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This work presents a circuit model for calculating the total energy dissipated into neu-
tral species for nanosecond pulsed direct current (DC) dielectric barrier discharge (DBD)
plasmas. Based on experimental observations, it is assumed that the nanosecond pulsed
DBD’s which have been proposed for aerodynamic flow control can be approximated by
two independent regions of homogeneous electric field. An equivalent circuit model is de-
veloped for both homogeneous regions based on a combination of a resistor, capacitors, and
a zener diode. Instead of fitting the resistance to an experimental data set, a formula is
established for approximating the resistance by modeling plasmas as a conductor with DC
voltage applied to it. Various assumptions are then applied to the governing Boltzmann
equation to approximate electrical conductivity values for weakly ionized plasmas. The
developed model is then validated with experimental data of the total power dissipated by
plasmas.

Nomenclature

B Magnetic Field, T
C Capacitance, F
E Electric Field, V/m
J Current Density, A/m2

l Chordwise Length, m
m Mass, kg
Na Number Density of Atoms, m−3

Ne Number Density of Electrons, m−3

P Power, W
Q Energy, J
R Resistance, Ω
v Velocity, m/s
V Voltage, V
Vapp Applied Voltage, V
Vvol Volume, m3

we Drift Velocity of Electrons, m/s
Γe Electron Flux, m−2s−1

εa Relative Dielectric Constant of Air
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εd Relative Dielectric Constant of Material
λD Debye Length, m
ν Collision Frequency, s−1

σ Scattering Cross Section, m2

σp Conductivity of Plasma, S/m
σs Conductivity of Sheath, S/m
τ Relaxation Time, s

I. Introduction

The need for improved control over aerodynamic flow separation has increased interest in the potential use
of plasma actuators. The inherent advantages of plasma actuator flow control devices include: fast response
time, surface compliance, lack of moving parts, and inexpensiveness. However, it has been established that
the actuators which affect the flow via directed momentum transfer are not effective at Mach numbers as-
sociated with most subsonic aircraft applications. Recently, Roupassov et. al10 demonstrated that pulsed
plasma actuators, in which energy imparted to the flow appears to effectively control flow separation, seem
to be suitable at Mach numbers (M≈0.3) beyond the capabilities of the current plasma induced momentum
based approaches.

Given the fundamental differences between the novel pulsed discharge approach and the more conventional
momentum based approaches, there is a need to develop an effective and efficient model for the energy
delivered to the flow by the plasma. Once calculated, that value can be input to a computational fluid
dynamics solver as an energy source term resulting in a coupled fluid/plasma dynamics model. Multiphysics
models of this type are required in order to study detailed flow characteristics. However, detailed numerical
simulations involving plasma kinetics are computationally prohibitive for a variety of coupled fluid/plasma
design problems. To address this issue, efficient circuit element models have been introduced to approximate
the complex processes within plasmas. Circuit models such as those by Orlov et. al6 rely on empirical
constants which may not be applicable to nanosecond pulsed discharges. To date, an approximate model of
nanosecond pulsed plasma actuators has not been developed. This paper deals primarily with establishing a
flexible model with relevant physics that could be implemented as an approximation for the energy dissipated
within a plasma for any pulsed DC DBD configuration. Among the other goals in this paper is to probe into
the background processes that occur within plasmas and incorporate that knowledge into the model.

II. Lumped Element Circuit Model

One of the primary assumptions in creating this model is that nanosecond pulsed DBD’s can be approximated
by two independent regions of homogeneous electric field. One such region, dubbed the ‘hot spot’ is the
region adjacent to the powered electrode. This region makes up a small portion of the total discharge area
but was observed to be an important component of the plasma discharge and necessary to obtain agreement
with experimentally measured shock wave dynamics by Roupassov et. al.10 The other region, dubbed the
‘tail,’ encompasses the rest of the plasma discharge and extends to the edge of the dielectric. As both regions
are independent, the model presented in this paper consists of a single network for each region containing a
resistor, capacitors, and a diode.

