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Background and motivation

Human-driven Car-following Behavior

O Relay on driver’ s perception and driving experience
o Safety problem. No system effect control.

Existing Adaptive Cruise Control

O Ensure individual vehicles’ mobility and safety.
o No system effect control

Connected and autonomous vehicle (CAV)
o V2V enables information exchange
o Local computation enables autonomous drive

o Enable traffic safety and efficiency of the entire
platoon, sustaining individual vehicle’s mobility
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Cooperative Adaptive Cruise Control (CACC)

State of the Art:

o Study in transportation community: keeping safe or stable gap
Focused on neighborhood traffic safety and efficiency
No system effect control

o Study in control community
Focus on asymptotic string stability

Miss the consideration of the transient process which may affect
traffic flow stability significantly.

o Data structure has been applied
Immediate preceding (IP) vehicle
Multiple preceding (MP) vehicles
Preceding (one or multiple) and one following (FP) vehicles
Not fully take advantage of the connectivity yet
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Coordinated Platoon Car-following Control

Leading vehicle Well connected <_—_| Flow direction

Assumptions

« Apure CAV platoon, including a leading vehicle and several following
vehicles

« Global information structure: A well-connected platoon thus enables a
vehicle share information with all other vehicles in the platoon.

Objectives

Design a closed loop control so that vehicles coordinately determine their
movements to approach desired system performance

Develop distributed computation to conduct the control algorithm

)
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Close-Loop Control for CAV Platoon

Decision Variables: acceleration/deceleration of following vehicles at each
time step

Procedure:
(T T ™ A N
I Past inputs and outputs ! I Predicated outputs i
1 1 1 a
| Vehicle movement states ! { Vehicle movement |
“— ~ M states________ )
_______________ — Predictive Model
i Future input i
I Acceleration or | " Euture error
1 c : 1 :
:\deceleraﬂon J | The gap to desired |
"""""""" — {  performance
Optimizer - TTTTTTTTTmoomees
{ Cost function Constraints i
i System Safety, acceleration ¥
] performance and speed limit !
U
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Prediction Model: Vehicle Dynamics

7. the sample length, the control u; is constant on each time interval [kt, (k + 1)1)
forkezt:={0,1,2,...}

The discrete-time longitudinal dynamics is described by the following double-
Integrator model
o The speed of vehicle i at nexttime step k + 1 1s
vi(k+1) = v;(k) +u; (k)T
o The location of vehicle i at next time step k + 1 1s

(k)
2

x;(k+1) =x;(k) +v;(k)T +

o The spacing between vehicle i-1 and vehicle i at next time step k + 1 is
Si—1,i (k+1) =x;1(k+1) —x;(k + 1)

o The relative speed fluctuation of vehicle i at next time step k + 1 is
Avi_lli(k + 1) = vi—l(k + 1) — Ul'(k + 1)
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Optimizer in the Closed Loop Control

OPT-C W = Zlﬂ:l{a[si_l’i(k +1) — A]2 + B|Av;_q i (k + 1)]2 + [ui(k)]z}

s.t.
Anin< U; (k) < @y, Vi=1,-++,n Acceleration limit

0<vi(k+1)<v,,,Vi=1-,n Speed limit

0=L+ vi(k)r _(vi(k) - vmin)z/zamin - Si—l,i(k + 1),Vi =1,-,n Safety

o Objective(strictly convex): minimize traffic oscillation using mild control
- Penalty on the relative spacing variation
- Penalty on speed variation and the magnitude of control
- Penalty weights a and S affect closed-loop dynamics
- They together ensure transient state and asymptotic stability
o Three constraints (convex and compact set)
- Ensure safety distance, speed limit and acceleration limits
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Properties of the Optimizer

o Lemma 3.1. (Sequential feasibility)
Suppose (xg, vg)e—o and u, are initially feasible such that they satisfy
speed & acceleration limits, and safety constraints for all vehicles in

the platoon. Then, the constraint set is always nonempty.

o Lemma 3.2.

The constraint set has nonempty interior when vy > v,,,;,,; thus
satisfies Slater’s constraint qualification (CQ).

o Theorem 3.1.

The optimizer has a unique optimal solution
. Strictly convex objective function
. Constraints define a convex and compact set

Please refer to the paper for the proofs of the above lemmas and theory.
Gong, S., Shen, J., Du, L*. (2016). Constrained Optimization and Distributed Computation Based Car-Following Control of A
Connected and Autonomous Vehicle Platoon. Transportation Research Part B: Methodological, Volume 94, Pages 314-334.
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Distributed Algorithms: Reformulate the Optimizer

The optimization problem can be rewritten in a compact format
Focus on its mathematical structure

minimize  J(u) := %UTHLL +cTu+y = Quadratic function
. (A)
s.t Ui € Xi, vVi=1,-,n
- g;(w) <0, Vi=1,--,n = Quadratic function

Where y; Is the intersection of speed and acceleration limits-box
constraints (compact and convex).

g;(u) is the safety distance constraint- a coupled constraint.

