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ABSTRACT 

Let w, = e-2ni/n, and F,, be the n X n matrix defined by 

where i and j run from 0 to n - 1. Two different methods are developed for 
factoring F,, into products of tridiagonal and permutation matrices. One method is 
based on matrix identities associated with FFTs and the Rader prime algorithm. The 
other method is based on a numerical technique, never before applied to Fourier 
matrices, called minimal-variable oblique elimination. New results established in this 
paper include the establishment of necessary and sufficient conditions for which 
minimal-variable oblique elimination can be used to compute tridiagonal decomposi- 
tions of arbitrary square matrices and explicit descriptions of minimal-variable solu- 
tions in the case that the descriptions are satisfied, proof that minimal-variable oblique 
elimination can be applied successfully to Fourier matrices of all orders, and explicit 
descriptions of various tridiagonal decompositions of PF, for any n X n permutation 
matrix P. Complexity estimates are derived for both the parallel algorithms resulting 
from the decompositions and computation of the decompositions, and timings are 
estimated for processor arrays constructed using GAPP chips. 

1. INTRODUCTION 

The discrete Fourier transform (DFT) is used in many areas, one of these 
areas being digital image processing. In digital image processing, the DFT is 
used for image enhancement, image reconstruction, image encoding, feature 
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FIG. 1. The von Neumann neighborhood. 

FIG. 2. The Moore neighborhood. 

extraction, and computing convolutions and correlations [B, 12, 14, 36, 24, 
251. Although there are many algorithms for computing DFTs quickly, the 
large number of data used to represent a typical digital image and the 
real-time requirements of many digital image-processing tasks create a need 
for even more efficient methods of implementing these transforms. Parallel 
processing of digital images offers the realization of faster implementations of 
DFTs. In this article, we show how matrix techniques can be used to help 
achieve parallel implementations of DFTs. 

A digital image can be thought of as a function defined on the discrete 
rectangle X = {(i, j) : 0 < i f m - 1, 0 < j < n - 1). An image-toimage 
transformation is a mapping with domain and range contained in the set of 
all such functions. For many useful image to image transformations, it 
happens that the new value at a point x E X depends only on the values in a 
neighborhood of the point. Typical neighborhoods are the von Neumann and 
Moore neighborhoods depicted in Figures 1 and 2. 

Due to advances in VLSI (very-large-scale integrated circuit) technology, 
it has become feasible to build large rectangular arrays of simple processors. 
The processors in these arrays each have their own small memory and direct 
access to the memory of the processors in their neighborhoods, typically 
von Neumann or Moore neighborhoods. Thus, these processors can compute 
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functions of the values in their neighborhoods. An image-to-image transfor- 
mation of this type is called a local transformation. Some of the arrays that 
have been built according to this design are the Massively Parallel Processor 
(MPP) [5, 23, 311, the Distributed Array Processor (ICL DAP) [13, 201, the 
Geometric Arithmetic Parallel Processor (GAPP) [2, 291, and the CLIP4 
[4, 51. These arrays of processors are generally referred to as massively 
parallel processors, cellular array processors, or mesh-connected arrays. The 
term cellular array is due to the fact that the design of mesh-connected arrays 
is based on the concept of a cellular automation [ 19, 351. 

In order that mesh-connected arrays be useful as general purpose image 
processors, efficient methods for implementing global transforms, particularly 
the DFT, need to be developed. Radix-two FFTs have been implemented on 
mesh-connected arrays by Jesshope [15] and Strong [31]. Due to image-sensor 
characteristics, however, images may be digitized in a variety of dimensions, 
such as 120 x 360 [26]. Furthermore, architectural considerations sometimes 
result in mesh-connected arrays being built with dimensions other than 
powers of two. Examples of such arrays are those built using GAPP chips, 
which have dimensions that are multiples of six [2, 291. Moreover, even if it 
were possible on a mesh-connected array, experts in the field warn against 

enlarging the data set by appending enough zeros to force power-of-two 
dimensions [ll]. Hence, there is a need for methods of implementing 
arbitrary discrete Fourier transforms locally. Since the DFT is a separable 
linear transform, it is sufficient to consider the problem of implementing a 
onedimensional DFI locally on a linear array. 

Let n > 1 and o, = e-2ai/n, where i = J-1, and let F,, denote that 
?z x n matrix defined by 

where i,j=O,l ,...n-1. 

Then, if r E C”, the transformation x --* F,x is the one-dimensional DFT of 
x. Tchuente has pointed out that M is any n X n matrix, then algorithms for 
implementing the transform x + Mx locally can be developed by factoring M 
into a product of tridiagonal matrices and permutation matrices [32]. The 
tridiagonal matrices represent local transformations, and the permutation 
matrices can be implemented using parallel sorting algorithms. We shall call 
such factorizations tridiagonal decompositions. Pease was also aware of this 
fact and derived tridiagonal decompositions of I?,, for n a power of two [22]. 

In this paper, we develop two methods for computing tridiagonal decom- 
positions of F, for arbitrary n. In Section 2, we show how matrix algebra 
associated with FFTs can be used to accomplish this. We use identities’ 
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established by Rose [27] as well as new identities established here which are 
related to the Rader prime algorithm [l, 181. In Section 3, we take a 
completely novel approach to deriving methods for computing DFTs in 
parallel by using a numerical technique, called minimal-variable oblique 
elimination, to obtain tridiagonal decompositions of F,. We derive necessary 
and sufficient conditions which an arbitrary square matrix must satisfy in 
order that minimal-variable oblique elimination can be applied to it. An 
explicit formula for computing the minimal-variable solution given. This new 
result is not restricted to the Fourier matrices but is applicable to all square 
matrices. The best result known prior to this was necessary and sufficient 
conditions for one stage of oblique elimination to be successful on a lower (or 
upper) triangular banded matrix [32]. We use the new conditions to establish 
that minimal-variable oblique elimination can be applied successfully to 
Fourier matrices. In Section 4, we derive complexity estimates for both the 
parallel algorithms resulting from the decompositions and computation of the 
decompositions and timing estimates for implementation on processor arrays 
constructed using GAPP chips. These estimates imply that algorithms for 
computing lOO-point DFI’s can be constructed using these decompositions 
which take, at most, 8 parallel multiplication steps, 26 parallel addition steps, 
and 316 parallel elementary permutation steps. By elementary permutation 
step we mean the action of switching data (complex numbers) in adjacent 
processors. Using timings provided for the MPP (very similar to GAPP), we 
estimate that a 100 X 100 DFT could be computed in as little as 0.00258 
second and probably no more than 0.005 second counting overhead. These 
estimates suggest that the decompositions developed in this paper should be 
useful in computing DFTs in parallel. 

Matrix representations of DFTs and FFTs have played a significant role 
in the development of FFI’ algorithms [9, 10, 16,21,27,34]. Rose has given a 
description of most of this background and assimilated much of the work in a 
common framework [27]. He expressed the hope that the identities estab- 
lished there could be used to develop better FFT algorithms. In the same 
spirit, careful implementation of the decompositions presented in this article 
should result in efficient parallel algorithms for computing DFTs. 

2. FFT-BASED DECOMPOSITIONS 

In this section, we use matrix identities associated with FFTs to develop 
tridiagonal decompositions of Fourier matrices. We use identities developed 
by Rose [27] to express F,, as a product of permutation matrices and 
block-diagonal matrices in two different ways. The diagonal blocks of these 
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matrices are of the form FP where p is a prime divisor of n. We then 
formulate a matrix identity associated with the Rader prime algorithm and 
the circular convolution theorem [l, 3, 181. This identity is then used to factor 
the Fourier matrices of prime order into products of permutation matrices, 
Fourier matrices of lower, composite order, and certain sparse triangular 
matrices. We show how the sparse matrices that appear can be factored. 
Taken together, these theorems provide an algorithm for deriving tridiagonal 
decompositions of F, for arbitrary n. 

We first establish notation and state identities which will be required in 
deriving the tridiagonal decompositions based on FFT identities. Unless 
otherwise stated, we consider matrices as ordered from 0 to n - 1. We denote 
by 2, the group of permutations of n objects, and by 2, the ring of integers 
module n. We think of C, as acting on Z,. Let m E Z with m > 1, and let 
wV, E e-svi/m, where i = ( - 1)lj2. We sometimes use the symbolism [j, k] to 
denote the set of integers { j, j + 1,. . . , k }. 

DEFINITION 1. Let A be an m X n matrix and B an s X t matrix, both 
with entries in a field F. The Kronecker, or tensor, product of A and B, 
denoted A@ B, is the m.s X nt matrix given by 

. . . 

