
158 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

[14] H. Xingui, “Weighted fuzzy logic and its applications,” inProc. 12th
Annu. Int. Computer Software Application Conf.,Chicago, IL, 1988, pp.
485–489.

[15] L. A. Zadeh, “Fuzzy sets,”Inform. Contr.,vol. 8, pp. 338–356, 1965.
[16] H. J. Zimmermann,Fuzzy Set Theory and Its Applications.Dordrecht,

The Netherlands: Kluwer-Nijhoff, 1991.
[17] R. Zwick, E. Carlstein, and D. Budescu, “Measures of similarity among

fuzzy sets: A comparative analysis,”Int. J. Approx. Reas.,vol. 1, pp.
221–242, 1987.

Handwritten Word Recognition with Character
and Inter-Character Neural Networks

Paul D. Gader, Magdi Mohamed, and Jung-Hsien Chiang

Abstract—An off-line handwritten word recognition system is de-
scribed. Images of handwritten words are matched to lexicons of candi-
date strings. A word image is segmented into primitives. The best match
between sequences of unions of primitives and a lexicon string is found us-
ing dynamic programming. Neural networks assign match scores between
characters and segments. Two particularly unique features are that neural
networks assign confidence that pairs of segments are compatible with
character confidence assignments and that this confidence is integrated
into the dynamic programming. Experimental results are provided on
data from the U.S. Postal Service.

I. INTRODUCTION

An off-line, handwritten word recognition algorithm has two
inputs: a digital image (assumed to be an image of a word), and a
list of strings called a lexicon, representing possible identities for the
word image. The goal is to assign a match score to each candidate
in the lexicon.

A variety of approaches have been reported since 1990. Several
researchers [1]–[7] have used hidden Markov models. Others have
tried to use “wholistic approaches” in which a word is recognized as
an entity. These algorithms do well at providing auxiliary information,
but not as stand-alone recognizers [8]–[13]. Some of the most
successful results have come from segmentation-based techniques that
rely on dynamic programming [5], [14]–[20]. In these approaches, an
optimal segmentation is generated for each lexicon string.

Our baseline system is based on dynamic programming and is
illustrated in Fig. 1. A word image is segmented into subimages
called primitives without using a lexicon. Each primitive ideally
consists of a single character or a subimage of a single character.
A segment is defined as either a primitive or a union of primitives
and a segmentation as a sequence of segments using all the primitives.
Dynamic programming is used to find the segmentation that matches
a given string best. The match score is assigned by matching each
segment in the segmentation to the corresponding character in the
string using a character recognizer that returns confidence values.

This approach does not consider important inter-character re-
lationships. For example, in Fig. 2, a segmentation of the word

Manuscript received December 22, 1993; revised August 12, 1995. This
work was supported by the U.S. Postal Service through the Environmental
Research Institute of Michigan.

The authors are with the Department of Electrical and Computer
Engineering, University of Missouri, Columbia, MO 65211 USA (email:
gader@sunpg.ece.missouri.edu).

Publisher Item Identifier S 1083-4419(97)00798-X.

Fig. 1. Overview of the word recognition system.

Fig. 2. The character recognition scores of the individual fifth and sixth
segments match well against the characters “u” and “e,” but the sizes of the
segments are not spatially compatible.

“Cowlesville” matches well to the string “avenue”. The fifth and sixth
segments together do not look much like “ue” since the fifth segment
is much larger than the sixth segment and “u” and “e” are about the
same size. However, as individual characters, the fifth segment looks
very much like “u” and the sixth segment very much like “e”. Of
course, the “ue” hypothesis is possible and should be assigned some
nonzero confidence.

The spatial relationships and relative sizes between segments are
cues that should be considered in assigning a match score between
a word image and a lexicon string. One method for doing so is to
use a post processor that modifies the match score after dynamic
programming. This approach cannot correct for segmentation errors
caused by bad matches.

