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Background and motivation

Human-driven Car-following Behavior

 Relay on driver’ s perception and driving experience

 Safety problem. No system effect control. 

Existing Adaptive Cruise Control

 Ensure individual vehicles’ mobility and safety.

 No system effect control 

Connected and autonomous vehicle (CAV) 

 V2V enables information exchange 

 Local computation enables autonomous drive

 Enable traffic safety and efficiency of the entire 

platoon, sustaining individual vehicle’s mobility



Cooperative Adaptive Cruise Control (CACC)

State of the Art:

 Study in transportation community: keeping safe or stable gap

• Focused on neighborhood traffic safety and efficiency 

• No system effect control

 Study in control community

• Focus on asymptotic string stability

• Miss the consideration of the transient process which may affect 

traffic flow stability significantly.

 Data structure has been applied

• Immediate preceding (IP) vehicle

• Multiple preceding (MP) vehicles

• Preceding (one or multiple) and one following (FP) vehicles

• Not fully take advantage of the connectivity yet
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Coordinated Platoon Car-following Control 

Assumptions

 A pure CAV platoon, including a leading vehicle and several following 

vehicles

 Global information structure: A well-connected platoon thus enables a 

vehicle share information with all other vehicles in the platoon.

Objectives

 Design a closed loop control so that vehicles coordinately determine their 

movements to approach desired system performance

 Develop distributed computation to conduct the control algorithm

……

Flow directionWell connectedLeading vehicle
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Close-Loop Control for CAV Platoon
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Decision Variables: acceleration/deceleration of following vehicles at each 

time step

Procedure:

Predictive Model

Past inputs and outputs Predicated outputs

Optimizer

Future error

Constraints

Safety, acceleration , 

and speed limit

Cost function

System 

performance 

Future input

Vehicle movement states 

Acceleration or 

deceleration

Vehicle movement 

states

The gap to desired 

performance 



Prediction Model: Vehicle Dynamics

 The speed of vehicle i at next time step 𝑘 + 1 is

𝑣𝑖 𝑘 + 1 = 𝑣𝑖 𝑘 + 𝑢𝑖 𝑘 τ

 The location of vehicle i at next time step 𝑘 + 1 is

𝑥𝑖 𝑘 + 1 = 𝑥𝑖 𝑘 + 𝑣𝑖 𝑘 𝜏 +
𝑢𝑖 𝑘

2
𝜏2

 The spacing between vehicle i-1 and vehicle i at next time step 𝑘 + 1 is

𝑠i−1,𝑖 𝑘 + 1 = 𝑥𝑖−1 𝑘 + 1 − 𝑥𝑖 𝑘 + 1

 The relative speed fluctuation of vehicle 𝑖 at next time step 𝑘 + 1 is
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The discrete-time longitudinal dynamics is described by the following double-

integrator model 

∆𝑣𝑖−1,𝑖(𝑘 + 1) = 𝑣𝑖−1 𝑘 + 1 − 𝑣𝑖 𝑘 + 1

𝜏: the sample length, the control 𝑢𝑖 is constant on each time interval [kτ, (k + 1)τ) 

for k ∈ 𝑍+:= { 0 , 1 , 2 , . . . }, 



Optimizer in the Closed Loop Control
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OPT-C 𝑊 = σ𝑖=1
𝑛 𝛼 𝑠𝑖−1,𝑖 𝑘 + 1 − ∆

2
+ 𝛽 ∆𝑣𝑖−1,𝑖 𝑘 + 1

2
+ 𝑢𝑖 𝑘

2

s.t.

𝑎𝑚𝑖𝑛≤ 𝑢𝑖 𝑘 ≤ 𝑎𝑚𝑎𝑥, ∀i = 1,⋯ , n

0 ≤ 𝑣𝑖 𝑘 + 1 ≤ 𝑣𝑚𝑎𝑥, ∀i = 1,⋯ , n

0 ≥ 𝐿 + 𝑣𝑖 𝑘 𝑟 Τ− 𝑣𝑖(𝑘) − 𝑣𝑚𝑖𝑛
2 2𝑎𝑚𝑖𝑛 − 𝑠𝑖−1,𝑖 𝑘 + 1 , ∀ i = 1,⋯ , n

 Objective(strictly convex): minimize traffic oscillation using mild control

• Penalty on the relative spacing variation 

• Penalty on speed variation and the magnitude of control 

• Penalty weights 𝛼 and 𝛽 affect closed-loop dynamics

• They together ensure transient state and asymptotic stability

 Three constraints (convex and compact set)

• Ensure safety distance, speed limit and acceleration limits

Acceleration limit

Speed limit

Safety



Properties of the Optimizer

 Lemma 3.1. (Sequential feasibility) 

Suppose (𝑥𝑠, 𝑣𝑠)𝑠=0
𝑛 and 𝑢0 are initially feasible such that they satisfy 

speed & acceleration limits, and safety constraints for all vehicles in 

the platoon. Then, the constraint set is always nonempty.

