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A.1.1 Matrices and Vectors

Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers

A =


a11 a12 . . . a1N
a21 a22 . . . a2N

...
...

. . .
...

aM1 aM2 . . . aMN



A matrix can also be written as A = (anm) where n = 1, 2, . . . , N andm = 1, 2, . . . ,M .
Matrices are usually written as boldface, upper-case letters.

Definition of Matrix Transpose. The transpose of A, denoted by At, is the NxM
matrix (amn) or

At =


a11 a12 . . . a1M
a21 a22 . . . a2M

...
...

. . .
...

aN1 aN2 . . . aNM



Example. A example of a matrix A and it’s transpose At is:

A =

 1 2

3 4

5 6

 and At =
[

1 3 5

2 4 6

]

Definition of Vectors.. A column vector is a Bx1 matrix and a row vector is a 1xB
matrix, where B ≥ 1. Column and row vectors are usually simply referred to as vectors
and they are assumed to be column vectors unless they are explicitly identified as row
vector or if it is clear from the context. Vectors are denoted by boldface, lower-case letters.

x = [x1, x2, . . . , xB ]
t

=


x1
x2
...
xB


Definition of Dimension. The integer B is called the dimension of the vector x in

the definition above. The phrase x is B − dimensional is equivalent to stating that the
dimension of x is B.

Definition of 0 and 1 vectors.. The vectors

0 = (0, 0, . . . , 0)
t and 1 = (1, 1, . . . , 1)

t

are called the Origin or Zero Vector and the One Vector, respectively.

Definition of Vector Addition and Scalar Multiplication.. The addition of two vec-
tors x1,x2 ∈ RB is defined as: x3 = [x11 + x21, x12 + x22, . . . , x1B + x2B ]

t. The word



LINEAR ALGEBRA 31

“scalars” is another word for numbers. Scalar multiplication is the product of a number α
and a vector x, defined by αx = [αx1, αx2, . . . , αxB ]

t.

Example. If x1 = [1, 2] and x2 = [3, 4] then x3 = x1 + x2 = [1 + 3, 2 + 4] = [4, 6]. If
α = 3, then αx1 = [3, 6].

Definition of Matrix Multiplication. If A and B are MxN and NxP matrices, then
the matrix product, C = AB, is the MxP matrix defined by

cmp =

N∑
n=1

amnbnp

If A3×2 and B2×2 are the following matrices:

A =

 1 2

3 4

5 6

 and B =
[

11 12

13 14

]

then C = AB is the 3× 2 matrix:

C =

 37 40

85 92

109 118


For example, c2,1 = (3)(11) + (4)(13) = 33 + 52 = 85.

Definition of Dot, or Inner, Product. If x and y are B-dimensional vectors, then the
matrix product xty is referred to as the Dot or Inner Product of x and y.

Example. If x = [−2, 0, 2]
t and y = [4, 1, 2]

t, then xty = (-2)(4) + (0)(1) + (2)(2) = -4.

Note that a linear system of equations can be represented as a matrix multiplication. For
example, the system

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

and be written in matrix-vector form as

Ax = b.

Definition of Diagonal Matrix. A diagonal matrix D = (dmn) is an NxN matrix with
the property that dmn = 0 if m 6= n.

Definition of Identity Matrix. The NxN Identity Matrix, denoted by IN or just I if N
is known, is the NxN diagonal matrix with dnn = 1 for n = 1, 2, . . . , N . Notice that if A
is any NxN matrix, then AIN = INA = A.

Definition of Inverse Matrix. Let A be an NxN square matrix. If there is a matrix B
with the property that AB = BA = IN , then B is called the inverse of A or A inverse.
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It is denoted by A−1. The inverse of a square matrix A does not always exist. If it does
exist, then A is invertible.

A.1.2 Vector Spaces

Definition of Vector, or Linear, Space. LetB denote a positive integer. A finite-dimensional
Vector, or Linear, Space with dimension B is a collection of B − dimensional vectors, V
that satisfies commutative, associative, and distributive laws and with the properties that:

1. For every x ∈ V and y ∈ V , the sum (x + y) ∈ V .

2. For every real number s and x ∈ V , the product sx ∈ V .

3. For every x ∈ V , the additive inverse −x ∈ V , which implies that 0 ∈ V .

Notation. A B-dimensional vector space is often denoted by RB .