The novel approach described here builds the confidence modifi-
cation due to spatial relationships into the dynamic programming.
A compatibility score is assigned to pairs of adjacent segments
using a neural network. This compatibility score is combined with
the character recognition score to assign match scores between
segments and characters. A related concept was used by Obaidat
and Macchairolo who used time intervals between typed characters
to identify computer users [21]. We now describe the system and
then provide experimental results for the character recognition and
compatibility modules and the entire system.

II. SEGMENTATION

The segmentation module is very similar to that described in [22]
and we therefore do not discuss it much here. The segmentation
process initially detects connected components. Some simple group-
ing and noise removal is performed. The results are referred to as the
initial segments. An element of an initial segmentation is generally
a significant connected component in the word, or a grouping of
connected components. Those components which are not “bars” (such
as the top of a “T” or the vertical bar in a “D”) are sent to a splitting

1083–4419/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997 159

Fig. 3. A word image and its primitive segments.

process which is designed to split connected components consisting of
multiple characters into primitive segments. The need for aggressive
splitting due to ambiguity of characters is well documented elsewhere
and will not be discussed here [22]–[26]. The results of splitting are
then used to form the primitive segments. A word image and the
resulting primitive segments are shown in Fig. 3.

The segmentation module described in [22] differs from the
segmentation module described here in four ways. The first is the
output format. In the current approach, dynamic programming is used
to generate optimal segmentations “on the fly” but in the referenced
work, multiple segmentations are formed in the segmentation process
and they remain static during the matching process. The second
major difference is that many of the rules for grouping and splitting
have been made less restrictive in order to handle unconstrained
words rather than just handprinted words. The earlier segmentation
algorithm included a strict recognition module: an initial segment
with a high recognition score was not sent to the splitting process.
This module was removed because multiple characters, such as “tt”
could receive high scores as single characters such as “H”. Finally,
in the earlier version, the initial segmentation was matched against
the lexicon before splitting. If a high match score was attained, then
no further processing was performed. This module has also been
removed.

III. CHARACTER CONFIDENCE ASSIGNMENT NEURAL NETWORKS

Character confidence assignment refers to the following process:
given an images; and a character classc; assign a value tos that
indicates the degree to whichs representsc: This differs from the
character recognition model which is: given an images; and a set of
character classesfc1; c2; � � � ; cng; determine which classs belongs
to. This process is required in a lexicon driven system such as
ours. We use a character recognition module that returns confidence
values for character confidence assignment. There is a difference in
the philosophy for training. The objective of character recognition
is to achieve high classification rates. The objective of a character
confidence assignment module is to accurately reflect possible class
memberships.

The latter objective is difficult to model. We use the notion of fuzzy
set membership to train multilayer, feedforward neural networks for
character confidence assignment [20]. Specifically, we use a variation
of the fuzzy k-nearest neighbor algorithm to estimate fuzzy set
memberships for each sample in our training set [27]. We use these
fuzzy set memberships as the target output values for each class
during backpropagation training.

Our word recognition system uses four multilayer, feedforward
networks for character confidence assignment trained with backprop-
agation. We have two types of features, the bar features and the
transition features. For each feature type, there is an upper case
network and a lower case network. The network architectures all
consist of two hidden layers, and input and output layers. Each
network has 27 outputs, one for each class and one for a noncharacter
class. The noncharacter class is included to train the network to
produce low responses when segments consisting of noncharacters
(such as multiple characters or pieces of characters) are used as inputs.
The bar feature networks each have 120 inputs, 65 units in the first
hidden layer, and 39 units in the second hidden layer. The transition
feature networks each have 100 inputs, 65 units in the first hidden
layer, and 39 units in the second hidden layer. The number of hidden
units was not optimized but has performed well in testing. In fact, the
bar-feature networks trained with these architectures did very well in
an international competition sponsored by NIST [28].