 Lemma 3.2. 

The constraint set has nonempty interior when 𝑣0 > 𝑣𝑚𝑖𝑛; thus 

satisfies Slater’s constraint qualification (CQ). 

 Theorem 3.1. 

The optimizer has a unique optimal solution

 Strictly convex objective function

 Constraints define a convex and compact set
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Please refer to the paper for the proofs of the above lemmas and theory.

Gong, S., Shen, J., Du, L*. (2016). Constrained Optimization and Distributed Computation Based Car-Following Control of A 

Connected and Autonomous Vehicle Platoon. Transportation Research Part B: Methodological, Volume 94, Pages 314-334.



Distributed Algorithms: Reformulate the Optimizer

 The optimization problem can be rewritten in a compact format

 Focus on its mathematical structure

minimize 𝐽 𝑢 ≔
1

2
𝑢𝑇𝐻𝑢 + 𝑐𝑇𝑢 + 𝛾

s.t. ቊ
𝑢𝑖 ∈ 𝜒𝑖 , ∀𝑖 = 1,⋯ , 𝑛

𝑔𝑖 𝑢 ≤ 0, ∀𝑖 = 1,⋯ , 𝑛

 Where 𝜒𝑖 is the intersection of speed and acceleration limits-box 

constraints (compact and convex).

 𝑔𝑖 𝑢 is the safety distance constraint- a coupled constraint.

 Motivated by the distributed algorithm developed in Koshal et.al (2011), we 

develop our distributed algorithm to solve (A)

 Gradient projection algorithm to iteratively explore a feasible and 
better solution 

 Primal-dual theory ensures the convergence 9

(A)

⇒ Quadratic function

⇒ Quadratic function
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Distributed Algorithms: Primal-Dual Problems

 The Lagrangian dual function of (A) is

ℒ 𝑢, 𝜆 = 𝐽 𝑢 + 𝜆𝑇𝑔 𝑢 ,

 The primal and associated dual problems:

where 𝜆 ∈ ℝ+
𝑛 is the multiplier vector.

Primal (P) 𝑖𝑛𝑓𝑢∈𝜒𝑠𝑢𝑝𝜆∈ℝ+
𝑛ℒ 𝑢, 𝜆

Dual(D) 𝑠𝑢𝑝𝜆∈ℝ+
𝑛 𝑖𝑛𝑓𝑢∈𝜒ℒ 𝑢, 𝜆

 Where 𝜒 ≔ 𝜒1 ×⋯× 𝜒𝑛 are box constraints.

 ℝ+
𝑛 is a not compact set, which causes issues of the algorithm convergence

 Following from Slater’s CQ and convexity of (A)

 The strong duality holds: exists a dual optimal solution 𝜆∗; and the optimal 

values of P and D match at optimality, (𝑢∗, 𝜆∗).

 The primal-dual optimal pair (𝑢∗, 𝜆∗) is a saddle point of the Lagrangian

dual function ℒ 𝜇, 𝜆 .

(1)

(2)
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Distributed Alg: Make Duel Constraints Compact 

 According to the definition of saddle point of ℒ, we have

ℒ 𝑢′, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆∗ ≥ ℒ 𝑢∗, 0

 Given 𝑔𝑖 𝑢 ≤ 0 in (A), we have 

𝐽 𝑢′ − 𝜇 ≥ σ𝑖=1
𝑛 𝜆∗,𝑖 −𝑔𝑖 𝑢

′ .

 The following (convex) box constraint for the dual optimal solutions 𝜆∗,𝑖

𝕀𝑖 ≔ 𝜆𝑖 ∈ ℝ+
𝑛 0 ≤ 𝜆𝑖 ≤

𝐽 𝑢′ − 𝜇
−𝑔𝑖 𝑢

′ , ∀𝑖 = 1,⋯ , 𝑛

 𝜆𝑖 ∈ ℝ+
𝑛 in the primal and dual problems can be replaced by 𝜆𝑖 ∈ 𝕀𝑖.

