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4.3 Optimal Linear Combinations of Bands

Several useful algorithmms for reducing dimensionality involve finding optimal linear
combinations of bands. The meaning of optimal is encoded in an objective function. The
process of minimizing or maximizing the objective function leads to an algorithm for re-
ducing dimensionality.

4.3.1 Principal Components Analysis (PCA) and Transform (PCT)

Reducing dimensionality of spectra via PCA produces vector representatives of spectra
that have two important properties. The first is that the reduced dimensionality vectors
have uncorrelated components. The second is that the reduced dimensionality vectors of
any dimension D < B have the highest percentage of the total variance of any linear
transformation from dimension B to dimension D. These concepts will be made precise
below.

Principal Components Analysis refers to the act of analyzing data using a linear change-
of-basis transform, referred to as a Principal Component Transform. The spectral data X
are considered to be samples of a random vector x. There is a true PCT associated with x
and a sample PCT associated with the sample X , which can be referred to as PCTx and
PCTX , respectively. However, in practice this distinction is rarely made and PCTX is what
is normally used and so we will only discuss it. It is important to keep in mind that PCTX
depends on the sample X .

A PCT transforms the standard basis to a basis of eigenvectors of a covariance matrix.
More precisely, let µ̄X and C̄X denote the sample mean and sample covariance of the
sample spectra in X. Recall that C̄X = V tΛV where V tV = V V t = I and Λ is a
diagonal matrix with non-negative values. The PCT of a spectrum x with respect to the
sample X of the random vector is defined to be

y = V t (x− µ̄X) .

PCA is based on using the entities involved in the PCT to analyze spectral data. It can
be used to mitigate the effects of the Curse of Dimensionality.

Example. Two-dimensional data. Suppose x is a 2D Gaussian random variable with
mean, µ and covariance Σ given by

µ =

[
3

2

]
and Σ =

[
0.7562 0.4222

0.4222 0.2687

]
The eigenvalues of Σ are λ1 = 1 and λ2 = 0.025. A diagonalizing matrix is

V =

[
0.8660 −0.5000

0.5000 0.8660

]
since V tΣV diag (1, 0.025). A data set {x1,x2, . . . ,xN} was created by generating

1000 pseudo-random vectors from the multivariate Gaussian above and had sample mean
and covariance:

µdata =

[
3.00

2.01

]
and Σdata =

[
0.7376 0.4092

0.4092 0.2592

]
.
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Diagonalizing Σdata yielded eigenvalues λ1 = 0.972 and λ2 = 0.025 and eigenvectors

Vdata =

[ −0.8674 −0.4977

−0.4977 0.8674

]
.

Note that the eigenvectors corresponding to λ1 and λ2, respectively, define the direction
of the major and minor axes. The major and minor axes are depicted in Figure 4.1.

Figure 4.1 Principal Axes of data set generated by Gaussian distribution. The direction of the
major axis is given by the eigenvector associated with the largest eigenvalue. The direction of the
minor axis is given by the eigenvector associated with the smallest eigenvalue.

The result of transforming the data set from the original domain to the PCA domain is
shown in Figure 4.2

Spectral Example. The image in Figure 4.3 is an RGB version of an AVIRIS image
with 178-dimensional spectral pixels (the water bands have been removed). The Principal
Component Dimensionality Reduction is shown in Figure 4.4.

Mathematical Derivation. some of the mathematical properties of the entities used in
PCA. Notice that the mean of y is 0 since

EX [y] = EX [V t (x− µ̄X)] = V t (EX [x]− µ̄X) = V t0 = 0.
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Figure 4.2 PCT of data shown in Figure 4.1

Figure 4.3 An RGB version of a 178D AVIRIS image.

Figure 4.4 A scatterplot of the first 3 Principal Components of an 178D AVIRIS image.