B . . . a 

It is well known that (A@ B)(C@D) = AC@ BD provided that the 
matrices are all of the appropriate dimensions. Hence (lIfSoA i) @ Zj = 

rI;=,(Ai@Zj). 

DEFINITION 2. Let C = (ci j) be an n X n matrix. We say that C is a 
circulant matrix of order n if and only if for every k E Z, 

'ij = C(i+k)(mod n),(j+k)(mxl n)’ 

Thus 

We write C=circ(c,,c, ,..., c,_r). 
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Let P = circ(0, l,O, . . . , 0) be Nan. If C=circ(c,,c,,...,c,_r) is any 
circulant matrix of order n, then let &(x) = ca + cix + . . . + c,_~x’-~. 
Then C = j&P). Let D = diag(wk), i = 0, 1,. . . , n - 1. Then, using the fact 
that 

n-1 

C &j = n if k=O(mod n), 

i=O 0 else, 

it can be seen that P = F,,QF,,* where * denotes the conjugate transpose. It 
follows that if C is circulant, then C = F, AF,* where A = diag( fc( ok)), 
i=O,l , . . . , n - 1. This is the matrix formulation of the circular convolution 
theorem. 

DEFINITION 3. For every u E Z, we define the n X n permutation 
matrix P, by 

‘cl = (Pii)> where Pij = 
1 if j=u(i), 

0 otherwise. 

Assume that n = mk, where m, k > 1. 

DEFINITION 4. Define e,,& : Z, + Z, by the following rule: If i E Z, and 
i = a + bm with 0 < a < m and 0 < b < k, then o,&(i) = ak + b. a,,,, is called 
a shuffle permutation. 

DEFINITION 5. Define P(m, k) E M, by P(m, k) = P,,<,. P(m, k) is 
called a shuffle permutation matrix. Note that P(m, k) = P(k, m)’ = 

P(k, m)-‘. 

For any p, k > 1 we denote D,k = D(pk-‘, p) and Ppk = P(pk-‘, p). For 
convenience, we take P( n, 1) = I,, the n X n identity matrix, and I, = 1. 

DEFINITION 6. Let A be any m X m matrix, and define T,(A) by 

Let 

T,(A) = blockdiag[ A’, A’, A2,. . . , Ak-‘I. 

a,-diag(l,o,,W,2 ,..., 0:-i). 

Define the n x n diagonal matrix D(m, k) by 

D(m, k) = T,(O,). 
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The matrices D(m, k) are called twiddle factors or twiddle matrices. Note 
that if D( m, k) = diag(d,), then di = w:q, where r and 4 are the unique 
integers satisfying i = qm + r with 0 < r < m, that is, r = i (mod m) and 
q = (i - r)/& 

We now state some basic identities concerning Fourier matrices, Kronecker 
products, and permutation matrices which were developed by Rose [27]. We 
will use these identities as building blocks for some of our derivations. 

Let C, denote the n x n circulant permutation matrix 

C,= circ(O,O ,..., 0,l). 

For any integer s, let Q(m, k, s) denote the n X n permutation matrix 

Q(m, k, 3) = P(k,m)Tk(CA)P(m, k). 

FACTS. 

(1) If A is an n x n matrix and B is an m x m matrix, then P(n, m) 
(A@B)P(m, n) = B@A. 

(2) General radix identity (GRI): 

F, = (F,@Z,)D(k, m)(Z,@F,)P(k, m). 

(3) Twiddle-free identity (TFI): Assume that ‘rn and k are relatively 
prime, and let m* = m-l (mod k) and k* = k-l (mod m). Then 

F,=Q(m,k, -k*)(F,,,@F,)T,,,(C,“*)P(k,m). 

We now use these identities to express the Fourier matrices as products of 
permutation matrices and block-diagonal matrices, the blocks of which are 
Fourier matrices of prime order. We first assume that n is not a power of a 
prime. 

THEOREM 7. Zf n = I’I~=,p$ with s > 2 and 

nj= iJjrP? if l<j~:, 

1’ 1 if j= -i,O, 
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cj = n/nj for - 1~ j =S s, 9j = pi1 for 1~ j < s, and 9” = 1, then there 

exists permutation matrices Q1, Qz,. . . , Qs_2, and H such that 

Proof. The proof is by induction on the number of primes, s. 
Assume s = 2. Then, since cr = 92, n, = 91, and no = 1, by Fact (3) there 

exist permutation matrices Qr and Q2, namely Qr = Q(9r, 9a, - 9;) and 
Qz = T,I(C$)P(q,, 9r), such that F,, = Q1(F~,~ZIVe)(ZY,~F~2)Q2, which is 
exactly the statement of the theorem. 

Now assume that the theorem is true for all integers with prime factoriza- 
tion of length less than s. Then, in particular, the theorem is true for cr. 
Thus, letting Aj = fJiz2p:~ and fir = 1, we have that there exist 

Q 3,...,Q2s_3,Q4,...,Q2s~2 such that 

Moreover, there exist Qr and Qz such that 

Fn = Ql(Fq,~Zc,)(Zq,~.,)Qz. 

Putting these equations together and observing that Ai9, = nj yields the 
desired result. n 

The identity of Theorem 7 can be rearranged so as to obtain a blockdiag- 
onal representation of F,,. 

COROLLARY 8. Using the notation of Theorem 7, we have that 
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where 

and 

One can also use the general radix identity in a similar way to obtain 
alternative decompositions of F,,. Verification of these decompositions can be 
accomplished in a fashion similar to that used in the proof of Theorem 7. 

THEOREM 9. Assume that n = ni_,ki is any nontrivial factorization of 
n as a product of positive integers. Let ni = ni=,ki, n, = 1, and ci = n/r+ 
Then 

x(zn,_,@Fk,) jfi2[znq_,@p(cs-j+12 
( 

k )I) s-1+1 . 

COROLLARY 10. Let n, n,, and ci be as in Theorem 7, and denote 

Pi=P(cj+,,pF;+i) and Di=D(ci+l,plk;+i). 

Then 

i 

s-l 

Fn= II (z~j_,~Pj-l)(z~~~~~j~F~,:,)(I,,1OPj'-1)(z*,~,QIUj-l) 
j=l ) 

x (zfI_,@Fpts) IfI ('n,_,@C-j) ' 

( j=2 ) 

COROLLARY 11. Zf k 2 2, then F,t = G,(Z,~-I@F~)H,, where 

k-2 
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and 

Note that Corollary 11 results in tridiagonal decompositions in the case 
p = 2. This is essentially the decomposition developed by Pease [22]. 

To obtain tridiagonal decompositions of the Fourier matrices of arbitrary 
size, methods based on identities other than the twiddle-free and the general 
radix identities must be used. Towards this end we formulate a matrix 
identity associated with the Rader prime algorithm. 

Let p be an odd prime, and let LY E 2, with LY # 0,l. Let Rr,,(c~) and 
R,, & a) be the permutation matrices corresponding to the permutations on 
2, defined by 

Let ci G w;‘~‘~’ - 1, and let C, be the (p - 1) X (p - 1) circulant matrix 
C, = circ(c,, cr,. . . , cP_2 ). Let A be any n x n matrix. We denote by A(“‘) 
the (n + m)x(n + m) matrix 

A’“‘= I’m 01. 
10 Al 

We denote by U,, the p x p matrix with ah ones in the first column, 
down the diagonal, and zeros elsewhere. For example, if p = 5, then 

v, = I 1 1 10 1 1 0 0 0 1 0 0 0 0 10 0 0 0 1 0. 0 0 0 1 ! 
Finally, let E;b denote the p x p matrix defined by $p = blockdiag[ 1, (obj - l)], 

where i, j E [ 1, p - 11. The matrix formulation of the Rader prime algorithm 
is then given in parts (1) and (2) of the following theorem. 

THEOREM 12. Let f,(x) be the polynomial defined by f,(x) = co + clx + 
c2x2 + . . . + cP_2xp-2, and A, the p x p matrix A, = diag(1, f,(wkTt)), 
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i = 1,2 >**., p-l. Then 

(1) F, = U&J;, 

(2) P = R, &Y)C(‘)R, &I) 

(3) Cya = i$‘,,AppF*_‘:;. 

> 

P 

Proof. The identity (1) was observed by Parlett [21]. The identity (3) 
follows from the matrix form of the convolution theorem. 