As shown in Fig. 1, circuit elements that were used to model the plasma include: an air capacitor Ca, a
dielectric capacitor Cd, a resistor Rf , and a zener diode Df . The air capacitor represents the capacitance
between the dielectric surface and the exposed electrode. The dielectric capacitor represents the capacitance
between the dielectric surface and insulated electrode and is proportional to the thickness of the dielectric
layer. Thus the dielectric layer in the form of both its thickness and the value of its dielectric constant
plays an important role in determining the effectiveness of the plasma actuator. Finally, the zener diode,
introduced by Orlov et. al,6 is utilized in the model to enforce an energy threshold value below which plasma
will not form.

Since a uniform charge distribution along the top of the dielectric is assumed, the typical asymmetric 2-D
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Figure 1. Electric circuit model of a dielectric aerodynamic plasma actuator.

plasma actuator geometry featured in Fig. 1 can be simplified to a series of homogeneous symmetric regions.
As shown in Fig. 2, these regions include: an anode sheath, ’hot spot’, and ‘tail.’

Figure 2. Plasma discharge regions.

This assumption results in a series of coupled 1-D models that account for the chordwise variation along the
actuator. Fig. 3 shows the simplified circuit model within each homogeneous region.

A. Circuit

As displayed in Fig. 1, the lumped element circuit is a function of the two capacitance values, Ca and Cd.
In this model, the air is treated as both a conductor to generate a physical relationship for the resistance
Rf and a parallel plate capacitor to generate Ca. An advantage of modeling the plasma as a conductor in
addition to a parallel plate capacitor is that it generates a physical relationship for the resistance, Rf , a
value that is traditionally empirically determined. The air gap capacitor can be modeled as4

Ca =
ε0εaAa
ha

, (1)

where Aa is the cross-sectional area of the air and ha is the approximate height of the plasma region of
interest. The height of the plasma has been shown by Roupassov et. al10 to be approximately independent
of applied voltage for nanosecond pulsed DBD actuators. As displayed in Fig. 4, Aa is the product of the
spanwise length of the actuator za, and la is the chordwise distance from the exposed electrode to the end
of the dielectric region.

The capacitive element corresponding to the dielectric can be modeled as4

Cd =
ε0εdAd
hd

, (2)
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Figure 3. Region of homogeneous potential.

Figure 4. Sketch of the capacitive air element.

where Ad is the cross-sectional area of the dielectric capacitive element and hd is the height of the dielectric
barrier layer. As displayed in Fig. 5, Ad is the product of the spanwise length of the actuator za and dd,
the width of the dielectric region. Treating the plasma as a conductor, the resistance for DC voltage is
proportional to σp, Aa, and ha and can be given as4

Rf =
ha
σpAa

. (3)

Starting from Kirchoff’s circuit laws,4 the governing differential equation for the voltage drop experienced
by the air gap, ∆V , is given by

d∆V (t)

dt
= −dVapp

dt

(
Ca

Ca + Cd
− 1

)
− κ ∆V (t)

Rf (t) (Ca + Cd)
, (4)

κ =

1 if |E| > Ecrit,

0 if |E| ≤ Ecrit.
(5)

where Vapp is the applied voltage and κ is the contribution from the zener diode. If the electric field
magnitude, given as

|E| = |∆V |
ha

, (6)

is greater than the breakdown electric field,6 Ecrit, required to ionize air, then κ takes on a value of one,
otherwise it is zero to signify that plasma has not formed.
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Figure 5. Sketch of the dielectric capacitive element.

B. Conductivity

To effectively calculate the resistance governed by Eq. 3, an expression must first be developed for the
electrical conductivity, σp, of the plasma. This value is one that traditionally requires a numerical approach.
To simplify the problem to a point where an analytic formulation can be used, numerous simplifying as-
sumptions were used and are described in the following paragraphs.

For any plasma, the resulting electric current is composed of two primary terms: the current from electrons
and that from ions. As the drift velocity of electrons, we, in a non-equilibrium plasma is significantly higher
than ions, the current density can be approximated as the portion from electrons if the number densities,
Ne and Ni, are approximately the same. Using a form of the generalized Ohm’s Law, the current density
vector, J and σp respectively can be written as

J ≈ −eNewe = σpE, (7)

σp = e (Neµe +Niµi) , (8)

where µi and µe represent the ion and electron mobilities respectively. Much like Eq. 7, the electrical conduc-
tivity relation can be simplified using the concept of quasineutrality which is defined as having approximate
equal number densities for charged particles of opposite polarity. Thus as µe is typically three orders of
magnitude larger than µi, it is a good assumption to approximate the electrical conductivity as only coming
from electrons as long as Ne is at least of the same order of magnitude as Ni.