Definition of Subspace. A Subspace is a subset of a vector space that is also a vector
space. Notice that subspaces of vector spaces always include the origin. Although it is not
common, we us the notation S @ V to state that S is a subspace of a vector space V .

Figure A.1 Subspace and non-Subspace

Subspaces are often used in algorithms for analyzing image spectrometer data. The
motivation is that spectra with certain characteristics might all be contained in a subspace.

Definition of Linear Combination .

If y, {xd}Dd=1 ∈ RB and y = a1x1 + a2x2 + · · ·+ aDxD then y is a linear combination
of {x1,x2, . . . ,xD}. The numbers a1, a2, . . . , aD are called the coefficients of the linear
combination. Notice that the linear combination can be written in matrix-vector form as:

y = Xa



LINEAR ALGEBRA 33

where X is theBxD matrix with xd as the dth column and a is the vector of coefficients.

Definition of Linear Transformation.. Let V and W denote two vector spaces. A
function f : V → W is called a Linear Transformation if ∀a, b ∈ R and ∀x,y ∈ V , the
statement f (ax + by) = af (x) + bf (y) is true.

If A is an m× n matrix and x ∈ Rm, then f (x) = Ax is a linear transformation.

Definition of Linear Independence. If B={x1,x2, . . . ,xD} is a set of vectors with the
property that

a1x1 + a2x2 + · · ·+ aDxD = 0 =⇒ a1 = a2 = . . . = aD = 0

then the vectors in the set B are called Linearly Independent. Informally, no vector in a set
of linearly independent vectors can be written as a linear combination of the other vectors
in the set.

Fact.There can be no more than B linearly independent vectors in a B − dimensional
vector space. If B = {x1,x2, . . . ,xB} is a set of B linearly independent vectors in a B −
dimensional space V , then every x ∈ V can be written uniquely as a linear combination
of the vectors in B.

Definition of Basis. A Basis of a subspace ofB-dimensional space, S, is a set of vectors
{v1,v2, . . . ,vD} with the property that every vector x ∈ S can be written one and exactly
one way as a linear combination of the elements of the basis. In other words, if x ∈ S then
there is a unique set of coefficients, a1, a2, . . . , aD such that y = a1v1 + a2 + v2, · · · +
aDvD. It must be the case that D ≤ B.

Fact.There are infinitely many bases for any subspace but they all have the same number
of elements. The number of elements is called the dimension of the subspace.

Definition of Standard Basis. The standard basis of a D-dimensional subspace is the
set of vectors {s1, s2, . . . , sD} ⊂ RD where the dth element of the dth vector sd, sdd, is
equal to one and the rest of the elements are equal to zero. That is

sdj = 1 if d = j and sdj = 0 if d 6= j.

Example. . The standard basis for R3 is

s1 =

 1
0
0

 and s2 =

 0
1
0

 and s3 =

 0
0
1


Any 3-Dimensional vector can be represented as a linear combination of the standard basis
vectors: [ x1

x2
x3

]
= x1s1 + x2s2 + x3s3 = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1


Fact.If the columns of an NxN matrix A form a basis for RN , then A is invertible.

Bases can be though of as coordinate systems. It can be useful to represent vectors in
terms of different bases, or coordinate systems. Therefore, the method for changing the



34 MATHEMATICS REVIEW G

coordinates used to represent a vector from one basis to another is first described. Then, a
method for determining a linear transformation for mapping one basis to another basis is
described. The two methods are referred to as Change of Coordinates or Change of Basis.

Definition of Change of Basis. The process of changing the representation of a vector
x from a representation in terms of one basis to a representation in terms of a different
basis is called a Change of Basis transformation.

Calculating a change of basis transformation may require solving a linear system. To see
this, let U = {u1,u2, . . . ,uB} and V = {v1,v2, . . . ,vB} be two bases for RB . Suppose
the representation of a vector x in terms of the basis U is known to be

x = a1u1 + a2u2 + · · ·+ aBuB = Ua

and that the representation of x in terms of V is unknown

x = c1v1 + c2v2 + · · ·+ cBvB = Vc.