To prove (2) we write 

Rl,p(a) = [ !:R]. R&) = [ +---1. 

where R and S are the permutation matrices corresponding to the restric- 
tionsof ur and u, totheset {1,2,...,p-1}, and the blank spaces represent 
zero entries. We also denote 

11 r;?,= _~--_------- . il 1 F 

where F = ($,j - 1). Since R-l = Rt and S-’ = S’, it is sufficient to show 
that RtFS’ = Cp. If we denote A = (aij) = R’FSt, where i, j E [l, p - I], 

then aij = ,O;‘(i~Oz(Z)- 1. Note that if j E [l, p - 11, then a;‘(l)ua(j) = 
acu-i = opo-i which implies that a 1 j = cj _ r so the first row of A is equal to 
the first row of Cp. The fact that A is circulant follows from the identity 

e~‘(i+k)~,(j+k)=oi+ke-(j+k)=oi~-j=u;’(i)uz(j). 

Therefore, A = C, and the theorem is proved. 

Putting these identities together yields 

n 

F, = U,R,,,(cu)Fd”,A,F,*_‘:)~~,,(cu)U, 

where * denotes the conjugate transpose. 
Observe that if A and B are any n X n matrices, then (Z,@A*) = 

(Z,@A)* and A(“‘)@“‘) = (AB)‘“‘). Therefore, if F,_ 1 = nTi is a tridiagonal 
decomposition of F, _ 1, then I,8 F$, = I,@ (nTi)@) = Z,@JJ(T/‘)) = 
I3(Z,@T/‘)) is a tridiagonal decomposition of I,@ F$,. Hence, if we can 
determine tridiagonal decompositions of Up for p an odd prime, then we can 
proceed inductively to factor F$“, until p = 2 or p = 3. Thus, we need only 
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determine methods for factoring the matrices UP when p is an odd prime to 
complete our description of the FFT-based decompositions. 

THEOREM 13. Let p be an odd prime. Then 

up= fi 

i 
k=p-1 

(02 

0 0 

0,l) 1 0 
0 o Ip-k-l 

X 

Proof. Let 

L 

1 0 
1 1 
0 -1 

0 
. . 
. . 
. . 
. . 

0 0 

1 1, 

. . . . . 0 
0 
1 . 

-1 . . 

o... . 
. . . . . . 

. . . 0 
. . 1 

0 . . . 0 -1 

0 

0 

p-k-l 

and denote 

0 
1 

-1 
0 

0 

v, = 

. . . 

0 
1 . 

-1 . . 

0 . . 
. . . 

0 . . 

0 0 
. . 
. . 
. . 

. . . 

0 . 
1 0 

0 -1 1 

(0,. .‘: 0 0 

0,l) 1 0 

0 o zp-kLl 

0 

. . 

0 
l_ 

= bij), 
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and 

VE 

10 * 
1 1 0 
0 -1 1 

0 -1 
. . 0 
. . 
. . 
. . 

-0 0 0 

. . . 0 0 
. . 
. . 
. . 

. . . . 

. . . . . 

. . . 0 . 
. . 1 0 

. . 0 -1 1 

Let x=(x0,x1,..., ~~_r)~ E CP. We show that U,x = Ux. Note that 

UpX=(Xa,X1+Xa,r2+Xg ,..., Xp-l+qJt. 

Now 

vx = (x0, xa + x1, x2 - xr, xg - X‘J ,..., Xp_l - xp-J. 

Furthermore, if y = (yO, y, ,..., yp_r)’ E Cp, then 

Thus, 

v/J = (Y0> Y l,...,Yk_l,Yk+Yk~l,Yk+l,...,Yp-I)L. 

V,(Vx) = (X”, x() + xr, X” + x2, xg - x2 ,..., xp_r - XPP2>,, 

and one can show by induction that 

qvj_,vj_2.. 4yx) 

= (X0> X” + x1 )...) X” + Xi’ Xj,l - xi ,..., xv_, - x,_J 

for j E [2, p - 11. Hence, we may conclude that Ux = U,x for every x E Cp, 
which implies that U = Up. n 

We have shown how matrix identities associated with the FFT can be 
used to develop tridiagonal decompositions of Fourier matrices. We now 
derive a completely different method for computing tridiagonal decomposi- 
tions of Fourier matrices. 



182 PAUL D. GADER 

3. TRIDIAGONAL DECOMPOSITIONS OF F, VIA 
OBLIQUE ELIMINATION 

In this section, we show how a technique called oblique elimination can 
be used to develop alternative tridiagonal decompositions of the Fourier 
matrices. We first describe the theoretical basis of oblique elimination. We 
then use this basis to derive an algorithm, which we call minimal variable 
oblique elimination, for implementing oblique elimination in certain cases, 
and we develop necessary and sufficient conditions for this algorithm to be 
successful in computing tridiagonal decompositions of a given matrix. We 
show that the minimum-variable oblique elimination algorithm can be used to 
compute tridiagonal decompositions of the Fourier matrices. 

Throughout this section, let n be an arbitrary positive integer with n > 3, 
and assume that all matrices and vectors are taken over the complex 
numbers. In this section we consider matrices and vectors to be ordered from 
1 to n, rather than 0 to n - 1 as in the last section. When referring to a 
matrix it will always be assumed that the entries of the matrix are denoted by 
the same letter as the matrix unless explicitly stated otherwise. 

DEFINITION 14. Let A be any n X 12 matrix. We say that A has an LU 
decomposition if there exists an n X n unit lower triangular matrix L and an 
upper triangular matrix U such that A = LU. 

Computing the LU decomposition of a matrix will be the first step in the 
oblique elimination algorithm. Not every matrix has an LU decomposition. It 
can be shown that if A is any n X n matrix, then there exists an n X n 
permutation matrix P such that PA has an LU decomposition [7, 321. The 
most common method used for computing LU decompositions is Gaussian 
elimination with partial pivoting. A discussion of these topics can be found in 
almost any numerical-analysis book [7, 301. We remark that, even if a matrix 
A has an LU decomposition, it may be desirable, for reasons of numerical 
stability, to compute the LU decomposition of PA for some permutation 
matrix 2’ rather than that of A. 

DEFINITION 15. Let A be an n X r~ lower triangular matrix. Let i E 
[l, n]. The ith oblique of A is the set {~~_~+i,i, ~~_~+~,a ,..., u,,~}. 

Note that we have defined the obliques relative to the lower triangular 
matrices. We could just as well have done so for upper triangular matrices. 
Throughout this section we shall work mainly with lower triangular matrices. 
The techniques can all be applied to the transposes of the upper triangular 
matrices that appear in the decompositions. 
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DEFINITION 16. Let A be an n X n matrix. We say that A has lower 
bandwidth T if aii = 0 whenever i > j + T. 

An n X n lower triangular matrix A with lower bandwidth n - j for some 
j E [l, n - l] has the property that the kth oblique is (0) for every k E [l, j]. 

The oblique elimination method as applied to an n x n matrix M can be 
summarized in the following two steps: 

(1) Determine a permutation matrix P such that PM = LU is an LU 
decomposition of PM. 

(2) Construct matrices L;‘, L,‘, . . . , L,!, such that for every 
j E [l, n - 21 the matrix L j is unit lower bidiagonal and the matrix 
LY’LT’ 
U;- 1, b;ll 

- . . L; ‘L has lower bandwidth n - j. Similarly, construct matrices 
, . . . , U,-_i such that for every-4 E [ 1, n -i 21 the ma\rix Uj’ is unit 

lower bidiagonal and the matrix (U,“) 
bandwidth n - j. 

(q’i) _ . . . (U:) - Ut has lower 

Then 

A = L,!,L,_‘, . . . L;‘L, 

B&J(J-‘U,-1.. . u-1 
n-2 

are lower and upper bidiagonal matrices respectively. Thus, 

M = P-‘L,L, ’ . . L,_,ABU,_,U,,_,. *. U 1 

is a tridiagonal decomposition of M. This methodology does not always work, 
because one cannot always construct the matrices Uj and Lj. A method for 
doing so, which was suggested by Tchuente, is the following: 

Let xi,rs...., r,,_i denote indeterminates, and let X denote the n X n 

matrix 

0 
1 

- *2 

0 

0 

1 

x3 

0 

0 

1 0 



184 PAUL D. GADER 

Then, since I, - X is nilpotent, 

XF=[Z-(Z-X)] -l 

= 

X1X2”.Xn_l XZ”‘X”_l X3”‘X”_l . 
X,-l I 

1 0 . . . 0 
Xl 1 0 

Xl% X2 1 0 

x1X2X3 x2x3 x3 1 . 
. . 

. . 

