle i at next time step 𝑘 + 1 is

𝑣𝑖 𝑘 + 1 = 𝑣𝑖 𝑘 + 𝑢𝑖 𝑘 τ

 The location of vehicle i at next time step 𝑘 + 1 is

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 + 𝑣𝑖 𝑘 𝜏 +
𝑢𝑖 𝑘

2
𝜏2

 The spacing between vehicle i-1 and vehicle i at next time step 𝑘 + 1 is

𝑠i−1,𝑖 𝑘 + 1 = 𝑥𝑖−1 𝑘 + 1 − 𝑥𝑖 𝑘 + 1

 The relative speed fluctuation of vehicle 𝑖 at next time step 𝑘 + 1 is
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The discrete-time longitudinal dynamics is described by the following double-

integrator model 

∆𝑣𝑖−1,𝑖(𝑘 + 1) = 𝑣𝑖−1 𝑘 + 1 − 𝑣𝑖 𝑘 + 1

𝜏: the sample length, the control 𝑢𝑖 is constant on each time interval [kτ, (k + 1)τ) 

for k ∈ 𝑍+:= { 0 , 1 , 2 , . . . }, 



Optimizer in the Closed Loop Control
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OPT-C 𝑊 = σ𝑖=1
𝑛 𝛼 𝑠𝑖−1,𝑖 𝑘 + 1 − ∆

2
+ 𝛽 ∆𝑣𝑖−1,𝑖 𝑘 + 1

2
+ 𝑢𝑖 𝑘

2

s.t.

𝑎𝑚𝑖𝑛≤ 𝑢𝑖 𝑘 ≤ 𝑎𝑚𝑎𝑥, ∀i = 1,⋯ , n

0 ≤ 𝑣𝑖 𝑘 + 1 ≤ 𝑣𝑚𝑎𝑥, ∀i = 1,⋯ , n

0 ≥ 𝐿 + 𝑣𝑖 𝑘 𝑟 Τ− 𝑣𝑖(𝑘) − 𝑣𝑚𝑖𝑛
2 2𝑎𝑚𝑖𝑛 − 𝑠𝑖−1,𝑖 𝑘 + 1 , ∀ i = 1,⋯ , n

 Objective(strictly convex): minimize traffic oscillation using mild control

• Penalty on the relative spacing variation 

• Penalty on speed variation and the magnitude of control 

• Penalty weights 𝛼 and 𝛽 affect closed-loop dynamics

• They together ensure transient state and asymptotic stability

 Three constraints (convex and compact set)

• Ensure safety distance, speed limit and acceleration limits

Acceleration limit

Speed limit

Safety



Properties of the Optimizer

 Lemma 3.1. (Sequential feasibility) 

Suppose (𝑥𝑠, 𝑣𝑠)𝑠=0
𝑛 and 𝑢0 are initially feasible such that they satisfy 

speed & acceleration limits, and safety constraints for all vehicles in 

the platoon. Then, the constraint set is always nonempty.

 Lemma 3.2. 

The constraint set has nonempty interior when 𝑣0 > 𝑣𝑚𝑖𝑛; thus 

satisfies Slater’s constraint qualification (CQ). 

 Theorem 3.1. 

The optimizer has a unique optimal solution

 Strictly convex objective function

 Constraints define a convex and compact set
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Please refer to the paper for the proofs of the above lemmas and theory.

Gong, S., Shen, J., Du, L*. (2016). Constrained Optimization and Distributed Computation Based Car-Following Control of A 

Connected and Autonomous Vehicle Platoon. Transportation Research Part B: Methodological, Volume 94, Pages 314-334.



Distributed Algorithms: Reformulate the Optimizer

 The optimization problem can be rewritten in a compact format

 Focus on its mathematical structure

minimize 𝐽 𝑢 ≔
1

2
𝑢𝑇𝐻𝑢 + 𝑐𝑇𝑢 + 𝛾

s.t. ቊ
𝑢𝑖 ∈ 𝜒𝑖 , ∀𝑖 = 1,⋯ , 𝑛

𝑔𝑖 𝑢 ≤ 0, ∀𝑖 = 1,⋯ , 𝑛

 Where 𝜒𝑖 is the intersection of speed and acceleration limits-box 

constraints (compact and convex).