Motivated by the distributed algorithm developed in Koshal et.al (2011), we
develop our distributed algorithm to solve (A)

Gradient projection algorithm to iteratively explore a feasible and
better solution

Primal-dual theory ensures the convergence 9
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Distributed Algorithms: Primal-Dual Problems
o The Lagrangian dual function of (A) is
L(u, ) =]J@) + AT g(u), where 2 € R} is the multiplier vector.
o The primal and associated dual problems:
Primal (P) infueySupyern £L(u, 1) (1)
Dual(D) Super? infuey L(uw, 1) (2)

Where y := y; X -+ X y,, are box constraints.
R is a not compact set, which causes issues of the algorithm convergence

o Following from Slater’s CQ and convexity of (A)

The strong duality holds: exists a dual optimal solution A,; and the optimal
values of P and D match at optimality, (u,, A,).

The primal-dual optimal pair (u,, A,) is a saddle point of the Lagrangian
dual function L(u, ).

10
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Distributed Alg: Make Duel Constraints Compact

o According to the definition of saddle point of £, we have

L', 1) = £(u,, 1) = L(u,, 1), where u' be an interior point (1)
o Next, make 1=0, we change the inequality to
L@, 2 L(w, ) 2 L., 0) =] (w) = min J(u) = u, 2)
u

\‘ LW, A)=]W) + Xz Agigi(w) = / (3)

o Given g;(u) < 0in (A), we have l

JW) —p =Y Ai(—9:@)) =2 4, (—g:(w)). @
o The following (convex) box constraint for the dual optimal solutions 4, ;

I; =={AieRﬁosa-<](”)_“}, Vi=1,-,n (5)

PTo—gi(W)
o A; € R% in the primal and dual problems can be replaced by 4; € I,.

11
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Distributed Algorithms

o According to Koshal et.al (2011), a necessary and sufficient optimality
condition for (A) is that (u,, A,) gives the solution to the following system

Uy = 1_[)(1 (u*,i — fVuiL(u*,)l*)), Aoi = Hni (/1*,1- + Hgi(u*)) , Vi=1,--,n,

where
= x; or I; is an interval constraint of the form [a;, b;]

- Then for any z € R, the Euclidean projection II is shown as following

b;, if z = by Iteratively
1_[ (z) =1 z if z € [ai, bi] solve A and u
laibil a; if z< a; until converge

o Euclidean project is decoupled; can begcomputeocf)in a decentralized manner.
o Both dual and primal-dual based distributed algorithms are discussed for (A).

o The dual based regularized distributed algorithm was selected due to its better
computational performance.

12
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Dual based Regularized Distributed Algorithm

Real time L‘M‘sj Repeat until converge
movement I I

(" Initalzation - Each CAV iteratively solves its
S I own primal and dual variables
( _ N - Share its temporary decision

Solve primal problem ]

Update »™*

lterative

Perform two gradient projection

1], 2ol ] algorithms in a distributed manner
e .
= |u™ — w7 small LIlULIqu - = Given A™ and u™ update um S+l
— e
S R ST w2 T (W - em,Lums, am)
crativ : Solve dual problem : Ai
- update 4 ™ [
N |
1] 2 «L l l | @& . Givenu™*! and A™, update A™*1
N ____-~-—"’_: - '
l J_ : 1" small enoug ﬁh =
v | =] | o+ olgim) - ear)
End I;

& and @ are the step lengths; their values affect the convergence.
e is the regularization term to remove degenerate cases
Please refer to our paper for technical details. 13



ILLINOIS INSTITUTE"/}.
OF TECHNOLOGY

Linear Stability Analysis

o Focus on the stability analysis where all the constraints are inactive.

o Control system under inactive constraints
2(k + 1) = z(k) + t2'(k) + Zw(k), 7z'(k+1) = 2'(k) + tw(k), where (1)
z(k) = (xg — x; — A, ...xp—1 — x, — A)T(K) : spacing error
z'(k) = (vg — vy, ... Vy—1 — V)T (K): relative speed
w(k) = (ug — Uq, ... uy_1 — uy) T (K): interactive control decision
o w(k) is the optimal solution of (A) and it is linear in (z(k); z'(k))

A linear closed-loop dynamics is given below

[ZZ,((I;C-_:?)] A(a,B,7) [Z,((Il?)] [ ] W(ei;B; T )1 ug(k), wherer 1 is a vector (2)

o Linear Stability: For any positive numbers z, and «;, §; foreachi =1, ...,n
A(a, B, 1) is Schur stable (i.e., each eigenvalue satisfies |u| <1) such that the
linear closed-loop system is asymptotically stable as u,(k) — 0.

o Choice of Weights: recommend formulations such that «;, §; to be the order
of n?, and B; = 412 /a; to ensure fast dynamic response and mild input.