Both feature types operate on binary images which need not be a
fixed size. The bar features have been described in detail elsewhere so
we do not discuss them here [20], [29], [30]. The transition features
have not been described in detail except in a technical report [30]. We
describe them here. The idea is to compute the location and number
of transitions from background to foreground along horizontal and
vertical lines. This transition calculation is performed from right to
left, left to right, top to bottom, and bottom to top. Since a constant
dimension feature is required as input to the network, an encoding
scheme was developed.

In the first stage of feature extraction, the transitions in each
direction are calculated. Each transition is represented as a fraction
of the distance across the image in the direction under consideration.
These fractions are computed in decreasing order. For example, when
calculating the location of transitions from left-to-right, a transition
close to the left edge would have a high value and a transition far
from the left edge would have a low value as illustrated in Fig. 4.

A maximum number of transitions,M; are counted on each line.
If there are more thanM transitions in a line, then only the first
M are counted, the rest are ignored.M is set to 5. If there are less
thanM transitions on a line, then the “nonexistent” transitions are
assigned a value of 0.

More precisely, by a line we mean a row or a column of the
character image. Leth be the height of the image andw be the
width of the image. We assign exactlyM values to each line,
say t1; t2; � � � tN : Assume there aren transitions on a line located
at (xi; yi) for i = 1; 2; � � � ; n: The algorithm for calculating the
transition locations can be represented as follows:

For i = 1 to min(n;M)
If the line is a row then

pi = xi andd = w

else
pi = yi andd = h

end if
ti = 1� pi=d

End for
If n<M then

For i = n+ 1 to M

ti = 0
end for

end if.

The transitions are resampled to a 5-point sequence for each
direction and assembled into a feature vector. The five transitions
for each row (column) are represented as a two-dimensional (2-D)
array, t = [tij] for i = 1; � � � ; h(w) and j = 1; � � � ; 5: A 2-D array

160 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

Fig. 4. The first stage of transition feature extraction shown for transitions
from the left and from the right on one row of the image.

Fig. 5. The second stage of transition feature calculation consists of resam-
pling the transition locations onto fixed size grids.

of size 5 � 5 from is constructed fromt by local averaging on the
columns oft: Since there are four directions and 5 stroke transitions
along each line, this process results in a5 � 4 � 5 = 100 element
feature vector. This process is illustrated in Figs. 4 and 5.

IV. COMPATIBILITY ASSIGNMENT NEURAL NETWORKS

In this section, we describe the approach used to assign compatibil-
ity scores to pairs of characters. The idea is to assign a compatibility
measure to pairs of segments that are adjacent in a word. For example,
if the character confidence assignment module is matching segment
1 to an upper case character class and segment 2 to a lowercase “g”,
then the compatibility measure measures the degree with which the
pair of images “looks like” an ascender-type character followed by
a descender-type character.

Characters are categorized into three categories: ascender (A), core
(C), and descender (D). Character pairs are therefore categorized
into nine classes: AA, AC, AD, CA, CC, CD, DA, DC, and DD.
Samples of character pairs were collected and assigned character pair
class memberships. Neural networks were trained to classify character
pairs. Two different networks were trained, each with different
features as inputs. We refer to these networks as compatibility
networks.

The character categories are defined as follows:

ASCENDER = fAll upper case characters and

b; d; f; h; k; l; tg;

CORE = fa; c; e; i;m; n; o;

r; s;u; v;w; x; zg;

DESCENDER = ff; g; j; p; q; yg:

Samples of pairs of characters from each class are shown in Fig. 6.
These character pairs consist of adjacent pairs of character that were
extracted from handwritten city and state words.

The character pairs were used to train two neural networks. Each
neural network has nine outputs, one for each character pair type. One
neural network used transition-like features. The other neural network
used bounding box measurements and distances to the center-line of
the word images as features. We refer to the first set of features as
the transition-like features and to the latter set as the bounding box
features. The bounding box features are much faster to compute and
perform almost as well.