7 Quasineutrality is a typical
assumption that is valid as long as the plasma being modeling is far enough away from the powered electrode
to avoid the boundary layer in plasma physics called the sheath.

Since a pulsed DC voltage is assumed, the activation of the external electric field will follow the voltage
waveform as a step function. Thus two expressions will be required for σp, where the first is valid for
the period when an external electric field is applied, as shown in Fig. 9 from 0-65 ns, and the second
when the voltage drop over the air gap is zero. For the portions of the voltage waveform that ∆V is zero,
the power is also zero according to Ohm’s Law and thus the conductivity during this time is of no importance.

To generate a analytic formula for the electrical conductivity, a distribution function must be introduced to
describe the physical evolution in the number of particles, f(v, J, r, t), defined such that f(v, J, r, t) dv is the
number of particles in a unit volume located at point r, time t, internal quantum number J , and differential
velocity range v + dv. Using this distribution function, the number of particles at point r and time t can be
defined as

N(r, t) =
∑
J

∫
f(v, J, r, t)dv. (9)

This distribution function allows a mathematical description to be developed for the temporal evolution in
the number of particles resulting from particle collisions within a control volume. The time rate of change
in the number of particles due to externally applied fields can be described as11

Df

Dt
=
f(v + dv, J, r + dr, t+ dt)− f(v, J, r, t)

dt
. (10)
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A partial differential equation can be developed to describe Eq. 10 using formulas for the time rate of change
of v and r established by using the equation of motion in the form of

dv

dt
=

F

m
, (11)

dr

dt
= v, (12)

and the chain rule of calculus to obtain the Boltzmann kinetic energy equation given as

Df

Dt
=
∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

. (13)

In order to approximate the total derivative, a relaxation time can be introduced defined as the time taken
for the system to be reduced to an equilibrium distribution function. The tau approximation can be given
as τ ≈ (Naσea|v|)−1 where σea is the collision cross section between electrons and atoms, |v| is the average
collision velocity, and Na is the number density of atoms.11 If the number of particles within a control
volume is defined as a equilibrium distribution function, f0, when each particle is at the same energy level
as its neighbor, then the particle evolution over time due to pairwise collisions after an external force has
been applied can be given as11

Df

Dt
= −f − f0

τ
. (14)

As τ only accounts for collisions between electrons and neutral atoms, it is only accurate in the event of
a weakly ionized plasma. Plasma actuators considered in this paper traditionally feature a low degree of
ionization, or simply the amount of air that is ionized, and thus can be treated in a weakly ionized limit.
In terms of the momentum-transfer collision frequency which can be defined as the mass corrected rate at
which a particle of a specific species collides with another, the criteria for a weakly ionized plasma can be
given as7

ν̄ei << ν̄en. (15)

This equation requires that the collision frequency between electrons and ions be much less that those be-
tween electrons and neutrals. Thus, if this requirement is met, the collisional occurrences between electrons
and charged particles can be effectively ignored and the relaxation time established is a good approximation
of the total time rate of change in the number of particles within a control volume.

After introducing a relaxation time to approximate Eq. 13, an equation of motion describing the average
velocity of electrons can be established by multiplying by mev and integrating over the electron velocity. An
analytic formulation for the average velocity an electron experiences due to an externally applied field, we,
can be obtained by assuming that the force term can be approximated as the Lorentz force,

F = −eE− e

c
(v ×B) , (16)

where B represents the magnetic field and E represents the electric field. As plasma actuators have no applied
magnetic field, B can be set equal to zero. Therefore the equation of motion for an electron describing we

can be given as

me
dwe(t)

dt
+me

we(t)

τ
= −eE(t). (17)

Solving Eq. 17, a linear first-order differential equation, an integral equation is obtained:

we(t
∗) = − e

me
exp

(
− t
∗

τ∗

)∫ t∗

0

E(t) exp

(
t

τ∗

)
dt. (18)

Eq. 18 can be solved in conjunction with Eq. 7 to obtain an expression for the time varying conductivity
and in conjunction with Eq. 8 to obtain an approximation for the time varying electron mobility if the ion
mobility is neglected. The electrical conductivity and electron mobility respectively can be given as