In other words, a = (a1, a2, . . . , aB) is known and c = (c1, c2, . . . , cB) is unknown. Then
c = V−1Ua. In particular, if U is the standard basis, then U = I and x = [a1, a2, . . . , aB ]

t,
so c = V−1x. The matrix W = V−1U is called the change of basis matrix.

Definition of Pseudo-inverse. The definition of a pseudo-inverse is motivated by linear
systems of equations, Ax = b. If A is not square, then A−1 is not defined so one cannot
write x = A−1b. However, one can write (AtA) x = Atb. Note that this is not equivalent
to the original linear system of equations. The matrix, AtA is N × N so, assuming that
N < M , it is almost certainly invertible. Therefore, x = (AtA)

−1
Atb is a solution of

(AtA) x =Atb. The matrix (AtA)
−1
Atb is called the pseudo-inverse ofA and is denoted

by A+.
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A.1.3 Norms, Metrics, and Dissimilarities

Definition of norm. A norm produces a quantity computed from vectors that somehow
measures the size of the vector. More formally, a norm is a function, N : RB → R+ with
the properties that ∀x,y ∈ RB and a ∈ R:

1. N (x) ≥ 0 and N (x) = 0 if and only if x = 0.

2. N (ax) = |a|N (x).

3. N (x + y) ≤ N (x) +N (y)

Notation. The norm is usually written with the vertical bar notation: N (x) = ‖x‖.

Definition of Lp norm, or just p-norm.. Assume p ≥ 1. The p-norm is defined by

‖x‖p =
(∑B

b=1 |xb|p
) 1

p

.

Definition of Euclidean Norm.. The Euclidean Norm is the p-norm with p = 2, that is,
the L2 norm. If p is not specified, then it is assumed that ‖x‖ denotes the Euclidean norm.
Note that the Euclidean norm can be written as ‖x‖ =

√
xtx.

Definition of L∞ norm, or just∞-norm.. The∞ norm is ‖x‖∞ = maxBb=1|xb|.

Definition of Unit Norm Vector. A vector x is said to have unit norm if ‖x‖ = 1. Note
that if x is any vector then x

‖x‖ has unit norm.

Example. The set of all vectors x ∈ R2 with unit norm are equivalent to a circle, called
the unit circle, since the set of all points with x21 + x22 = 1 is a circle of radius 1.

Definition of Generalized Unit Circle.. LetN be a norm. The set U = {x|N (x) = 1}
is called a Generalized Unit Circle. Often, for simplicity, the set U is called a Unit Circle
even though it is only a geometric circle of the Euclidean norm. It is sometimes useful to
visualize the unit circle for other norms. Some examples are shown in A.2.

Fact.If x and y are vectors, then xty = ‖x‖‖y‖ cos θ, where θ is the angle between
x and y. If x and y are normalized, then the inner product of the vectors is equal to the
cosine of the angle between the vectors.

xty

‖x‖‖y‖
=

(
x

‖x‖

)t(
y

‖y‖

)
= cos θ.

Definition of Distance Function or Metric. A distance or metric is a function defined
on pairs of vectors,

d : RBxRB → R+

and has the following properties:

1. d (x,y) ≥ 0 and d (x,y) = 0 if and only if x = y

2. d (x,y) = d (y,x)

3. For any z, d (x,y) ≤ d (x, z) + d (z,y)
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Figure A.2 Some Unit Circles. Note that as p increases, the Lp norm approaches the L∞ norm.

Definition of Lp distance. dp (x,y) = ‖x− y‖p.

Note that the Euclidean distance squared can be written as

d2 (x,y)
2

= ‖x− y‖2 = (x− y)
t
(x− y) = ‖x‖2 + ‖y‖2 − 2xty.

Therefore, if x and y are unit vectors, then measuring Euclidean distance between vec-
tors is equivalent to measuring the cosine of the angle between the two vectors:

d2 (x,y)
2

= ‖x− y‖2 = (x− y)
t
(x− y) = 1 + 1− 2xty = 2− 2 cos θ

which implies that, cos θ = 1− 0.5‖x− y‖2.