The features are computed separately on each of the individual
components in a pair image. The pair image is considered within the
context of the word image it was extracted from. First, the center-line
of the word is estimated using the horizontal projection. The center-
line of the word is used to account for differences in the positions
of characters within a word depending on whether a descender is
present or not. A lower-case “a” may be at the bottom of a word
image if there is no character of type descender in the word, but may
be in the middle of the word image if there is. The two samples of
the pair “al” in the CA class shown in Fig. 6 provide good examples
of this problem. The center-line is used to embed the word image
in a virtual bounding-box that provides space for descenders even
if they do not appear. This center-line and virtual bounding box are
illustrated in Fig. 7.

The transition-like features are computed on the virtual bounding-
box of each of the individual segments of a pair of segments from a
word image. Only horizontal transitions are considered, at most two
per line per segment. Transitions are considered from the left and from
the right. The positions of the transitions are recorded at eight equally
spaced rows of the image rather than resampling the positions over
a number of rows as is done for the character recognition transition
features. The length of the resulting feature vector is64 = 2 segments
* 8 lines per segment * (2 left-to-right transitions per line+ 2 right-
to-left transitions per line). The compatibility network based on the
transition-like features has 64 inputs, nine outputs, and one hidden
layer with 54 units.

The bounding box features are the normalized distances above and
below the word center line of each segment, the width of the overlap
of the segments, the widths of the parts of each segment that do
not overlap the other segment, and the relative offsets of the tops
of the segments and the bottoms of the segments. The result is nine
features altogether, compared to 64 for the transition-like features. A
neural network was trained with nine inputs, 12 hidden units, and nine
outputs. Word recognition results using these features are provided
in Section VI.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997 161

Fig. 6. Samples of character pairs used for training compatibility neural networks.

Fig. 7. Illustration of word center line and virtual bounding box.

V. DYNAMIC PROGRAMMING MATCHING

The core of the dynamic programming algorithm is the module
that takes a word image, a string, and a list of the primitives from
the word image and returns a confidence value between 0 and 1 that
indicates the confidence that the word image represents the string.
Dynamic programming is used to find the best path through the space

of primitives and legal unions of primitives. The best path depends
upon the method to evaluate each node in the path. The value of each
node here can be provided solely by the character neural networks
or by combining the character network and compatibility network
outputs. The value of a path is computed by averaging the values
of the nodes.

The algorithm is implemented using a match matrix approach. We
describe it first for the case that only the character neural networks
are used. For each string in the lexicon, an array is formed. The rows
of the array correspond to the characters in the string. The columns
of the array correspond to primitive segments. The(i; j) element in
the array is the value of the best match between the firsti characters
in the string and the firstj primitive segments. This value may be
negative infinity if there is no legal match. A path array can also be
maintained to keep track of the best matches.

Let the primitive segments of the image be denoted by
S1; S2; � � � ; Sp: Let the characters in the string be denoted by

162 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

C1; C2; � � � ; Cw: Let match(c; s) be a function that takes a character
c and a segment images as input and computes the confidence that
s representsc: For each pairm;n 2 f1; 2; � � � ; pg; let

Smn =

n

h=m

Sh

and let Legalp(Smn) be a Boolean function that returns TRUE if the
union imageSmn is “character-like” and FALSE otherwise. The(i; j)
element of the match array (called value) is computed as follows:

IF i = 1; (that is we are matching against
the first character) THEN

IF Legalp(S1j) THEN
value(1; j) = match(S1j ; C1)

ELSE
value(1; j) = �1

END IF
ELSE IF Legalp(Sij) THEN

value(i; j)
= max

k
fvalue(i� 1; k)+ match

(Sk+1;j ; Ci)ji � k< j and Legalp(Skj)g
ELSE

value(i; j) = �1

ENDIF
ENDIF
IF value(i; j)>�1 THEN

path(i; j)
= argmax

k
fvalue(i� 1; k)+ match

(Sk+1;j;Ci)ji � k< j and Legalp(Skj)g:

Once the match array has been computed, the best match can be
found using the path array. This algorithm requires that we define
the match function and that we define criteria for deciding when a
union of primitive segments is legal.