σp(t
∗) =

Ne(t
∗)e2

meE(t∗)

∫ t∗

0

E(t) exp

(
t− t∗

N∗aσ
∗
eaν
∗

)
dt, (19)

µe(t
∗) ≈ e

meE(t∗)

∫ t∗

0

E(t) exp

(
t− t∗

N∗aσ
∗
eaν
∗

)
dt, (20)
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where σea is a function of electron energy and can be obtained for various molecules found in air from
Phelps.8 Numerical values used in the model are included in the Appendix. The electron velocity can be
obtained by assuming a Maxwellian velocity profile. As a collection of electrons within plasma have a range
of velocities, the Maxwellian velocity profile represents the most probable distribution of these velocities.
Thus the distribution of velocities, f(u, v, w), can be given by7

f (u, v, w) = A3 exp

[
−

1
2m
(
u2 + v2 + w2

)
kbTe

]
, (21)

A3 = Ne

(
m

2πkbTe

) 1
2

. (22)

Using the non-relativistic definition of kinetic energy, a relationship can be established for the kinetic energy
of an electron that is valid in the limit |v| << c, where c is the speed of light. Using this approximation, the
relativistic formulation of the kinetic energy can be approximated as

Ek =
mc2√

1− |v2|/c2
−mc2 ≈ 1

2
mv2. (23)

Averaging Eq. 21 and using the non-relativistic definition of kinetic energy, the mean kinetic energy of
electrons becomes7

Eav =

∫∫∫∞
−∞A3

1
2me

(
u2 + v2 + w2

)
exp

[
− 1

2me

(
u2 + v2 + w2

)
/kbTe

]
du dv dw∫∫∫∞

−∞A3 exp
[
− 1

2me (u2 + v2 + w2) /kbTe
]
du dv dw

=
3

2
kbTe, (24)

where kb is Boltzmann’s constant. From the definition of kinetic energy, the relationship between Eav and |v|
with vector components (u, v, w) can be established and the average thermal velocity of electrons becomes

|v| =
√

3kbTe
me

. (25)

The required inputs for Eqs. 19-20 include: Ne the number density of electrons, Na the number density of
atoms, and Te the temperature of the electrons. Among these values, Na can be assumed to be constant in
time as the number density of atoms is significantly higher than that of free electrons.

Many other models incorporate a constant electron temperature into their model.5,6 Using experimentally
measured values of reduced electric field strength,1 E/Na vs. electron temperature as detailed in Fig. 6, this
model calculates a new electron temperature at each time step by comparing the E/N value experienced by
the plasma, produced from using Eqs. 4-6, with Fig. 6. It is assumed in this paper that the effects of an
applied electric field have an instantaneous, or on a time scale much faster than 10−9 s, effect on electrons.

A time-varying differential equation that governs Ne can be obtained from the drift-diffusion equations. The
electron continuity equation that governs Ne can be given by

∂Ne
∂t

+∇ · Γe = α|Γe| − βnine, (26)

where Γe is called the charged species flux, α is the Townsend coefficient of ionization, and β is the re-
combination coefficient between electron and neutral atoms. By simplifying the plasma discharge into a
combination of two homogeneous regions plus an anode sheath and by invoking the irrotational property of
electric fields, Eq. 26 can be simplified by ignoring any spatial variation in the number density of electrons
i.e. Γe becomes

Γe ≈ Neµe|E|. (27)

Assuming the number densities of electrons and ions are equal i.e. in the quasineutral region, the electron
continuity equation for air, with a composition of 80% N2 and 20% O2, can be written as

dNe
dt
≈ αair|NeµeE| − 0.80βN2N

2
e − 0.20βO2N

2
e , (28)
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Figure 6. Plot of electron temperature vs. reduced electric field.

where αair and β respectively can be approximated as having the form9

αair = Ap exp

(
−Bp
E

)
, (29)

βN2 = 2.8× 10−7
(

300

Te

)
[cm3/s], (30)

βO2 = 2× 10−7
(

300

Te

)
[cm3/s], (31)

where A and B are empirical constants that have tabulated values of 15 and 365 respectively for air at
atmospheric pressure.9

C. Discharge Development

The final remaining unknown required to close the equation system is to determine how the electric potential
changes over the horizontal length of the actuator. To accurately model this, it is important to incorporate
the wall effects of the plasma actuator. In terms of potential variation, these wall effects attract charged
particles of opposite polarity and shield charged particles of the same polarity. Therefore for regions beside
the anode (powered electrode for positive pulses), an anode sheath is developed where an attraction of
electrons occurs and a repulsion of positive ions occur. For regions above the dielectric region on top of
the grounded electrode, a cathode sheath is developed where positive ions are collected and electrons are
repelled. Fig. 7 illustrates the two predominate sheaths that are developed in asymmetric plasma actuators.