Please refer our paper for the choice of penalty weights based on linear stability results. 14
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Numerical Experiment

Test Platoon < Trafficflow v,(0)

- 10 autonomous vehicle platoon. One BN T I S

leading vehicle (n=0) and nine following
vehicles (n=i,...,9).

= Input data: the desired spacing (50m), the acceleration (1.35m/s) and
deceleration limits (-8m/s), speed limit, sample time (1s or 0.5s).

Three scenarios are tested:

- Scenario 1, leading vehicle performs instantaneous deceleration\acceleration
and keeps a constant speed for a while.

= Scenario 2, leading vehicle performs periodical acceleration\deceleration.

= Scenario 3, using real world trajectory data from an oscillating traffic flow.

Objective:

= Test the computation performance of the distributed algorithm.

- Test the performance of the proposed control scheme.

= Compare the platoon car-following control to a CACC in literature.

15
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I: Examining the Computational Performance:

Scenarios  Computation time (s)

The number of iterations

Mean Variance Mean Variance
1 0.0115 0.000388 29791 0.9595
0.0114 0.000361 297.93 0.4540
3 0.0047 0.000390 109.34 1.1334

- The mean convergence time for each scenarios is very short with a small
variance. The number of iterations showed the similar observations.
= The distributed algorithm converges quickly and it satisfies the online

applications.

17
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Numerical Experiment

1. Key Observations for Scenario 3

)

£
E
- 24
D
)
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w

o The movement of the leading vehicle
shows a slow-and-fast traffic state

TnT TN nnan|//
co~NoarwN=20|////)
IS T - —— ! 4/l

20 25
Time (s)

o The proposed car-following control =
help keep traffic stability and dampen =
traffic oscillation along a platoon. T o - —=z|

- Dampen the propagation of speed
fluctuation along the platoon.

= Decreases the propagation of
spacing variation along the platoon.

= Smoothen control inputs
(acceleration/deceleration) along

the platoon.

Acceleration/Deceleration (mt/s)

= I - N N R - 17 M~ 1 |
T L T A O [ L Ty
CONOOBAWN=20 i
& T T T i

20 25
Time (s)
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[11. Comparing with a CACC

The platoon
car-following
control

spacing (m)

CACCiin
(Schakel et al.,
2010)

spacing (m)

o Both schemes render the vehicles back to the desired spacing eventually

o The transient dynamics under the platoon control is more stable
19
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1. Comparing with a CACC mechanism

The platoon car-following control

CACC (Schakel et al., 2010)

Speed (m/s)
MM

=]

- (Y19
i

[ T T T R T T TR}
@B o~ h e LR =
1 1 1 1 1 1

Acceleration/Deceleration (m/si)
da Y EN = -

(m/s?)

Time (s)

Acceleration/Deceleration
& & b

VI,
WP

[T TR T
© W0 N®U AW =0
1 1 1 |

Time (s)

o Similar observation can be obtained from the speed and control input responses

19
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(a) Platoon under the proposed control scheme

o The proposed

Amplitude (km/nh)

ash _Z control scheme
< P . reduces speed
o S fluctuation at
Tosk Sy e almost all
y / 1 2 :;'\ — ‘ e :;:.' ....................... frequenmes
Frequency (mHz)
o The CACC

(b) Platoon under CACC (Schakel et al., 2010) scheme

a) 1 a 2 a3 3 4dy ds
Frequency (mHz)

(Schakel et al.,
2010) can reduce
speed fluctuation
under certain
frequencies

20
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Summary

o This paper develops a novel platoon car-following control scheme based on
constrained optimization and distributed computation.

= Consider a platoon of connected and autonomous vehicles

= Model it as an interconnected dynamic system subject to acceleration, speed, and
safety distance constraints, under the global information structure.

= Develop a constrained optimization problem to achieve desired multiple platoon
performance objectives arising from the transient and asymptotic dynamics

= Develop dual or primal-dual based distributed algorithms to implement the control
algorithm using the special properties and structure of the optimizer.

= Study the stability of the proposed control scheme, particularly for the unconstrained
linear closed-loop system which is shown to be asymptotically stable.

o This study conduct numerical experiments based on field data to demonstrate
the proposed platoon control scheme.

It effectively reduces the propagation of traffic fluctuation/oscillation along a platoon
It outperforms the conventional cooperative cruise control.

21
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Thank You Very Much!
Questions?

ldud@iit.edu
lllinois Institute of Technology
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