. 0 . 
1 0 

Thus, one can attempt to construct the matrices L, ‘, L, ‘, . I., L;le and 
(vi”)-‘,(ui’,)-‘,...,(v:)- ‘intheformof X-‘.Let AbeannXnlower 
triangular matrix with lower bandwidth n - i + 1. Then there exists an n X n 
matrix X-i as above such that the matrix B = X- ‘A has lower bandwidth 
n - i if and only if the nonlinear system of equations 

x1x2 . . . X”_,U,J + %2X3 . ” Xn-iU2,l + . . . + x,-,a,_i 1+ a,_,+1 1= 0, 

x2x3 . . ‘x~_j+la2,2+x3r4 ..‘xn_i+lu3,2+ “. +xn-i+lan-i+l,2+ an-i+2,2=oI 

has a solution in the indeterminates xi, x2,. . . , x, _ 1. This can be seen by 
writing the product X- ‘A out elementwise and setting the appropriate terms 
equal to zero. 

In this paper we employ an algorithm which attempts to solve the system 
using a minimal number of variables. We call the algorithm minimal-variable 
oblique elimination. If we take x1 = x2 = . . * = x,_ i + 1 = 0, then the system 
reduces to 

x n-i’n-i,l+ an-i+l,l=O, 

X n-iXn-i+l’n-i.2 + Xn-i+l”n-i+l,Z + an-i+2,2=0y 

X n-iX,-i+l ” ’ x,_lafl_i,j 

+x n-i+lXn-it2 “. Xn-l”n-i+l,i + . * * + x,_,u,_,,, + a, i = 0. 
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A solution to this system, if it exists, is given by 

a n-i+l,l 
x n-i 

=- 
, 

‘n-i.1 

'n-i+2,2 
x n-i+l= - 

x n-ian-i,2 + anpr+1,2 ’ 

x,-1= - 

a n,i 

We shall refer to this particular solution set as S. Note that the existence 
of the solution set S is not equivalent to the existence of a solution to the 
original system of equations, even with xi = x2 = . . . = x,_ i+ i = 0, since if 
A is the zero matrix, then the system is solved trivially but the solution set S 
is undefined. We shall concern ourselves with determining conditions under 
which this solution exists. 

DEFINITION 17. Let A be an n X n lower triangular matrix with lower 
bandwidth n - i + 1. If the above solution exists for A, then we call it the 
minimal-variable solution. If X-’ is constructed from this solution in the 
fashion described in this section, then we say that B = X-‘A is computed 
from A using minimal-variable oblique elimination. X is called the minimul- 
variable solution matrix for A. 

DEFINITION 18. Let L be an n X n lower triangular matrix, and denote 
L, = L- ‘. We say that minimal-variable oblique elimination is successful 
for L if there exists matrices L,, L,, . . . , L,_, such that Li is the minimal- 
variable solution matrix for L,-_‘1Lz?12 * . . L;‘L, for every i E [l, n - 21. 

DEFINITION 19. Let A be any n X n matrix. We say that minimul- 
variable oblique elimination is successful for A if the following two condi- 
tions hold: 

(1) A has an LU decomposition A = LU. 
(2) Minimal-variable oblique elimination is successful for L and U ‘. 
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Necessary and Sufficient Conditions for the Minimal-Variable 
Solution to Exist 

We now derive necessary and sufficient conditions for the minimal- 
variable solution to exist for a lower triangular banded matrix A. We shall 
show that the solution exists if and only if certain submatrices of A are 
invertible. We then use these conditions to develop necessary and sufficient 
conditions for minimal-variable oblique elimination to be successful for any 
square matrix. 

If B is a square matrix, then det(B) denotes the determinant of B. Fix 
i E [l, n], and let A be a lower triangular matrix with lower bandwidth 
72 - i + 1, that is, 

0 

a2,2 

a n-i+2,2 

0 

0 

. . . 0 

. . 
. . 

0 

. . . aij . 

. . 
. . 

. . 0 a,,i , 

. . 
. . . 

0 
. . . an,n 

For each k E [l, i], let M, denote the k X k submatrix of A defined by 

a n-i.1 a . . . . n_i,2 a n-t,k-1 
a n-i,k 

a npi+l.l a n-1+1.2 * . * . a n-i+l,k-1 a npi+l,k 

0 an-ii2.2 ’ ’ ’ ’ a n-i+2,k-1 a n-i+2,k 

M,= 0 0 

0 0 . . . o an-i+k-l,k-l an-i+k-l.k 

For convenience we take M, = (1). Note that the Mk are in upper Hessen- 
berg form. We will show that the minimum variable solution exists for A if 
and only if the M, are all invertible. 
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For every k E [0, i - 11 we formally define the symbol d,- i+k by 

dn-i+k E (rg’n-i+j)‘n-i,k+l+ ( ~~xn-i+j)un-i+l,k+l 
+ “. + Xn-i+k-l”n-i+k-l,k+l + un-i+k,k+l’ 

The above definition is formal in the sense that if upon substituting values for 
the symbols x,_~+~ in a sequential fashion, it happens that dnpi + j = 0 for 
some j, then x,_i+k is undefined for k > j. To show that the minimal 
variable solution exists it must be shown that the d n _ i + k are all defined and 
nonzero. 

In what follows, some of the proofs are by induction. For purposes of 
illustrating the reasons for the truth of the theorems, the first several cases are 
sometimes shown to be true even though this is not a logical necessity. 

LEMMA 20. Assume that there exists an 1 E [l, i] such that det( Mk) # 0 
for every k E [0, l- 11. Then for every such k, dn_i+k exists and dnpi+k = 

det(Mk+,)/det(Mk). 

Proof. The proof is by induction on k. If k = 0, then 

d,_i = u,_i,l= 
det(M, > 
det( MO) ’ 

If 1 = 1, then we are done. Otherwise d,_, # 0 by assumption. If k = 1, then 

a detPf2) 
dn-i+l= - ~-~~1’1un-i,2’uni+1,2= det(M > ’ 

” I.1 1 

Assume that the lemma is true for d,_i,d,_i+l,...,d,_i+k-l for some 
k E [l, Z- 11. Then each rn_i+j for j E [0, k - l] is defined so dnmi+k is 
defined and is given by 

+ **. +r n-i+k-l’n-i+k-l,k+l +a n-i+k,k+l’ 
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By the induction hypothesis, 

an-i+3,3 

det( M3 > 
det( M2 ) 

. . 
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(I-+k.k 

det( Mk > 

1 

an-i,k+l 

det(Mk-1) 

+ . . . +( - 
a n-i+k,k 

det(Mk) an-,+k~l,k+l +  an-i+k,k+l 

det(Mk-1) 

“’ +( -1)det(Mk-~)an-r+k,kan~-i+k~~,k+l+det(Mk)~,-i+k,k+l 
= 

W Mk ) 

Since Mk+ 1 is in upper Hessenberg form, the numerator of the last expres- 
sion is det( M,, 1) expanded along the column k + 1. This proves the lemma. 

n 

LEMMA 21. Assume that there exists an 1 E [0, i - l] such that the 

d n_i+k are defined and nonzero for every k E [0, 11. Then det( Mk) f 0 for 

every k E [0, 11. 

Proof. The proof is by induction on k. If k = 0, then det( M,) = 1. If 
2 = 0, then we are done. Otherwise if k = 1, then det(M,) = a,_,,l = dnpi + 0. 

If k = 2, then 

a 1 
d,_i+l = - “-‘+l’lan_i,e+ an_i+l,2 = - - det( M2) # 0. 

a n-i,1 an-i,1 

Assume that the lemma is true for M,, M,,. ., M,_, for some k E [2,1]. 

Since det( M,),det( M,), . . . , det( M,_ 1) # 0, by the calculations of the previ- 
ous lemma, 

det(M, > 
d n-i+k-l= det(~k_,) ’ 
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By hypothesis, dn-i+k-l # 0, so we may conclude that det(M,) z 0, which 
proves the lemma. n 

Lemmas 20 and 21 can be combined to yield necessary and sufficient 
conditions for the minimal-variable solution to exist. 

THEOREM 22. The minimal-variable solution exists for A if and only if 

the matrices Mi, M,, . . . , Mi are invertible. In this case we have 

d4Mk) 
x n-i+k= -an-i+k+l,k+l 

det(Mk+l) 

fo7 every k E [0, i - 11. 

Proof. Assume that the minimal-variable solution exists for A. Then 
dn_i+k + 0 for every k E [O,i - 11. By Lemma 21, det(Mk) Z 0 for every 
k E [0, i - 11. By Lemma 20, dnpi+k = det( M,, ,)/det( Mk) which yields the 
desired expression for x n _ i + k. 

Conversely, assume that the matrices M,, M,, . . . , Mi are invertible. Then, 
by Lemma 20, for every k E [0, i - 11, dnpi + k exists and is nonzero. Hence, 
the minimal-variable solution exists. n 

We now assume that L = L, is lower triangular and that A is of the form 
A = L,Y~‘,, L,:_‘, . . . L,L,, where L,, L 2,. . . , and Li_ 1 have been constructed 
using minimal-variable oblique elimination. In the next theorem, we establish 
criteria which will allow us to deduce the existence (or nonexistence) of the 
minimal-variable solution for A using information contained in the matrix I,. 
We shall show that, due to the sparse structure of the L,, one of the matrices 
M, will be singular if and only if certain submatrices of L are singular. 

