EEL 5840 ELEMENTS OF MACHINE INTELLIGENCE (3) Tuesday (1st period) and Thursdays (1st & 2nd periods) New Eng Bdg NEB 202 Fall 2016

Department of Electrical and Computer Engineering, University of Florida Instructors: Damon Woodard, Associate Professor Office: Materials Engineering Bldg. (ME) 226E, Phone: 352-273-2130 Email: dwoodard@ufl.edu, Website: http://dwoodard.ece.ufl.edu/ Office hours: Wed and Thu 14:00-15:00 Jose C. Principe, Distinguished Professor of Engineering Office: New Engineering Bldg. (NEB) 451, Phone: 352-392-2622 Email; principe@ufl.edu, Website: http://cnel.ufl.edu/ Office hours: Wed 9:00-11:00 TAs: Isaac J. Sledge, Office: NEB 454, Email: isledge@ufl.edu Office hours: Tu 10:00-12:00 Catia S. Silva, Office: NEB 454, Email: catiaspsilva@ufl.edu Office hours: Thu 10:00-12:00 Description Overview of machine intelligence and the role of machine learning in variety of real-world problems in areas such as biometrics and adaptive filtering. Probability and statistics to handle uncertain data. Learning models from data in both a supervised and unsupervised fashion. Linear models (e.g., linear discriminant analysis) and non-linear models (e.g., neural networks and support vector machines) for classification. Linear dimensionality reduction (e.g., principal components analysis) and nonlinear dimensionality reduction (e.g., manifold learning techniques and self-organizing maps). Basic knowledge of probability and linear algebra. Familiarity with at Pre reqs: least one programming language will be crucial. Helpful, but not required, courses to have taken include: STA 3032 (Engineering Statistics), STA 4321 (Introduction to Probability), MAS 3114 (Computational Linear Algebra), MAS 4105 (Linear Algebra), and EEL 3834 (Programming for Electrical and Computer Engineers).

Objectives: Understand and utilize the concepts of machine learning for data science and electrical engineering. Focus on tools for multivariate data analysis

	and how to handle uncertain data with probability models. Both static and time varying data fitting and classification problems will be covered. Neural network implementations will also be used in the course.	
Website:		
Text Book:	Pattern Recognition and Machine Learning, Springer 2006, by Christopher Bishop.	
References:	 J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive Systems: Fundamentals Through Simulation. Wiley: Hoboken, NJ, 2000. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley: Hoboken, NJ, 2000. S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press: Cambridge, MA, 2008. 	
Schedule	This is an approximate schedule	
Week 1.	Introduction to machine learning problems and methodologies	
Week 2.	Paviaw of linear algebra	
Week 3:	Linear projections to subspaces (PCA)	
Week 4:	Filtering and Least Squares	
Week 5:	Searching for the optimum- least means squares (LMS)	
Week 6:	Recursive Least Squares (RLS) Exam 1	
Week 7:	Review of Probability theory and statistics	
Week 8:	Maximum likelihood and Regression	
Week 9:	Bayesian hypothesis testing (classification)	
Week 10:	Neural Networks and backpropagation	
Week 11:	Support Vector Machines (SVMs) Exam 2	
Week 12:	Feature selection and mixture modeling	
Week 13:	Deep Learning	
Week 14:	Clustering with K-means and fuzzy	
Week 15:	Self Organizing Map (SOM) and Clustering validation	
Week 16:	Nonlinear data projections Exam 3	

Grading:

Assignment	Total Points	Percentage of Final Grade
Homework Sets (8)	10 (each)	25%
Exam Part1	30	10%
Exam Part2	30	10%
Exam Part3	40	10%
Project I	Letter grade	15%
Project 2	Letter grade	15%
Project 3	Letter grade	15%

Hw1: Linear algebra Hw2: Least square Hw3: LMS and RLS Hw4: Probablility Hw5: Bayesian classifiers Hw6: Neural Networks Hw7: SVMs Hw8: K-means and SOM

Project 1: Noise cancellation Project 2: MNIST digit recognition Project 3: Biometric

Policy:

Percent	Grade	Grade
		Points
93.4 - 100	Α	4.00
90.0 - 93.3	A-	3.67
86.7 - 89.9	B+	3.33
83.4 - 86.6	В	3.00
80.0 - 83.3	В-	2.67
76.7 - 79.9	C+	2.33
73.4 - 76.6	С	2.00
70.0 - 73.3	C-	1.67
66.7 - 69.9	D+	1.33
63.4 - 66.6	D	1.00
60.0 - 63.3	D-	0.67
0 - 59.9	Е	0.00

Software: Homework and projects will be a mixture of programming and write-ups of your results and analyses. You are free to use any programming language for these assignments. You will need access to a fast personal computer to develop and run your code on real-world datasets that we provide.