Definition of Orthogonality and Orthonormal Bases. Two non-zero vectors x and y
are called orthogonal if xty = 0. Note that orthogonal is another word for perpendicular
since (for non-zero vectors) xty = ‖x‖‖y‖ cos θ = 0 only happens if cos θ = 0. An
orthonormal basis is a basis U = {u1,u2, . . . ,uB} with the property that uiuj = δij
where δij is the Kronecker delta function.
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Example. Computing Coefficients of Orthonormal Bases. Suppose that U = {u1,u2, . . . ,uB}
is an orthonormal basis of RB , and x ∈ RB . Then there exists coefficients c1, c2, . . . , cB
such that x = c1u1 + c2u2 + · · · + cBuB . In general, one must solve a linear system of
equations to find the coefficients. However, with an orthonormal basis, it is much easier.
For example, to find c1, transpose x

xt = (c1u1 + c2u2 + · · ·+ cBuB)
t

= c1u
t
1 + c2u

t
2 + · · ·+ cButB

and then multiply on the right by u1

xtu1 = c1u
t
1u1 + c2u

t
2u1 + · · ·+ cButBu1 = c1.

In fact, for every b = 1, 2, . . . , B, cb = xtub.

Definition of Projections. The projection of a vector x onto a vector y is given by

Proj (x,y) = xt
y

‖y‖
.

Figure A.3 Projection of a vector x onto a vector y
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A.1.4 Eigenanalysis and Symmetric Matrices

Eigenvalues, Eigenvectors, and Symmetric Matrices play a fundamental role in describing
properties of spectral data obtained from imaging spectrometers. The definitions given
here are not the most general but are sufficient for understanding and devising algorithms
for imaging spectroscopy.

Definition of Eigenvalues and Eigenvectors. Let A be an n × n matrix. A number
λ ∈ R and corresponding vector vλ ∈ Rn are called an eigenvalue and eigenvector,
respectively, of A if Avλ = λvλ. It is common to write v in place of vλ if there is no
ambiguity.

Definition of Symmetric Matrix. A square matrix A is called symmetric if A = At.

Definition of Positive Definite and Semi-definite Matrices. A square matrix A is
called positive definite if, ∀x : xtAx > 0. A is positive semi-definite if ∀x : xtAx ≥
0. In these cases, if λ and v are an eigenvalue and corresponding eigenvector pair and
v 6= 0, then vtAv = vtλv = λ‖x‖2 > 0. Since ‖x‖2 > 0, it must be true that λ > 0.
Thus, eigenvalues corresponding to nonzero eigenvectors of a positive definite matrix are
positive. The same argument can be used for positive semi-definite matrices (in which case
the eigenvalues are non-negative).

A.1.4.1 Orthonormal Basis Theorem If A is an B × B positive-definite, symmetric
matrix , then the eigenvectors of A form an orthonormal basis for RB . This theorem is
presented without proof; the interested reader can find it in many linear algebra texts.

Suppose V = {v1,v2, . . . ,vB} is an orthonormal basis of eigenvectors of A. Let V =
[v1|v2| . . . |vB ] be the matrix with columns equal to the elements of the basis V . ThenAV
= [λ1v1|λ1v2| . . . |λBvB ] = V Λ where Λ = diag (λ1, λ2, . . . , λB) is the diagonal B × B
matrix with the eigenvalues along the diagonal and zeros elsewhere. Thus A = V ΛV t.
This relationship is called diagonalization. Often V is taken to be the matrix with rows
equal to the transposes of the elements of V . In this case, diagonalization is written as A =
V tΛV .

Thus, a consequence of the Orthonormal Basis Theorem is that any positive-definite,
symmetric matrix A can be diagonalized by the matrix V whose columns are the orthonor-
mal basis of eigenvectors of A and a diagonal matrix Λ with diagonal elements equal to
the eigenvalues of A.

Example. Suppose A is the matrix


10 8 7

8 12 8

7 8 7


The reader can verify that the eigenvalues of A are λ1 = 25.2530, λ2 = 2.9385, λ3 =

0.8086 and the corresponding eigenvectors are the columns of the matrix V given by


0.5711 0.7565 0.3188

0.6485 −0.6539 0.3897

0.5033 −0.0158 −0.8640


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A.1.4.2 Singular Value Decomposition The Singular Value Decomposition (SVD) ex-
tends the concept of diagonalization to some non-square and non-invertible square matri-
ces. There are very stable numerical algorithms for computing the SVD and is therefore
often at the core of computational algorithms for tasks such as linear system solvers and
computing inverses and pseudo-inverses of matrices.