A picture of all the legal unions of primitives for the word image
from Fig. 3 is shown in Fig. 8. The criteria for legality of unions
are based on measuring the complexity of the union in various ways.
If a union becomes too complicated in terms of number of stroke
transitions, or if it contains a large gap in the vertical projection
(indicating that two characters have been grouped), or if the union
extends across too many connected components of the word image,
then it is determined to be not legal. These rules are clearly heuristic
and depend upon thresholds, but they reduce the computational
requirements considerably. The thresholds are set low to place most
of the decision making power in the dynamic programming match
function.

We can define the match function using only the isolated character
networks as follows: LetS denote a binary image and letC rep-
resent a character class. LetBFU (S;C);BFL(S;C); TFU (S;C);
and TFL(S;C) denote the output activations of the output node
associated with classc for the upper and lower case Bar and
Transition feature networks. Define the match between imageS

and character classC to be the maximum of the averaged output
activations

match(S;C) = 1

2
max(BFU (S;C)

+ TFU (S;C);BFL(S;C) + TFL(S;C)):

If we use compatibilities, the algorithm becomes more complicated.
Assume we are using one of the compatibility networks. We take the
match function to depend upon the value of the match of the current
segment to the current character class under consideration and the
compatibility of that match with matching the previous segment to
the previous character class. More precisely, letCN(S;T ; p) denote
the output activation of thepth node of the compatibility network

Fig. 8. The set of all legal unions of primitives for the word image of
“Portland” shown in Fig. 3.

for p 2 fAA;AC;AD;CA;CC;CD;DA;DC;DDg given (feature
vectors computed from) imagesS and T as inputs. Suppose we
are currently trying to compute the best match between the firsti

characters in the string and the firstj primitive segments. Ifi = 1

then the matching is the same as before. Ifi = 2; then for eachk< j

such that Legalp(S1k) and Legalp(Sk+1;j) are TRUE, let(i� 1; k)

denote the position of a previous match. This means that the segment
S1k was used to match to the first character,C1; and that we are
currently considering the match betweenSk+1; j and C2: Let p12
denote the compatibility class associated with the character class pair
(C1; C2): The match score is then given by

value(2; j) =
max

k
fvalue(i� 1; k) + match(Sk+1; j; Ci)

+ a �CN(S1k;Sk+1; j; p12))g

and the path pointer is given by

path(2; j) =
argmax

k
fvalue(i� 1; k) + match(Sk+1; j; Ci)

+ a �CN(S1k;Sk+1;j ; p12))g:

In this formula, match is as defined above and a is a scaling factor
that weights the relative contribution of the compatibility.

For the general case, ifi> 2 then for eachk1 � j such that
Legalp(Sk + 1; j) is true, consider(i � 1; k1) and (i � 2; k2)

where k2 = path(i � 1; k1): If Legalp(Sk ; k1) is true then, by
definition of the path matrix, the segmentSk ; k1 was used to match
to the previous character,Ci�1: For each suchk1; we compute the
compatibility of the match betweenSk ; k1 andCi�1 with the match
betweenSk + 1; j andCi; weight it by a scaling factor, and add it
to the character confidence assigned to the match betweenSk +1; j

andCi: The maximum value attained is the match value at(i; j):

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997 163

TABLE I
COMPARISON OF CHARACTER RECOGNITION RATES

that is, letpi�1; i denote the compatibility class associated with the
character class pair(Ci�1; Ci): The match score is then given by

value(i; j) =
max

k1
fvalue(i� 1; k1)

+ match(Sk + 1; j; Ci

+ a �CN(Sk ;k ;Sk +1;j ; pi�1;i))g

and the path array entry is the argmax of the expression being
maximized as before. Actually, the case ofi = 2 can be considered
as part of the latter case, but it is easier to understand by treating
it separately.