 𝑔𝑖 𝑢 is the safety distance constraint- a coupled constraint.

 Motivated by the distributed algorithm developed in Koshal et.al (2011), we 

develop our distributed algorithm to solve (A)

 Gradient projection algorithm to iteratively explore a feasible and 
better solution 

 Primal-dual theory ensures the convergence 9

(A)

⇒ Quadratic function

⇒ Quadratic function
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Distributed Algorithms: Primal-Dual Problems

 The Lagrangian dual function of (A) is

ℒ 𝑢, 𝜆 = 𝐽 𝑢 + 𝜆𝑇𝑔 𝑢 ,

 The primal and associated dual problems:

where 𝜆 ∈ ℝ+
𝑛 is the multiplier vector.

Primal (P) 𝑖𝑛𝑓𝑢∈𝜒𝑠𝑢𝑝𝜆∈ℝ+
𝑛ℒ 𝑢, 𝜆

Dual(D) 𝑠𝑢𝑝𝜆∈ℝ+
𝑛 𝑖𝑛𝑓𝑢∈𝜒ℒ 𝑢, 𝜆

 Where 𝜒 ≔ 𝜒1 ×⋯× 𝜒𝑛 are box constraints.

 ℝ+
𝑛 is a not compact set, which causes issues of the algorithm convergence

 Following from Slater’s CQ and convexity of (A)

 The strong duality holds: exists a dual optimal solution 𝜆∗; and the optimal 

values of P and D match at optimality, (𝑢∗, 𝜆∗).

 The primal-dual optimal pair (𝑢∗, 𝜆∗) is a saddle point of the Lagrangian

dual function ℒ 𝜇, 𝜆 .

(1)

(2)
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Distributed Alg: Make Duel Constraints Compact 

 According to the definition of saddle point of ℒ, we have

ℒ 𝑢′, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆∗ ≥ ℒ 𝑢∗, 0

 Given 𝑔𝑖 𝑢 ≤ 0 in (A), we have 

𝐽 𝑢′ − 𝜇 ≥ σ𝑖=1
𝑛 𝜆∗,𝑖 −𝑔𝑖 𝑢

′ .

 The following (convex) box constraint for the dual optimal solutions 𝜆∗,𝑖

𝕀𝑖 ≔ 𝜆𝑖 ∈ ℝ+
𝑛 0 ≤ 𝜆𝑖 ≤

𝐽 𝑢′ − 𝜇
−𝑔𝑖 𝑢

′ , ∀𝑖 = 1,⋯ , 𝑛

 𝜆𝑖 ∈ ℝ+
𝑛 in the primal and dual problems can be replaced by 𝜆𝑖 ∈ 𝕀𝑖.

ℒ 𝑢′, 𝜆∗ = 𝐽 𝑢′ + σ𝑖=1
𝑛 𝜆∗,𝑖𝑔𝑖 𝑢′ ≥ 𝜇.

= 𝐽 𝑢∗ ≥ 𝑚𝑖𝑛
𝑢∈ℝ𝑛

𝐽 𝑢 ≔ 𝜇,

ℒ 𝑢′, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆 ,

 Next, make 𝜆=0, we change the inequality to 

≥ 𝜆∗,𝑖 −𝑔𝑖 𝑢
′ .