Definition of Singular Value Decomposition (SVD). LetA be anM×N withM > N .
The SVD of A is given by A = V ΣU t where V is an M ×M orthogonal matrix whose
columns are eigenvectors of AAt, U is an M ×M orthogonal matrix of eigenvectors of
AtA, and Σ is an M ×N matrix that is ”as diagonal as possible”, that is, Σ is of the form:

Σ =



σ1 0 . . . 0 0

0 σ2 . . . 0 0

. . .

0 0 . . . σN−1 0

0 0 . . . 0 σN

0 0 · · · 0 0

...
...

...
...

...

0 0 . . . 0 0



. (A.1)

The first N rows and N columns of Σ consist of a diagonal matrix and the remaining
M −N rows are all zeros.

The pseudo-inverse of an M × N with M > N matrix provides motivation for the
definition, although the derivation is omitted here. Recall that the pseudo-inverse is given
by A+ = (AtA)

−1
At. It can be shown that A+ = UΣ+V t where:

Σ+ =



1
σ1

0 . . . 0 0 0 . . . 0

0 1
σ2

. . . 0 0 0 . . . 0

. . .

0 0 . . . 1
σN−1

0 0 . . . 0

0 0 . . . 0 1
σN

0 . . . 0


. (A.2)

Note that Σ is M ×N and Σ+ is N ×M . Therefore, ΣΣ+ is M ×M and Σ+Σ is N ×N .
Furthermore, Σ+Σ =
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

1
σ1

0 . . . 0 0 0 . . . 0

0 1
σ2

. . . 0 0 0 . . . 0

. . .

0 0 . . . 0 1
σN

0 . . . 0





σ1 0 . . . 0 0

0 σ2 . . . 0 0

. . .

0 0 . . . 0 σN

0 0 · · · 0 0

...
...

...
...

...

0 0 . . . 0 0


=



1 0 . . . 0 0

0 1 . . . 0 0

. . .

0 0 . . . 0 1

0 0 · · · 0 0

...
...

...
...

...

0 0 . . . 0 0


If M < N and rank (A) = M , then

Σ =



σ1 0 . . . 0 0 0 . . . 0

0 σ2 . . . 0 0 0 . . . 0

. . .

0 0 . . . σM−1 0 0 . . . 0

0 0 . . . 0 σM 0 . . . 0


. (A.3)

Calculating (AtA)
−1 is often numerically unstable. The SVD is numerically stable.

Example. Suppose

A =


1 2

3 4

5 6


Then the SVD of A is given by:

V =


−0.2298 0.8835 0.4082

−0.5247 0.2408 −0.8165

−0.8196 −0.4019 0.4082

Σ =


9.5255 0

0 0.5143

0 0

U =

[ −0.6196 −0.7849

−0.7849 0.6196

]

One can verify that A+ := (AtA)
−1
At = UΣ+V t.

A.1.4.3 Simultaneous Diagonalization LetC andCn denote symmetric, positive semi-
definite matrices. Then, there exists a matrix, W , that simultaneously diagonalizes C and
Cn. The matrix W is constructed here. First, note that there exist matrices U and Λ such
that

C = U tΛU.

Λ is of the form:



LINEAR ALGEBRA 41

Λ =



λ1 0 . . . 0 0

0 λ2 . . . 0 0

. . .

0 0 · · · λB−1 0

0 0 · · · 0 λB


where λb ≥ 0. Hence, Λ = Λ

1
2 Λ

1
2 . Therefore

Λ−
1
2UCU tΛ−

1
2 = I.

Let
Cnt = Λ−

1
2UCnU

tΛ−
1
2 .

Then Ctnt
= Cnt and Cnt is positive semi-definite. Hence, there exists V such that

V tV = V V t = I and

Cnt
= V tDnt

V or V Cnt
V t = Dnt

where Dnt
is a diagonal matrix with non-negative entries. Let W = V Λ−

1
2U . Then

WCW t = V Λ−
1
2UCU tΛ−

1
2V t = V IV t = V V t = I

and

WCnW
t = V Λ−

1
2UCnU

tΛ−
1
2V t = V CntV

t = Dnt .