The final segmentation and match score are computed after the
value and path arrays have been filled. Let w denotes the number of
characters in the string being matched and letp denote the number of
primitive segments. We generate indexesfk0; k1; k2; � � � ; kw�1; kwg
according to

kw = p

kw�1 =path(w; p)

ki =path(i; ki+1) for i = w � 2 downto 1

k0 =1:

The final segmentation is then fSk ;k ; Sk +1;k ;

Sk +1;k ; � � � ;Sk +1;k g and the match score is the average
of fvalue(1; k1); value(2; k2); value(3; k3); � � � ; value(w �
1; kw�1);value(w; p)g:

VI. EXPERIMENTAL RESULTS

A variety of experiments were performed. All the data used came
from images of addresses from the USPS mail. For each module, we
first describe the data and then the results.

A. Character Recognition Results

The training and testing sets for the character recognition modules
consisted of 250 characters from each class in each set. Characters
were extracted from images of words. The horizontal locations of
the characters were manually marked at the Environmental Research
Institute of Michigan. These characters were automatically extracted
by our group and then manually screened for accuracy. Some classes
(such as vowels) had several thousand samples, while others (such
as “q” and “j”) had less than ten.

We constructed balanced training and testing sets from these
samples. Each set had 250 characters from each class. For those
classes with less than 500 samples, we constructed sets of 500
per class by randomly resizing the existing characters. For those
classes with between 500 and 800 samples, we randomly selected 500
samples. For those with more than 800 samples, we used a clustering
scheme to select samples. Each class was clustered into 250 clusters
using thek-means algorithm with Euclidean distance. Clusters with
a small number of samples were discarded. In order to represent the
typical character shapes in proportion to their distribution in our data,
we sampled from the remaining clusters in proportion to their size.
Thus, a large cluster yielded more samples than a small cluster. This

Fig. 9. Some sample word images.

process was performed separately for the training and testing sets.
The training and testing sets were disjoint.

The networks were trained for 12 000 epochs using a special
purpose computer system (the ANSIM system developed by SAIC)
for neural network training. The training and testing rates are shown
in Table I. We note that these results are different than those shown
in [20] because we used different character sets.

B. Compatibility Recognition Results

The data for the compatibility training and testing sets were
constructed similar to the character recognition sets. Samples are
shown in Fig. 6. The compatibility networks were trained using 1000
samples per class for the transition like-compatibilities and 250 per
class for the bounding-box compatibilities. The recognition rates for
training were 90.6% for the transition-like compatibilities and 81.8%
for the bounding-box compatibilities.

C. Word Recognition Results

The data set used for word recognition experiments consisted of
1000 city and state words selected at the Environmental Research
Institute of Michigan. Each word had a lexicon of size 100 associated
with it. The lexicons always contained the correct string. Samples of
the words are shown in Fig. 9. The words used for word recognition
experiments were distinct from the words used to extract characters
and pairs of characters.

The following experiments were performed.
Experiment 1:
Word Recognition Using the Bar and Transition Feature Character

Neural Networks only.
Experiment 2:
Word Recognition Using the Bar and Transition Feature Charac-

ter Neural Networks and the Transition-like Compatibility Neural
Networks. We useda = 0:25:

Experiment 3:
Word Recognition Using the Bar and Transition Feature Charac-

ter Neural Networks and the Bounding-box Compatibility Neural
Networks. We useda = 0:25:

The results are shown in Table II.
The table shows that the use of the compatibility networks signifi-

cantly improves performance and that the bounding-box compatibility
features perform essentially the same as the transition-like compati-
bility features. This last result is interesting since the bounding-box
compatibility network is much simpler and the training classification
rate is much lower than the transition like compatibility. This results
reinforce a view that we hold which is that recognition performance
is not the best measure of how well a confidence assignment module
will work in the context of word recognition. We believe that accurate

164 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 1, FEBRUARY 1997

TABLE II
PERCENTAGE OFCORRECT STRINGS IN THE TOPN RANKED STRINGS FORSET OF

1000 HANDWRITTEN WORDS. THE LEXICON SIZE WAS 100 STRINGS FOREACH

WORD IMAGE AND THERE WAS A DIFFERENT LEXICON FOR EACH WORD IMAGE

reflection of ambiguity is more important, although it is not clear how
to measure accurate reflection of ambiguity.