DEFINITION 23. If L is an n X n lower triangular matrix, then for every 
pair of integers (j, k) with j E [l, n - l] and k E [l, n - j] define 

Similarly, if U is an n x n upper triangular matrix, then define 

ukj E [(U’)kj] ‘. 
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THEOREM 24. Assume that L = L, is an n x n lower triangular matrix 
andthateitheri=loriE[2,n-21 andn~nmutricesL,,L,,..., andLiP, 
have been constructed using minimal-variable oblique elimination. Suppose 
that A = L,--‘1L;_1’2 . . . L, ‘L, and that the minimal-variable solution does 
not exist for A. Let j be the smallest positive integer such that Mj is singular. 
Then Lj,n_i is singular. 

Proof. We show that det( Lj, n_i) = 0. By construction, for k E [l, i - 11, 

L, = 

0 . . 0 

0 . 0 
___________~--_--_---_---__-____________________ 

0 I I _%(k) 
“-ktl 

1 o... 0 

0 1 I 0 - r!k)k+2 1 1 
I 0 ” 
I 
1 
I . . 
I . I 0 

0 I I 0 0 . ..o -Xik!, 1 

where { - 7X:? 

L&L,=‘, . . . 

k + j } ‘!!,I denotes the minimal-variable solutions for the matrix 

L, ‘. We use the notation R, + R, + aR,, to express the fact 
that row k of a matrix is replaced by itself plus a multiple, (Y, of row m. If B 
is any n X n matrix and k E [l, i - 11, then multiplying B on the left by L, 
has the effect 

hn-+Rrn for rnE [l,n-k], 

R,,, + fir,, - x!,? A- 1 for rnE [n-k+l,n]. 

Thus, multiplying A on the left by Li_ 1 leaves rows 1 to n - i + 1 fixed 
and replaces rows n - i + 2 to n of A with a linear combination of them and 
the row directly above them, multiplying Li_ l A on the left by Li_z leaves 
rows 1 to n - i + 2 fixed and replaces rows n - i + 3 to n of Li_ 1A with a 
linear combination of them and the row directly above them,. . . , and 
multiplying Li .~ j+ 1 . . . L, _ ,A on the left by Li _i leaves rows 1 to n - i + j 
fixed and replaces rows n - i + j to n of Li j+, . . . Li _ ,A with a linear 
combination of them and the row directly above them. Since the other left 
multiplications by L,, L,, . . . , Li_j leave rows n-i,n-i+l,...,n-i+j 
-1 of Li_j+l... LimlA unchanged and L = (nk;=!lLm)A, it follows that 
rows n-t,n-E+l,...,n-ii+-1 of L are linear combinations of rows 
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n - i, n - i + 1,. . . , 
. . . ii_lMj, where 

n - i + j - 1 of A. In fact, we can write Lj,,_, = i,i, 

I t-k -----------. 
(O,...,O-XkkJk) 

0 

0 

0 

0 0 . . . . 0 
.------_----------------------------- 

1 0 f... 0 

-xI(c_k+l 1 0 . . 0 

0 -xf2k+2 1 

0 . . . 
. 
. . . 

. 0 

0 0 . . . 0 -xik?j_i 1 

That is, t, is the submatrix of L, occupying the same position as Mj does in 
A. Since each 2, is unit lower triangular, det(i,) = 1. Hence, det(Lj,._i) = 
det( Mj) = 0, which proves the theorem. n 

Note that if M = LU is an LU decomposition of a rz X n matrix M, then 
the theorem holds for both L and U ‘. 

We are now in a position to state necessary and sufficient conditions for 
minimal-variable oblique elimination to be successful for an arbitrary n x n 
matrix. It is immediate from the definition that the matrix must have an LU 
decomposition. Therefore, we assume this condition in the next theorem. 

THEOREM 25. Assume that B is an n x n matrix with LU decomposition 
B = LU. Minimal-variable oblique elimination is successful for B if and 
only if the submutrices Lki and Uki of L and U are invertible for every 
j E [2, n - l] and k E [l, n - j]. 

Proof. Assume that the minimal-variable oblique elimination method is 
successful for B, and assume by way of contradiction that there exists 
j E [l, n - 11 and k E [l, n - j ] such that Lkj is not invertible. Denote 
L = L,. By Definitions 18 and 19, there exists matrices L,, L,, . . . , L,_, such 
that for i E [l, n - 21, Li is the minimal-variable solution matrix for 
L,:_Q--’ . . . i-2 L;lL. Let A = L,‘j_,L-‘. ’ . . L;‘L. As was shown in the 
proof of Theorem 24, det( Lkj) = det(i,-,‘-iy Theorem 22, M, is invertible, 
so det( M,) # 0. Since L, is singular, det( Lkj) = 0, which is a contradiction. 
The same argument can 6 e applied to the matrices Ukj. 

Conversely, assume that for every j E [l, n - 11 and k E [l, n - j] the 
matrices L, j and Ukj are invertible and that minimal-variable oblique 
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elimination is not successful for B. Then it is not successful for either L or 
U’. Assume that it is not successful for L. Let i be such that we are able to 
construct the matrices L,, L,,. . . , L,_, using minimal-variable oblique 
elimination and such that the minimal-variable solution does not exist for 
A = L,--‘rL?“2.. . L;‘L. Let j be the smallest integer such that Mj is not 
invertible. By Theorem 5.12, Lj,,_ j is not invertible. By definition of Mj, 
1 < j < i < n - 1, so n - j > 1. Therefore, Li, n_i is invertible, which is a 
contradiction, If minimal-variable oblique elimination is not successful for U’, 
then the same argument can be applied. H 

We have developed criteria which can be applied to the factors of the LU 
decomposition of a matrix to determine whether or not oblique elimination 
will be successful for that matrix. This criteria is much easier to use than 
checking to see if the original system of nonlinear equations has a solution at 
each step. The conditions stated in Theorem 25 are stringent. One can easily 
think of a great many examples of matrices which do not satisfy the 
conditions. Fortunately, all of the Fourier matrices do satisfy the conditions. 

Application of Minimal-Variable Oblique Elimination to the Fourier Matrices 
We now show that minimal variable oblique elimination is successful for 

any Fourier matrix. In fact, we show that the technique is successful for PF,,, 
where P is any permutation matrix. We first show that PF, has an LU 
decomposition for any permutation matrix P. We then show that these LU 
decompositions all satisfy the conditions of Theorem 25 of the previous 
section. Recall that we denote o = o, = eP2”‘/“, where i =m. 

DEFINITION 26. Let B be any n X n matrix, and let k E [l, n]. The 
leading k x k principal submatrix of B is the matrix 

. . . 

. . . 

. . 

LEMMA 27. Let k E [l, n], and let sl, sz,. . . , sk E [0, n - l] be distinct. 
Let j E [0, n - l] such that j + k - 1~ n. For each i E [l, k], define 

sz (w(j+i-l)sl,o(j+i-l)sz ,...,a (j+l-l)sk 
>. 

The set { < } f= 1 is a linearly independent set. 
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Proof. Assume that the lemma is false, that is, that there exists constants 

Cl, c2>. * * 9 ck not all zero such that Ef=1ci6i = 0. Writing the sum out yields 

wjsl cl + c2ws~ + c&s1 + . . . + CkW(k-l)s~ ( ) =o, 

wjs2 cl + c2ws2 + c3w2s2 + . . . + CkO(k-lh) = 0, ( 

wjsk c1 + c2wsk + c3w2sk + . . . + ck~(k-l)sk ( )=o 

Define a polynomial p(x) E C[r] by p(x) = ci + tax + . . * + ckxkel. 

Then, since si z sj if i # j and si E [0, n - l] for every i E [l, n], the set 

{a *‘) wS=, . . . ) ask } is a set of k distinct roots of p(x). By definition of p(x), 
deg( p( x)) < k - 1, which implies that p(x) is the zero polynomial. Therefore, 

Cl=%= ... = ck = 0, which is a contradiction. n 

THEOREM 28. Let P be an n x n permutation matrix. Evey leading 
k x k principal submutrix of PF,, is invertible. 

Proof. Assume that P represents the permutation [I, that is, P = PO. 
Since in this section we consider matrices and vectors to be ordered from 1 to 
n rather than 0 to n - 1, we consider u as acting on the set { 1,2,. . . , n }. 