Therefore, W simultaneously diagonalizes C and Cn.
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A.1.5 Determinants, Ranks, and Numerical Issues

In this section, some quantities related to solutions of linear systems are defined and used to
get a glimpse at some numerical issues that occur in Intelligent Systems all too frequently.
A more thorough study requires a course in Numerical Linear Algebra. It is often as-
sumed that solutions are estimated numerically and so there is error due to finite precision
arithmetic.

The determinant is a number associated with a square matrix. The precise definition
is recursive and requires quite a few subscripts so it is first motivated by the definition
using a 2 × 2 matrix A. The definition is then given and some important properties are
discussed. Consider the problem of solving a linear system of two equations and two un-
knowns, Ax = b, using standard row reduction:

[a11 a12

a21 a22

] [
x1
x2

]
=

[
b1

b2

]
⇒

−a21 −a21a11
a12

0 a11a22−a21a12
a11

[ x1
x2

]
=

[
−a21b1a11

− a21b1+a11b2
a11

]

so, after a little more algebra, the solutions for x1 and x2 are found to be

x2 =
a11b2 − a21b1
a11a22 − a21a12

and x1 = − a22b1 − a12b2
a22a11 − a12a21

The denominator of the solutions are called the determinant of A which is often denoted
by det (A) or by |A|. Notice that the numerators of the solutions for x1 and x2 are the
determinants of the matrices

A1 =

[
b1 a12

b2 a22

]
and A2 =

[
a11 b1

a21 b2

]
Definition of Rank of a matrix. Let A denote an M × N matrix. It is a fact that the

number of linearly independent rows of A is equal to the number of linearly independent
columns of A. The Rank of A, often denoted by rank (A), is the number of linearly
independent rows (or columns). Note that, if M > N , then rank (A) ≤ N . It is almost
always true that rank (A) = N but one must take care to make sure it is true. Similarly, if
A is a square matrix of size N ×N , then it is almost always true that rank (A) = N . In
the latter case, A−1 exists and the matrix A is referred to as Invertible or Nonsingular. If
rank (A) < N , then A is non-invertible, also referred to as Singular.

Definition of Null Space. Assume x1,x2 6= 0. Note that, if Ax1 =Ax2 = 0 then
∀α, β ∈ R, A (αx1 + βx2) = αA (x1) + βA (x2)= 0. Therefore, the set NA with the
property that n ∈ NA ⇒ An = 0 is a subspace of RN called the Null Space of A.
Of course, 0 ∈ NA. In fact, 0 may be the only vector in NA, particularly if M > N .
However, if M < N , which is often the case for deep learning networks, then it is certain
that there are nonzero vectors x ∈ NA ⊂ RN .

Example. Null Spaces and Singular Value Decomposition. If M < N and rank(A) =
M , then the SVD of A is of the form A = VΣUt where Σ is defined in Eq. A.3. Since V
and U are square, nonsingular matrices, NV = NW = {0}. Therefore,
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NA =
{

x|n = Utx and n = (0, 0, . . . , 0,nM+1,nM+2, . . . ,nN )
t
}
.

since some elements of the first M columns of Σ are nonzero and all the elements of the
last N −M + 1 columns of Σ are zeros. If M > N and rank(A) = N , then Σ is defined
in Eq. A.3. Since there is a nonzero element in each column of Σ, NA = {0}.

A.1.5.1 Condition Number Consider the following linear system:

Ax = b :

[ −2 1

−2.1 1

] [
x1
x2

]
=

[
1

1

]
(A.4)

Problems with this system are depicted in Fig. A.4

Figure A.4 A linear system associated with two lines (Red and Blue) that are almost parallel. The
solution of the system is x1 = 0 and x2 = 1. Plot A depicts the lines. Plot B depicts the Mean
Squared Error(MSE) of the system when x1 ranges from -0.1 to 0.2 and x2 is held constant at x2=1.
So, for example, if |x1| < 0.03 then the MSE < 0.005. For some applications, 0.03 can be a very
significant error.