(1)

(2)

(4)

(5)

where 𝑢′ be an interior point

(3)
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Distributed Algorithms

 According to Koshal et.al (2011),  a necessary and sufficient optimality 

condition for (A) is that 𝑢∗, 𝜆∗ gives the solution to the following system

𝑢∗,𝑖 =ෑ
𝜒i

𝑢∗,𝑖 − 𝜉𝛻𝑢𝑖ℒ 𝑢∗, 𝜆∗ , 𝜆∗,𝑖 = ෑ
𝕀𝑖

𝜆∗,𝑖 + 𝜃𝑔𝑖 𝑢∗ , ∀𝑖 = 1,⋯ , 𝑛,

where 

 𝜒𝑖 or 𝕀𝑖 is an interval constraint of the form 𝑎𝑖 , 𝑏𝑖
 Then for any 𝑧 ∈ ℝ, the Euclidean projection Π is shown as following

ෑ
𝑎𝑖,𝑏𝑖

𝑧 = ቐ
𝑏𝑖 ,
𝑧,
𝑎𝑖

𝑖𝑓 𝑧 ≥ 𝑏𝑖
𝑖𝑓 𝑧 ∈ 𝑎𝑖 , 𝑏𝑖
𝑖𝑓 𝑧 ≤ 𝑎𝑖

 Euclidean project is decoupled; can be computed in a decentralized manner. 

 Both dual and primal-dual based distributed algorithms are discussed for (A).

 The dual based regularized distributed algorithm was selected due to its better 

computational performance.

Iteratively 

solve 𝜆 and 𝑢
until converge
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Dual based Regularized Distributed Algorithm

Repeat until converge

 Each CAV iteratively solves its 

own primal and dual variables

 Share its temporary decision

 Given 𝜆𝑚 and 𝑢𝑚, update 𝑢𝑖
𝑚,𝑠+1

𝑢𝑖
𝑚,𝑠+1 =ෑ

𝜒i

𝑢𝑖
𝑚,𝑠 − 𝜉𝛻𝑢𝑖ℒ 𝑢𝑚,𝑠, 𝜆𝑚

 Given 𝑢𝑚+1 and 𝜆𝑚,  update 𝜆𝑚+1

𝜆𝑖
𝑚+1 =ෑ

𝕀𝑖

𝜆𝑖
𝑚 + 𝜃 𝑔𝑖 𝑢

𝑚+1 − 𝜀𝜆𝑖
𝑚

• 𝜉 and 𝜃 are the step lengths; their values affect the convergence. 

• 𝜀𝜆𝑖
𝑚 is the regularization term to remove degenerate cases

• Please refer to our paper for technical details.

Perform two gradient projection 

algorithms in a distributed manner



Linear Stability Analysis
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 Focus on the stability analysis where all the constraints are inactive.

 Control system under inactive constraints

 Linear Stability: For any positive numbers 𝜏, and 𝛼𝑖 , 𝛽𝑖 for each 𝑖 = 1,… , 𝑛, 

𝐴 𝛼, 𝛽, τ is Schur stable (i.e., each eigenvalue satisfies 𝜇 <1) such that the 

linear closed-loop system is asymptotically stable as 𝑢0(𝑘) → 0.

 Choice of Weights: recommend formulations such that 𝛼𝑖 , 𝛽𝑖 to be the order 

of 𝑛2, and 𝛽𝑖 ≥ Τ4𝜏2 𝛼𝑖 to ensure fast dynamic response and mild input.

 𝑧 𝑘 = (𝑥0 − 𝑥1 − ∆,…𝑥𝑛−1 − 𝑥𝑛 − ∆)𝑇(k) : spacing error (output at k)

 𝑧′ 𝑘 = (𝑣0 − 𝑣1, … 𝑣𝑛−1 − 𝑣𝑛)
𝑇(k):  relative speed (output at k)

 𝜔 𝑘 = (𝑢0 − 𝑢1, … 𝑢𝑛−1 − 𝑢𝑛)
𝑇(k): interactive control decision (input at k)

𝑧 𝑘 + 1 = 𝑧 𝑘 + 𝜏𝑧′ 𝑘 + 𝜏2

2
𝜔 𝑘 , 𝑧′ 𝑘 + 1 = 𝑧′ 𝑘 + 𝜏𝜔 𝑘 ,  where

)𝑧(𝑘 + 1

)𝑧′(𝑘 + 1
= 𝐴 𝛼, 𝛽, 𝜏

𝑧 𝑘

𝑧′ 𝑘
+

𝜏2

2
𝐼𝑛

𝜏𝐼𝑛
W(α;β; τ )1 𝑢0(𝑘), wherer 1 is a vector

Please refer our paper for the choice of penalty weights based on linear stability results. 