Denote 

where f;‘,(1,,(i-1),W2(i-1),...,W(n-1)(i-1)). Then 
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Let k E [l, n], and let B, denote the leading k x k principal submatrix of 
PF,. Thus, letting si = a(i) - 1, 

Since u is a permutation, the si are distinct. By Lemma 27, the columns of 
B, are linearly independent. n 

COROLLARY 29. Let P be an n X n permutation matrix. The matrix PF,, 

has an LU decomposition. In particular, F, has an LU decomposition. 

Proof. Theorem 28 shows that PF,, satisfies the required conditions [7]. 
n 

THEOREM 30. Let P be an n X n permutation matrix, and assume that 

PF, = LU is the LU decomposition of PF,. Let j E [l, n - 11, k E [l, n - j], 

and L ‘k and uik be as in Definition 23. The matrices Ljk and Ujk are 

inverta le. 4 

Proof. We first show that Lik is invertible. Denote 

iilk=(ull’o ,..., o)‘, 

Since F,, is nonsingular and L is unit lower triangular, det(F,) = 
det(P-‘)det(L)det(U) = det(P-‘)det(U) f 0. Hence, det(U) = n:=,uii + 
0. This implies that the scafars ur,, uz2,. . , ukk are nonzero and therefore 
that { Cjk}F= r is a linearly independent set. Since a square matrix is invertible 
if and only if it takes a basis to a basis, it is sufficient to show that 
{ LjkCik}fc= 1 is a linearly independent set. 
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For i E [l, k], let c = (oli, uzi,. . . , uki)’ = L .,jiik. Since Ljk is k X k and 
the first k columns of U have zeros in rows i + 1, k + 2,. . . , n, w,, is the 
(j + m - 1, i) element of PF,,. Hence, letting s, f u(j + m - 1) - 1 SO that 
u,,,~ = ~(~-‘)‘m, we have 

ByLemma27with j=O, {q}fzl 
is invertible. 

is a linearly independent set. Hence, Ljk 

We now show that Ujk is invertible. The argument is almost the same, but 
some modifications are necessary. Denote 

Since L is unit l_ower triangular, { ckk)fs(= is a linearly independent set. We 
show that { UjkZik}f_l is ,a linearly independent set. For i E [ 1; k 1, let 
6i=(uli,Z)2i )...) uJ=Ujjczik. Then umi is the (j fm - 1,i) element of 
(PF,,)’ and is therefore the (i, j + m - 1) element of PF,. Hence, letting 
si = a(i) - 1, we have 

Sk = (wjsk, ,(j+l)sk,. . . , ti(i+~-Wk)t. 
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Let M be the k X k matrix having 6 in the ith row. Since the column 
rank of a matrix is equal to the row rank, the Gi will be linearly independent 
if and only if the columns of M are. By Lemma 27, the columns of M are 
linearly independent. Hence, Ujk is invertible. n 

We are now in a position to prove the main result of this section. 

COROLLARY 31. Let P be an n X n permutation matrix. Minimal- 
variable oblique elimination is successful for PF,,, that is, there exists unit 
lower bidiagonul matrices L,, L,, . . . , Ln_2, unit upper bidiagonul matrices 

U~,UZ,...,U*_,, and bidiagonal matrices B and C such that 

Proof. By Theorem 30, for every j E [l, n] and k E [l, n - j + 11, the 
matrices Ljk and Ujk are invertible. By Theorem 25, this implies that 
minimal-variable oblique elimination is successful for PF,. n 

The next theorem could be of interest for implementation purposes. 

THEOREM 31. For every n > 2, the matrices B and C in Corollary 31 can 
be chosen such that Uj = Li for j E [l, n - 21, that is, 

F,, = L,L, . . . L,p,BCL',p,L;m, . . I$. 

Proof. Let F,, = LU be the LU decomposition of F,,. Since F, is 
symmetric, U = DL’, where D is a diagonal matrix [7]. Suppose that L = 
L,L, . . . -q-z B is the tridiagonal decomposition of L computed using 
minimal-variable oblique elimination. Then U ’ = LD = L, L, . . . I,,, ,BD. 
Take C = DB’. W 

4. COMPLEXITY CONSIDERATIONS 

In this section we derive upper bounds on the number of parallel steps 
required to implement the algorithms implied by the decompositions derived 
in the previous sections. The form of the expressions for the number of steps 
required using the FFT-based method is highly dependent on n. In the case 
of the parallel algorithms resulting from minimal-variable oblique elimination, 
it is straightforward to see that the number of parallel arithmetic steps 
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TABLE 1 
ESTIMATED NUMBER OF PARALLE L STEPS REQUIRED TO IMPLEMENT F, LOCALLY a 

c, G 

n GR TF GR TF C,(K) 
loo (25 x 4) 227 316 9 8 26 

120 (8x5~3) 367 400 8 6 21 
128 356 - 6 - 7 
256 736 - 7 - 8 

360(9x8x5) 1096 1161 11 9 27 
500 (125x4) 1506 1648 21 20 38 

512 1500 - 8 - 9 

“GR denotes use of the general radix identity. TF denotes use of the twiddle-free 
identity. C, denotes permutation steps. C, denotes multiplication steps. C, denotes 
addition steps. 

required is 2n - 2 for every n, where each step requires one addition and one 
multiplication. We also show that oblique elimination can be implemented 
using n3 + o(n2) complex floating-point operations. Given a tridiagonal de- 
composition of a matrix, we consider the parallel complexity to be the 
number of tridiagonal matrices appearing in the decomposition plus the 
number of parallel steps required to implement the permutations. 

We first consider the FFT-based decompositions. Due to the structure of 
the FFT-based decompositions, the complexity can be divided into multipli- 
cation, addition, and permutation terms. We briefly consider the parallel 
multiplicative and additive complexity of the algorithms implied by the 
previous decompositions. Since these decompositions are related to FFTs, 
these complexity counts are similar to those of FFTs. The number of parallel 
steps required to implement the permutations is then considered. It will be 
seen that it is the latter that dominates the overall complexity in most cases in 
terms of total number of steps. This can be attributed to the fact that FFTs 
are based on reindexing schemes. When implementing an algorithm on an 
architecture such as mesh-connected arrays, reindexing can be an expensive 
operation. A local permutation step is much less expensive than a floating-point 
multiplication, however. We present here Tables 1 and 2, indicating the 
estimated number of parallel steps required in certain cases and the estimated 
amount of time required in certain cases, respectively. The numbers in Table 
1 were calculated using the results of this section. The timing estimates in 
Table 2 were calculated using the numbers in Table 1 and specific timings for 
floating-point operations and shifts on the MPP [31]. It is reasonable to 
assume that these timings are accurate for mesh-connected arrays constructed 
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TABLE 2 
ESTIMATED TIMINGS FOR IMPLEMENTING F,, LOCALLY 

n GR 

Time (set) 

TF MVOE” 

loo II0258 .00269 
120 .00249 .00243 
128 .00148 
256 .00233 
360 .00444 II0444 
500 00648 00673 
512 .00392 - 

d Minimal-variable oblique elimination 

.02446 

.02958 

.03156 

.06324 

.08898 

.12364 

.12661 

using GAPP chips, since in both cases the processing elements (PEs) are 
one-bit processors with a l@Mhz clock. The MPP executed up to 400 million 
floating-point operations per second, the computation being spread out across 
16 X 16 = 4096 PEs. Moreover, it takes four real multiplications and two 
additions to execute a complex multiplication. Thus, one can expect ap- 
proximately 4 x 108/6(4096) complex floating-point operations per second. 
Note that this figure will tend to overestimate the required time, since a 
complex addition requires only two real additions. The elementary permuta- 
tions must take two steps, since the data can only be transferred in one 
direction at a time. Again from [31], it takes 96 cycles to transfer a complex 
number with 16bit real and imaginary parts to an adjacent processor. Hence, 
it takes (2.96 cycles)(l/lOs set/cycle) = 192/10’ second to execute an 
elementary permutation step. Table 2 was constructed using this reasoning. 

Some observations concerning Table 2 can be made. The timings in the 
table suggest that either technique could be useful. It appears that the 
FFT-based method would run faster. In fact, this may not be the case, since 
the FFT-based method requires a large variety of different instructions to be 
executed in an intermingled fashion, whereas the MVOE method requires 
only the repetition of two instructions. Thus, it would be worthwhile to 
implement both algorithms on mesh-connected arrays. 