Of course, We can make the MSE much smaller for a wider range of values of x1 by letting
a21 get close and close to 2, e.g. 2.01, 2.001, 2.0001, etc.

Error can be looked at relatively in addition to the MSE. For any square, nonsingular
matrix A and linear system Ax = b let xt denote a solution of the system and xf an
estimated solution, which will have some error. Thus Axt = b but Axf = bf and
b 6= bf . A couple of definitions are required. These will lead to the notion of the condition
number of a matrix, which is a very useful quantity.

Definition of Residual and Relative Residual for Linear Systems. The Residual is
r = b− bf = b−Axf and the Relative Residual is ‖r‖‖b‖ .

Definition of Error and Relative Error for Linear Systems. The Error is e = xt−xf
and the Relative Error is ‖e‖‖xt‖ .

Definition of Condition Number of a Matrix. The Condition Number of a square
matrix is cond (A) = ‖A‖‖A−1‖. If A is not square, then bfA−1 is replaced by the
pseudo-inverse A+. It is a fact that cond (A) ≥ 1.



44 MATHEMATICS REVIEW G

The reader may be wondering how these definitions can be used since several assume
the true solution is known but if the true solution is known, then there would be no need
for an estimated solution. The reason is that bounds on these errors can be derived in terms
of the condition number, which is a computable quantity. A brief overview is given here.

1

cond (A)

‖r‖
‖b‖

≤ ‖e‖
‖xt‖

≤ cond (A)
‖r‖
‖b‖

(A.5)

Eq. A.5 states that if cond (A) is small, then the relative error is also small compared to
the relative residual. In the best case, if cond (A) = 1, then the relative error and relative
residual must be the same. On the other hand, if cond (A) is large, then the relative error
can also be large. This is a situation one must guard against and, if one uses open-source
software that is not documented and either compiled or difficult to read, then one runs the
risk that the code does not check for large condition numbers. Although it is easy to visu-
alize in two dimensions, it is harder to come up with ill-conditioned matrices. Intelligent
systems often perform calculations with higher-dimensional data. Some examples of that
are given.

Example. Here is a computer experiment you can do. Let A be a square 100 × 100
matrix of pseudo-random numbers generated by a normal, or Gaussian, distribution with
mean 0 and standard deviation 1. The author did this 30 times and the condition num-
bers ranged from about 100 to about 20,000. Replace the 100th row with the 99th row
+ 10−8. In the author’s example, the condition number is now about 5 × 109. Take b =
(1, 2, 3, . . . , 100)

t and solve the system Ax = b using the matrix inverse (there are better
ways). The relative residual in the author’s case was about 2× 10−7. Therefore, the upper
bound on the relative error is about (5 × 109)(2 × 10−7 which is approximately 103, i.e.
the relative error could be as high as 1000.

Example. There is a pattern classification technique called logistic regression. It is
designed to distinguish one class of objects (Class 1) from another class of objects (Class
2), e.g. cats from dogs. There is a function f (x; w) that takes as input a known vector
calculated from an object from a known class, x, and a vector of parameters to be estimated
or learned, w. The desired outcome is f (x; w) = 1 if x was calculated from Class 1 and
0 for Class 2. This outcome is not generally achieved so the algorithm tries to achieve
f (x; w) = p where p is between 0 and 1 and p is large for Class 1 and low for Class 2. A
method for attempting to find a solution is based on an iterative algorithm called Iteratively
Reweighted Least Squares. The governing equations for the iteration have the form:

wt+1 = wt −
(
XtWX

)−1
Xt (y − p)

It turns out that the matrix XtWX can, and often does, have a very large condition number.
The technique used to try to mitigate the effect of a very large condition number is called
diagonal loading.

Definition of Diagonal Loading. If A is a square matrix and I is the identity matrix
of the same size, then the calculation B = A + λI where λ ∈ R is called Diagonal
Loading. It is easy to see intuitively why diagonal loading can help with unstable numerical
calculations because, if λ is much large than the other elements of A, then B is almost
diagonal so the condition number will be almost 1. Of course, B will be very different
from A so there is a tradeoff between stability and accuracy. This is a difficult problem to
solve and it is best to avoid algorithms that result in matrices with large condition numbers.