 𝜔 𝑘 is the optimal solution of (A) and it is linear in (𝑧(𝑘); 𝑧′(𝑘))

 A linear closed-loop dynamics is given below

(1)

(2)



Numerical Experiment

 10 autonomous vehicle platoon. One 
leading vehicle (n=0) and nine following 
vehicles (n=i,…,9).

0 1 2 ... 8 9

Traffic flow vi(0)

∆ ∆ ∆ 

0 Leading vehicle i Following vehicle

 Input data: the desired spacing (50m), the acceleration (1.35m/s) and 
deceleration limits (-8m/s), speed limit, sample time (1s or 0.5s). 

Three scenarios are tested:
 Scenario 1, leading vehicle performs instantaneous deceleration\acceleration 

and keeps a constant speed for a while.
 Scenario 2, leading vehicle performs periodical acceleration\deceleration.
 Scenario 3, using real world trajectory data from an oscillating traffic flow.

Objective:
 Test the computation performance of the distributed algorithm.
 Test the performance of the proposed control scheme.
 Compare the platoon car-following control to a CACC in literature.
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Test Platoon
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Numerical Experiment

 The mean convergence time for each scenarios is very short with a small 
variance. The number of iterations showed the similar observations.

 The distributed algorithm converges quickly and it satisfies the online 
applications.

I: Examining the Computational Performance:
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Numerical Experiment

 The movement of the leading vehicle 

shows a slow-and-fast traffic state 

II. Key Observations for Scenario 3 

 The proposed car-following control 

help keep traffic stability and dampen 

traffic oscillation along a platoon.

 Dampen the propagation of speed 

fluctuation along the platoon.

 Decreases the propagation of 

spacing variation along the platoon.

 Smoothen control inputs 

(acceleration/deceleration) along 

the platoon.
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III. Comparing with a CACC
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 Both schemes render the vehicles back to the desired spacing eventually 

 The transient dynamics under the platoon control is more stable

The platoon 

car-following 

control 

CACC in

(Schakel et al., 

2010)

s89

s89

s01

s01



The platoon car-following control CACC (Schakel et al., 2010) 

III. Comparing with a CACC mechanism 
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 Similar observation can be obtained from the speed and control input responses

SpeedSpeed

Control input
Control input



III. Comparing a CACC mechanism 
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 The proposed 

control scheme 

reduces speed 

fluctuation at 

almost all 

frequencies

 The CACC 

(Schakel et al., 

2010) can reduce 

speed fluctuation 

under certain 

frequencies

(a) Platoon under the proposed control scheme

(b) Platoon under CACC (Schakel et al., 2010) scheme 



Summary

 This paper develops a novel platoon car-following control scheme based on 

constrained optimization and distributed computation.

 Consider a platoon of connected and autonomous vehicles

 Model it as an interconnected dynamic system subject to acceleration, speed, and 

safety distance constraints, under the global information structure.

 Develop a constrained optimization problem to achieve desired multiple platoon 

performance objectives arising from the transient and asymptotic dynamics

 Develop dual or primal-dual based distributed algorithms to implement the control 

algorithm using the special properties and structure of the optimizer.

 Study the stability of the proposed control scheme, particularly for the unconstrained 

linear closed-loop system which is shown to be asymptotically stable.

 This study conduct numerical experiments based on field data to demonstrate 

the proposed platoon control scheme.

 It effectively reduces the propagation of traffic fluctuation/oscillation along a platoon

 It outperforms the conventional cooperative cruise control. 
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