ℒ 𝑢′, 𝜆∗ = 𝐽 𝑢′ + σ𝑖=1
𝑛 𝜆∗,𝑖𝑔𝑖 𝑢′ ≥ 𝜇.

= 𝐽 𝑢∗ ≥ 𝑚𝑖𝑛
𝑢∈ℝ𝑛

𝐽 𝑢 ≔ 𝜇,

ℒ 𝑢′, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆∗ ≥ ℒ 𝑢∗, 𝜆 ,

 Next, make 𝜆=0, we change the inequality to 

≥ 𝜆∗,𝑖 −𝑔𝑖 𝑢
′ .

(1)

(2)

(4)

(5)

where 𝑢′ be an interior point

(3)
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Distributed Algorithms

 According to Koshal et.al (2011),  a necessary and sufficient optimality 

condition for (A) is that 𝑢∗, 𝜆∗ gives the solution to the following system

𝑢∗,𝑖 =ෑ
𝜒i

𝑢∗,𝑖 − 𝜉𝛻𝑢𝑖ℒ 𝑢∗, 𝜆∗ , 𝜆∗,𝑖 = ෑ
𝕀𝑖

𝜆∗,𝑖 + 𝜃𝑔𝑖 𝑢∗ , ∀𝑖 = 1,⋯ , 𝑛,

where 

 𝜒𝑖 or 𝕀𝑖 is an interval constraint of the form 𝑎𝑖 , 𝑏𝑖
 Then for any 𝑧 ∈ ℝ, the Euclidean projection Π is shown as following

ෑ
𝑎𝑖,𝑏𝑖

𝑧 = ቐ
𝑏𝑖 ,
𝑧,
𝑎𝑖

𝑖𝑓 𝑧 ≥ 𝑏𝑖
𝑖𝑓 𝑧 ∈ 𝑎𝑖 , 𝑏𝑖
𝑖𝑓 𝑧 ≤ 𝑎𝑖

 Euclidean project is decoupled; can be computed in a decentralized manner. 

 Both dual and primal-dual based distributed algorithms are discussed for (A).

 The dual based regularized distributed algorithm was selected due to its better 

computational performance.

Iteratively 

solve 𝜆 and 𝑢
until converge
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Dual based Regularized Distributed Algorithm

Repeat until converge

 Each CAV iteratively solves its 

own primal and dual variables

 Share its temporary decision

 Given 𝜆𝑚 and 𝑢𝑚, update 𝑢𝑖
𝑚,𝑠+1

𝑢𝑖
𝑚,𝑠+1 =ෑ

𝜒i

𝑢𝑖
𝑚,𝑠 − 𝜉𝛻𝑢𝑖ℒ 𝑢𝑚,𝑠, 𝜆𝑚

 Given 𝑢𝑚+1 and 𝜆𝑚,  update 𝜆𝑚+1

𝜆𝑖
𝑚+1 =ෑ

𝕀𝑖

𝜆𝑖
𝑚 + 𝜃 𝑔𝑖 𝑢

𝑚+1 − 𝜀𝜆𝑖
𝑚

• 𝜉 and 𝜃 are the step lengths; their values affect the convergence. 

• 𝜀𝜆𝑖
𝑚 is the regularization term to remove degenerate cases

• Please refer to our paper for technical details.

Perform two gradient projection 

algorithms in a distributed manner



Linear Stability Analysis
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 Focus on the stability analysis where all the constraints are inactive.

 Control system under inactive constraints

 Linear Stability: For any positive numbers 𝜏, and 𝛼𝑖 , 𝛽𝑖 for each 𝑖 = 1,… , 𝑛, 

𝐴 𝛼, 𝛽, τ is Schur stable (i.e., each eigenvalue satisfies 𝜇 <1) such that the 

linear closed-loop system is asymptotically stable as 𝑢0(𝑘) → 0.

 Choice of Weights: recommend formulations such that 𝛼𝑖 , 𝛽𝑖 to be the order 

of 𝑛2, and 𝛽𝑖 ≥ Τ4𝜏2 𝛼𝑖 to ensure fast dynamic response and mild input.