For any matrix A we denote by C,,,(A) and C,(A) the number of parallel 
multiplication and addition steps required to implement A locally on a linear 
array. By a parallel permutation step we mean the action of switching the 
data in horizontally or vertically adjacent cells. We denote by C,(A) the 
number of parallel permutation, or data-routing, steps required to implement 
A locally. We acknowledge that there is some ambiguity in this notation, 
since there can be more than one decomposition available for a given A, and 
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the complexity measures with respect to the different decompositions may be 
different. Either it will be explicitly stated which decomposition is being used 
or it will be clear from the context. Note that if x = m, a, or r, then 
C,( AB) = C,(A) + C,(B) and, since we are considering parallel complexity, 
C,(Zj@A) = C,(A) for any matrices A and B and positive integer j. 

We first give expressions for the number of parallel multiplication and 
addition steps. Since these quantities are so similar to standard FFT oper- 
ation counts, we simply state them for completeness. They follow im- 
mediately from the decompositions given in Section 2. We suppress the 
multiplication by n- ‘/‘. 

THEOREM 32. Let n be as in Theorem 7. 

(1) Using Corolla y 8 followed by Corollary 11 to decompose F,, results in 

(2) Using Corollary 10 followed by Corollary 11 to decompose F,, results 
in 

i (kjC,(Fp,)+kj) -” 
j=l 1 

where we allow s to be equal to 1. 
(3) Zf p is an odd prime, then using Theorem 12 results in 

The difference in the number of parallel multiplications required by the 
two different methods is s - 1 multiplication steps. Note that C,( F2) = 0 and 
that if n = 2k then C,(n) = logs n - 1. 

THEOREM 33. Using either method results in the following expressions 
for the additive complexities: 

(1) Zf n = rI;_lpfj is not prime, then C,(F,) = C;=,kj(C,(FP,)). 

(2) Zf p is an odd prime, then C,(F,)= 2C,(FP_,)+2(p - 1). 
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Note that the additions due to the matrices UP will have a significant 
influence on the additive complexity. This is because the method of comput- 
ing the UP, although local, is, except for one step, essentially serial. 

We now move to a discussion of the permutation complexity. The 
permutations can be executed locally by the odd-even transposition sort 
(OETS), which is a parallel algorithm for sorting data arranged in a one- 
dimensional array. The OETS as applied to a linear array a(r) can be 
described as follows: Alternate the steps (1) and (2) until no changes take 
place: 

(1) If x is odd and a( X) < a( x + l), then switch a(x) and a( x + 1). 
(2) If r is even and a(x) < a(x + l), then switch u(x) and a(x + 1). 

It has been shown that the OETS will execute an arbitrary permutation of 
n objects on a linear array in at most n parallel steps [17, 331. Furthermore, 
it can be shown that, because of the special structure of the shuffle permuta- 
tions, the OETS will execute the permutation a,,, corresponding to P(m, k) 

in either (m - l)( k - 1) or (m - l)( k - 1) + 1 parallel steps [6]. The proof of 
this fact is tedious, and we do not give it here. It is fairly easy to convince 
oneself of the validity of the claim by writing a few of these permutations out 
and performing the OETS by hand. It is also easy to write a computer 
program which will perform the OETS on a linear array. In what follows, we 
make the convention that Cy=,xj = 0 if n < m. 

THEOREM 34. Upper bounds on the number of parallel permutation steps 

required to implement the various algorithms are: 

(1) Zf n is us in Theorem 7 and Corollary 8 is used to decompose F,, then 

s-2 

C,(F,)<n+ c ~j~l+(~,k,i~-l)(~~“-l)+l+ i C(F,;,). 
j=O j=l 

(2) Zf n is us in Theorem 7 and Corollary 10 is used to decompose F,, 
then 

C,(F,,)f3n-2 i pij+4(s-l)+ i CT(FP:,) 
j=l j=l 

(3) Zf n = pk for k > 2 and Corollary 11 is used to decompose F,, then 

C,( F,) < 3n - 2pk + kC,( F,). 
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(4) Zf n = p is an odd prime and 

then 

C,(F,) < 2(n - 

201 

Theorem 12 is used to decompose F,,, 

Thus, in any case, the upper bounds on the number of parallel permutation 

steps is linear in n, that is, C,( F,,) is o(n). 

Proof. (1): Denote R = C~=,C,(F,;,). Since c,_r = p,ks, 

s-2 

Cr(F,) G I 1 
s-1 

C C,(Rj) +C,(P(p~~~i,psks))+R+C, 
j=O i 

jJJl(znv ,_,@‘QZ(s-j)) 
i 

By definition of R j and due to the structure of the shuffle permutations, 

Since P( psks_ll, p$ ) is a shuffle permutation, C,( P( piL_rJ, p,k, )) < (p,ki-; - 1) 

(p,k4)+1. 

The permutation Q =ns~:(Z,,~~_,aQ~~~-~,) can be implemented as a 
sequence of permutations or as a one-step permutation. Note that Q2 = 
T,,<C$)P(c,, ql), so C,(Q,) i c1 +(c, - l)(q, - l)+ 1 = n - q1 +2, which 
can be as large as n. Therefore, it is advisable, in general, to implement Q as 
a one-step permutation. Combining these observations yields 

s-2 
C,(F,)<C,(Q)+ C cj~,+(p~~-,‘-l)(ph~-l)+l+R, 

j=O 

which proves (1). 
(2): Let R be as in (1). By Corollary 10, 

s-1 

C&)62 c G.(Pc,_,)+c, Ii (zns_I@pcs-,) +R. 
j=l j=2 i 

Since the P,,- = P(c., pk~) are shuffle 
- 1) + 1. Nofe’that ciprl= cj_ 1. Hence 

permutations, C,.( PC,_,) < (Cj - l)( p;l 

s-1 s-1 s-1 s-l s 

C cr(pc,_,)~j~lCj-l-j~lcj-j~lP~J+2(s-1)=n- C Pj”‘+2(s-1)’ 
j=l j=l 
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By similar reasoning to that used in (1) for the permutation matrix Q, 

C,(Q,(L_, BP, )) < n. Thus, C,(F,) < 2n +4(s - 1) - 2X;:ip,k~ + n + R, 
which proves (2)’ ’ 

(3): By Corollary 11 

k-2 k-l 

= 2 c CJ P( pk-“‘? P)) + c c&J + C&J 
t,, = 0 n1 = 0 

k-2 

<2 C [(pk-m-l-l)(p-l)+l]+kC,(Fp)+n. 
I?, = 0 

A little algebra yields 

k-2 

= 

=n-pk. 

Therefore C,(F,,) < 3n - 2pk + kC,(F,), which proves (3). 
(4): This inequality follows immediately from Theorem 4.12. 

The upper bounds on the permutation complexities can be sharpened in 
certain special cases. This is because the structure of the permutations is not 
destroyed (or clouded over) by the presence of too many permutation 
matrices. Note that the twiddle-free identity can be rewritten as 

F, = P(k,m.)Tk(Cmk*)(zk~F,)P(m, k)(Z,,,~FF,)T,,I(C;‘*)P(k,m). 

Using this expression, it is straightforward to verify the following theorem. 

THEOREM 35. Zf n is as in Theorem 7 with s = 2, then: 

(1) Zf the twiddle-free identity is used to decompose F,,, then 

C,( F,) Q 3n + 6 - 2~; 2 - 2pl;'+ C&,';,)+ C,($,;z). 
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(2) If the general radix identity is used to decompose F,, then 

(3) Zf n = p2, then 

C,(F,) < 3(p - 1)2+3+2Cr(F~). 

We now derive expressions for the time complexity of the parallel and 
serial algorithms resulting from the decompositions developed using 
minimal-variable oblique elimination. We also establish upper bounds on the 
number of floating-point operations required to compute the decompositions 
using minimal-variable oblique elimination. Recall that the algorithms result- 
ing from the decompositions are generally required to be real-time algorithms, 
whereas the computation of the tridiagonal factors need not be. 

THEOREM 36. Let M be an n X n matrix, and assume that minimul-vari- 
able oblique elimination is successful for M. It takes 2n - 2 parallel 
steps-all steps but one consisting of, at most, one multiplication and one 
addition per point, and the other consisting of two multiplications and one 
addition per point - to implement the transformation v’+ Mv’ using the 
tridiagonul decomposition of M obtained from using minimal-variable oblique 
elimination. 

Proof. The result follows immediately from Corollary 31. n 

We shall use the concept of a flop (floating-point operation) to quantify 
the complexity of a serial computation. Golub defines a flop to be “more or 
less the work associated with the statement s := s + aikbkj” [7]. We take s, 

aik, and bkj to be complex numbers. Note that it takes at least three real 
multiplications and five additions or four real multiplications and two ad- 
ditions to perform a complex multiplication [l]. 

THEOREM 37. Let M be an n X n matrix, and assume that minimul-vari- 
able oblique elimination is successful for M. The mapping v’-+ Mu’ can be 
accomplished with n2 +2 flops using the decomposition resulting from 
oblique elimination. 