VII. CONCLUSION

A word recognition algorithm employing dynamic programming,
neural-network-based character recognition, and neural-network-
based inter-character compatibility scores has been presented. It
has been shown that the inter-character information can lead to a
significant improvement in performance.

ACKNOWLEDGMENT

The authors would especially like to thank A. M. Gillies, D.
Hepp, M. Ganzberger, and M. Whalen of the Environmental Research
Institute of Michigan (ERIM), J. Tan of Arthur D. Little, Inc., and C.
O’Connor of the U.S. Postal Service for their support of this work.

REFERENCES

[1] A. Gillies, “Cursive word recognition using hidden markov models,” in
Proc. U.S. Postal Service Advanced Technology Conf., Washington, DC,
1992, pp. 557–563..

[2] M. Y. Chen, A. Kundu, and J. Zhou, “Off-line handwritten word
recognition using hidden Markov model-type Stochastic network,”IEEE
Trans. Pattern Anal. Machine Intell., vol. 16, pp. 481–496, May 1994.

[3] M. Y. Chen and A. Kundu, “An alternative to variable duration HMM
in handwritten word recognition,” inProc. 3rd Int. Workshop Frontiers
in Handwriting Recognition, Buffalo, NY, 1993, pp. 82–92.

[4] M. Y. Chen, “Off-Line handwritten word recognition using a hidden
Markov model-type Stochastic network,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 16, pp. 481–496, May 1992.

[5] M. A. Mohamed and P. D. Gader, “Handwritten word recognition
using segmentation-free hidden Markov modeling and segmentation-
based dynamic programming techniques,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 18, no. 5, pp. 548–554, May 1996.

[6] M. A. Mohamed, “Handwritten word recognition using generalized
hidden Markov models,” Ph.D. dissertation, University of Missouri-
Columbia, 1995.

[7] H. Park and S. Lee, “Off-line recognition of large-set handwritten hangul
with hidden Markov models,” inProc. 3rd Int. Workshop Frontiers in
Handwriting Recognition, Buffalo, NY, 1993, pp. 51–62.

[8] S. Madvanath, “Using holistic features in handwritten word recogni-
tion,” in Proc. U.S. Postal Service Advanced Technology Conf., Wash-
ington DC, 1992, pp. 183–199.

[9] S. Madvanath and V. Govindaraju, “Holistic lexicon reduction,” inProc.
3rd Int. Workshop Frontiers in Handwriting Recognition, Buffalo, NY,
1993, pp. 71–82..

[10] A. W. Senior and F. Fallside, “An off-line cursive script recognition
system using recurrent error propagation networks,” inProc. 3rd Int.
Workshop Frontiers in Handwriting Recognition, Buffalo, NY, 1993,
pp. 132–141.

[11] B. Plessis, “Isolated handwritten word recognition for contextual anal-
ysis reading,” inProc. U.S. Postal Service Advanced Technology Conf.,
Washington DC, 1992, pp. 579–593.

[12] J. Hull, T. Ho, Favata, J., V. Govindaraju, and S. Srihari, “Combi-
nation of segmentation-based and holistic handwritten word recognition
algorithms,” inProc. 2nd Int. Workshop Frontiers in Handwriting Recog-
nition, Chateau de Bonas, France, 1992, pp. 229–240.

[13] J. Favata and S. Srihari, “Recognition of general handwritten words
using a hypothesis generation and reduction methodology,” inProc.

U.S. Postal Service Advanced Technology Conf., Washington DC, 1992,
pp. 237–253.