 𝑧 𝑘 = (𝑥0 − 𝑥1 − ∆,…𝑥𝑛−1 − 𝑥𝑛 − ∆)𝑇(k) : spacing error (output at k)

 𝑧′ 𝑘 = (𝑣0 − 𝑣1, … 𝑣𝑛−1 − 𝑣𝑛)
𝑇(k):  relative speed (output at k)

 𝜔 𝑘 = (𝑢0 − 𝑢1, … 𝑢𝑛−1 − 𝑢𝑛)
𝑇(k): interactive control decision (input at k)

𝑧 𝑘 + 1 = 𝑧 𝑘 + 𝜏𝑧′ 𝑘 + 𝜏2

2
𝜔 𝑘 , 𝑧′ 𝑘 + 1 = 𝑧′ 𝑘 + 𝜏𝜔 𝑘 ,  where

)𝑧(𝑘 + 1

)𝑧′(𝑘 + 1
= 𝐴 𝛼, 𝛽, 𝜏

𝑧 𝑘

𝑧′ 𝑘
+

𝜏2

2
𝐼𝑛

𝜏𝐼𝑛
W(α;β; τ )1 𝑢0(𝑘), wherer 1 is a vector

Please refer our paper for the choice of penalty weights based on linear stability results. 

 𝜔 𝑘 is the optimal solution of (A) and it is linear in (𝑧(𝑘); 𝑧′(𝑘))

 A linear closed-loop dynamics is given below

(1)

(2)



Numerical Experiment

 10 autonomous vehicle platoon. One 
leading vehicle (n=0) and nine following 
vehicles (n=i,…,9).

0 1 2 ... 8 9

Traffic flow vi(0)

∆ ∆ ∆ 

0 Leading vehicle i Following vehicle

 Input data: the desired spacing (50m), the acceleration (1.35m/s) and 
deceleration limits (-8m/s), speed limit, sample time (1s or 0.5s). 

Three scenarios are tested:
 Scenario 1, leading vehicle performs instantaneous deceleration\acceleration 

and keeps a constant speed for a while.
 Scenario 2, leading vehicle performs periodical acceleration\deceleration.
 Scenario 3, using real world trajectory data from an oscillating traffic flow.

Objective:
 Test the computation performance of the distributed algorithm.
 Test the performance of the proposed control scheme.
 Compare the platoon car-following control to a CACC in literature.

15

Test Platoon
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Numerical Experiment

 The mean convergence time for each scenarios is very short with a small 
variance. The number of iterations showed the similar observations.

 The distributed algorithm converges quickly and it satisfies the online 
applications.

I: Examining the Computational Performance:
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Numerical Experiment

 The movement of the leading vehicle 

shows a slow-and-fast traffic state 

II. Key Observations for Scenario 3 

 The proposed car-following control 

help keep traffic stability and dampen 

traffic oscillation along a platoon.

 Dampen the propagation of speed 

fluctuation along the platoon.

 Decreases the propagation of 

spacing variation along the platoon.

 Smoothen control inputs 

(acceleration/deceleration) along 

the platoon.
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III. Comparing with a CACC
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 Both schemes render the vehicles back to the desired spacing eventually 

 The transient dynamics under the platoon control is more stable

The platoon 

car-following 

control 

CACC in

(Schakel et al., 

2010)

s89

s89

s01

s01



The platoon car-following control CACC (Schakel et al., 2010) 

III. Comparing with a CACC mechanism 
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 Similar observation can be obtained from the speed and control input responses

SpeedSpeed

Control input
Control input



III. Comparing a CACC mechanism 
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 The proposed 

control scheme 

reduces speed 

fluctuation at 

almost all 

frequencies

 The CACC 

(Schakel et al., 

2010) can reduce 

speed fluctuation 

under certain 

frequencies

(a) Platoon under the proposed control scheme

(b) Platoon under CACC (Schakel et al., 2010) scheme 



Summary

 This paper develops a novel platoon car-following control scheme based on 

constrained optimization and distributed computation.

 Consider a platoon of connected and autonomous vehicles

 Model it as an interconnected dynamic system subject to acceleration, speed, and 

safety distance constraints, under the global information structure.

 Develop a constrained optimization problem to achieve desired multiple platoon 

performance objectives arising from the transient and asymptotic dynamics

 Develop dual or primal-dual based distributed algorithms to implement the control 

algorithm using the special properties and structure of the optimizer.

 Study the stability of the proposed control scheme, particularly for the unconstrained 

linear closed-loop system which is shown to be asymptotically stable.

 This study conduct numerical experiments based on field data to demonstrate 

the proposed platoon control scheme.

 It effectively reduces the propagation of traffic fluctuation/oscillation along a platoon

 It outperforms the conventional cooperative cruise control. 
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