Proof. If SE C” and ij= Li? for some i E [l, n - 21, then, by the way 
the Lj are constructed, it takes one flop to compute yk if k > n - i + 1, and 
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zero otherwise. The same statement holds true for the Vi. If y’= C?, then it 
takes two flops to compute qk for k E [l, n]. If y’= Bx’, then, since B is unit 
lower bidiagonal, it takes one flop to compute ZJ~ for k E [l, n]. Hence, it 
takes a total of 2X7=75 + 3n = n2 + 2 flops. n 

The operation count associated with using the tridiagonal decompositions 
to implement linear transforms on a serial machine is essentially the same as 
the operation count of the straightforward method. Therefore, these decom- 
positions do not lead to good serial algorithms for computing linear trans- 
forms in general. 

We now show that if minimal-variable oblique elimination is successful, 
then it takes o(n3) flops to compute the decomposition. The computations 
required to compute the decompositions can be divided into three categories. 
One category consists of the computations necessary to compute the LU 
decomposition. The other categories consist of the computations necessary to 
construct the minimal-variable solution matrices and the matrix multiplica- 
tions necessary to compute the intermediate results, that is, the multiplica- 
tions of the form L; ‘( L,r_‘, . . . L,‘L). The first category is well studied. We 
examine the last two categories. 

We first consider the computations necessary to construct the minimal- 
variable solution matrices. In the next theorem, we establish an upper bound 
on the number of flops required to compute the minimal-variable solution 
matrix for a lower triangular, banded matrix A, assuming that a Homer-type 
algorithm is used. 

THEOREM 38. Let i E [l,n - 21, urul let A be an n x n m&ix with 
lower bandwidth n - i + 1. For each k E [O, i - l] assume that x, ~, + k is 
computed by first computing d n_i+k in the nested fashion 

+CZ n-,+2,k+l )+ ‘.. )+“,,~*+k~I,k+L)+“n- i+k,k+lan I+k.k+l 

and then computing 

a n--i+k+l,k+l 
x n-i+k= - 

dn-i+k ’ 

It takes i(i + 1)/2 flops to compute the minimal variable solution for A. 
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Proof. It takes k flops to compute dn_i+k, one for each x,_~+~, 
j=O,l , . . . , k - 1. It takes one more division to compute x,_ i+k. Hence it 
takes Xi:‘,< k + 1) = i( i + 1)/2 flops altogether. n 

COROLLARY 39. Let M be an n x n matrix, and assume that minimal- 
variable oblique elimination is successful for M. Using the method of 
Theorem 38 it takes $(n - l)(n - 2) = o(n3) flops to construct the 
minimal-variable solution matrices required to factor M. 

Proof. The solution matrices must be computed for A i = L, ‘L, A, = 
L,‘L;‘L ,...> A,_,= L-’ ... n-2 L,‘L. It takes i(i + 1)/2 flops to do so for 
each Ai. The same must be done for U1. Hence, it takes ZCr:$( i + 1)/2 = 
Cr:,2i2 + Cyzfi = jn( n - I)( n - 2) flops altogether. n 

We now derive upper bounds on the number of flops required to carry 
out the matrix multiplications needed to construct the intermediate results. 
Recall that if i E [l, n - 21, then 

1 r I 

n-i-l I 0 
---1---__--__-_______---_--___-___----_--_-- 

I 
I 1 0 
I 
I x n-i 1 

I x n-ix”-,+1 x n-i+1 

I 
o/ . 

I 
I 
, 1-l i-l 

. . . . 0 
0 

1 . 
. . 

. 

0 . 
1 0 

. . . . x tl- I 1 

THEOREM 40. Let i E [l, n - 21, and let A = L;!, . . . L;‘L. Let R, 
denote the kth TOW of A. Assume that the matrix multiplication is computed 
in the following nested fashion: 

+R >l-i+2)+ ... +Rr, ,+j-l)+Rn-i+j 

for j E [l, i]. Then the matrix multiplication can be carried out using 
i(n - i +2) jIops. 
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Proof. The multiplication leaves rows 1 to n - i + 1 unchanged. The 
computation of the n-i+jth row is of the form R._i+j-+~n~I+j~lE+ 

R,_i+ j, where E is the value used to compute row n - i + j - 1. Therefore, 
it takes one flop per row element to compute the new row. Since A is lower 
triangular with lower bandwidth n-i + 1, there are at most n-i + 1 

nonzero elements in each row. Furthermore, the nonzero part of each row is 
offset by one location from the nonzero part of the row directly above and 
below it. Hence, the linear combination needs to be carried out for only 
n - i +2 elements in each row. Since only i rows are changed, the matrix 
multiplication can be carried out in i( n - i + 2) flops. n 

COROLLARY 41. Let M be an n X n matrix, and assume that minimal- 

variable oblique elimination is successful for M. Let M = LU be the LU 

decomposition of M. The matrix multiplications necessary to compute the 

minimal-variable tridiagonul decompositions of L and U can be carried out 

using $(n - l)(n - 2)(n +9) flops. 

Proof. The multiplications L;‘L, L2 ‘( L,‘)L,. . . , and L,A,( Lila . . 
L, ‘L), each of which can be done using i(n - i +2) flops, must be com- 
puted. The same must be done for U’. Hence, it takes a total of 2Xy:%(n - i 

+2) = *(n - l)(n - 2)(n +9) flops. n 

We now combine the results obtained in this section to show that oblique 
elimination is, at most, an o(n3) operation. 

COROLLARY 42, If minimul-variable oblique elimination is successful fm 
the n x n matrix M, then it can be carried out using o(n3) flops. 

Proof. By Corollaries 39 and 41, it takes at the most o(n3) to compute 
the tridiagonal decompositions of L and U. Standard algorithms can be used 
to compute the LU decomposition in o( n”) flops. Thus, the whole procedure 
takes o( n3) flops. n 

In fact, each of the separate operation counts is of the form in” + o(n2), 

so the total operation count is of the form n3 + o( n2). 

5. CONCLUSION 

We have shown how two different methods can be used to derive 
tridiagonal decompositions of F,, for arbitrary values of n. The first method is 
based on use of matrix identities associated with FFTs, and the second is 
based on use of oblique elimination. These decompositions can be used to 



TRIDIAGONAL FACTORIZATION 207 

develop parallel algorithms for implementing DFTs on linear, or mesh-con- 
nected, arrays of processors. 

The FFT-based method has the advantage that the number of parallel 
arithmetic steps required to implement the resulting parallel algorithms is 
small. A disadvantage associated with this technique is that a large number of 
permutation matrices appear in the decompositions, which implies a great 
deal of data manipulation. Another consideration is that these decompositions 
can require quite different programs to implement for different values of 12, 
as is always the case with FFTs. 

The major advantage of the oblique elimination method is that there is 
very little data manipulation required to implement the algorithms implied by 
these decompositions. Another advantage is that the parallel arithmetic 
operation counts are all the same linear function of n for every n regardless 
of the compositeness of n. Thus, a library of parallel algorithms for comput- 
ing DFTs of any size (within some upper bound) should be easy to construct 
using this technique. The same program can be used for any n, which is far 
from the case with FFT-based methods. This is due to the fact that oblique 
elimination is a method based on numerical linear algebra rather than 
traditional discrete Fourier-transform methods. A disadvantage is that the 
number of multiplication steps is higher than for the FFT-based method, 
particularly for values of n such as powers of two. We point out, however, 
that, given a linear array of processors, the oblique elimination method yields 
a parallel algorithm which takes o(n) arithmetic steps for any n, which is 
better than any serial FI3 algorithm. 

The parallel algorithms resulting from the oblique elimination method can 
be used alone or in conjunction with the FFT-based method. Specifically, the 
FFT-based method could be used to break the computation into prime 
components. The method described in this chapter could then be used in 
place of the Rader prime algorithm and the convolution theorem, since the 
use of those techniques requires a number of arithmetic and data-manipula- 
tion steps. We feel that this will be the best way of using the oblique 
elimination method. 

Oblique elimination is not peculiar to the DFT. Thus, it may be that 
oblique elimination will work for many special linear transforms. It has been 
pointed out that the efficient computation of linear transforms is one of the 
outstanding problems in the development of real-time scene analysis al- 
gorithms for robots [28]. Perhaps parallel processing and oblique elimination 
can be combined to help solve these problems. 

Z would like to thank Professor Gerhard X. Ritter for encouraging me to 
work on these problems. This work was partially supported by the Air Force 
Armament Division and DARPA under Contract FO8635-84-C-0295. Z am 
grateful to Mr. Neal Urquhart for his support of this research. 
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