[14] F. Kimura, M. Shridhar, and N. Narasimhamurthi, “Lexicon directed
segmentation—Recognition procedure for unconstrained handwritten
words,” in Proc. 3rd Int. Workshop Frontiers in Handwriting Recog-
nition, Buffalo, NY, 1993, pp. 122–132.

[15] F. Kimura, M. Shridhar, S. Tsuruoka, and Z. Chen, “Context directed
handwritten word recognition for postal service applications,” inProc.
U.S. Postal Service Advanced Technology Conf., Washington, DC, 1992,
pp. 199–214.

[16] E. Lecolinet and J. Crettez, “A grapheme-based segmentation technique
for cursive script recognition,” inProc. 1st Int. Conf. Document Analysis
and Recognition, Saint Malo, France, 1991, pp. 740–748.

[17] C. Nohl, C. Burges, and J. Ben, “Character-Based handwritten address
word recognition with lexicon,” inProc. U.S. Postal Service Advanced
Technology Conf., Washington DC, 1992, pp. 167–180.

[18] P. D. Gader, M. A. Mohamed, and J. M. Keller, “Dynamic programming
based handwritten word recognition using the Choquet Fuzzy Integral
as the match function,”J. Electron. Imaging, vol. 5, no. 1, pp. 15–25,
Jan. 1996.

[19] P. D. Gader and M. A. Mohamed, “Multiple classifier fusion for
handwritten word recognition,” inProc. IEEE Conf. Systems, Man, and
Cybernetics, Vancouver, B.C., Canada, 1995.

[20] P. D. Gader, M. A. Mohamed, and J. Chiang, “Comparison of crisp
and fuzzy character neural networks in handwritten word recognition,”
IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 357–364, Aug. 1995.

[21] M. S. Obaidat and D. T. Macchairolo, “A multilayer neural network
system for computer access security,”IEEE Trans. Syst. Man, Cybern.,
vol. 24, pp. 806–813, 1994.

[22] P. D. Gader, M. P. Whalen, M. J. Ganzberger, and D. Hepp, “Hand-
printed word recognition on a NIST data set,”Mach. Vis. Applicat., vol.
8, pp. 31–40, 1995.

[23] P. D. Gader, A. M. Gillies, and D. Hepp, “Handwritten character
recognition,” in Digital Image Processing Methods, E. Dougherty, Ed.
New York: Marcel Dekker, 1994, pp. 223–261.

[24] P. D. Gader, J. M. Keller, R. Krishnapuram, J. H. Chiang, and M.
A. Mohamed, “Neural and fuzzy methods in handwriting recognition,”
Computer, submitted for publication.

[25] P. D. Gader, J. M. Keller, and J. Cai, “A fuzzy logic system for the
detection and recognition of street number fields on handwritten postal
addresses,”IEEE Trans. Fuzzy Syst., vol. 3, no. 1, pp. 83–96, 1995.

[26] P. D. Gader and J. M. Keller, “Applications of fuzzy set theory to
handwriting recognition,” inProc. 3rd IEEE Int. Conf. Fuzzy Systems,
Orlando, FL, 1994, pp. 910–917.

[27] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzyk-nearest neighbor
algorithm,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 4, pp.
580–581, 1985.

[28] R. Wilkenson, J. Geist, S. Janet, P. Grother, C. Burges, R. Creecy, B.
Hammond, J. Hull, N. Larsen, T. Vogl, and C. Wilson,The First Census
Optical Character Recognition Systems Conference,National Institute of
Standards and Technology, Gaithersburg MD, NISTIR 4912, Aug. 1992.

[29] J. Chiang, “Hybrid fuzzy neural systems for robust handwritten word
recognition,” Ph.D. dissertation, University of Missouri-Columbia, 1995.

[30] A. M. Gillies, D. Hepp, M. Ganzberger, R. Rovner, and P. D. Gader,
“Handwritten address interpretation,” report from ERIM to U.S. Postal
Service, Office of Advanced Technology, 1993.