It is important to consider the effects of charge collection and repulsion in these regions as such phenomenon
can have large effects on the variation of the electric potential over the chordwise length and height of the
plasma discharge.

Wall Effects

As this model is interested in solving the amount of energy the plasma transfers to neutral species, the
relative importance of both the anode and cathode sheath regions needs to be established. Energy, Q, is a
function of electrical conductivity and electric field strength and can be given as7

Q = σp|E2|Vvol. (32)
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Figure 7. Collective wall effects of the exposed powered electrode and virtual electrode (dielectric region). 1-
Anode Sheath, 2- Cathode Sheath.3

Eq. 32 shows that the energy transfer from both sheath regions is proportional to the conductivity of the
plasma within each region. As the cathode sheath region typically has very few electrons due to repulsion
effects, the current within this region will be carried by positively charged ions. The mobility of such ions
are significantly less than that of an electron, so as a first order approximation if the local charged species
number density and electric field strength are assumed equal, the conductivity in the cathode sheath will be
significantly less than the conductivity in a bulk plasma and the anode sheath i.e.

σs−c << σp ≈ σs−a. (33)

When combined with the fact that the volume of both sheath regions are orders of magnitude less than the
bulk plasma, an order of magnitude approximation to the plasma discharge can be obtained by ignoring
the cathode sheath’s effects for nanosecond pulsed plasma discharges. Although the cathode sheath is ap-
proximately negligible in terms of energy transfer, the higher electric field strength and higher conductivity
present in the anode sheath contains important physics necessary for capturing the energy transferred by a
plasma discharge.

Fig. 2 shows the updated ‘hot spot’ and ‘tail’ regions with the anode sheath included in the hot spot region
adjacent to the powered electrode.

Electric Potential Variation

To establish a variation in the electric potential, the governing Maxwell equations can be used which are
written as4

∇ ·E =
ρf
ε0
, (34)

∇ ·B = 0, (35)

∇×E = −∂B
∂t
, (36)

∇×B = µ0J + µ0ε0
∂E

∂t
, (37)

in differential form where ρf = e (ni − ne) is the net charge density and µ0 is the permeability of free space.
In the absence of a time-varying magnetic field, Eq. 36, Faraday’s Law of Induction, simplifies to

∇×E = 0, (38)

and since the curl of E is zero, the electric field can be solved for as a potential function φ and substituted
into Gauss’ Law, Eq. 34. The resulting equations respectively can be given by

E = −∇φ, (39)

∇2φ = −ρf
ε
. (40)

The net charge density within the quasineutral region of a plasma is equal to zero as ne = ni. For the anode
sheath, the net charge density can be approximated if the plasma is assumed to uniformly distribute its
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charge density. Therefore the quasineutral region of the ‘hot spot’ and ‘tail’ feature equal number densities
of both electrons and ions (ne = ni) while the cathode and anode sheaths only have electron and ion densities
respectively. If this is assumed then the anode sheath can be approximated as having a net charge density
equal to the quasineutral region’s calculated electron number density. By assuming the anode sheath is
devoid of any positive ions and has a time-dependent number density of electrons, Poisson’s equation for the
sheath can be given by

d2φ

dx2
=
eNe(t)

ε0
. (41)

If this form is assumed for a single Debye length (λD), then the remaining discharge (rest of ‘hot spot’ and
‘tail’) region is part of the quasineutral bulk plasma and can be given by Laplace’s equation

d2φ

dx2
= 0. (42)

The ordinary differential equations for electric potential variation in the hot spot and tail regions respectively
can be solved to provide an approximate 1-D spatial variation.

φ(x) =

{
eNe

2ε0
x2 + C1x+ C2 if x ≤ λD

C3x+ C4 if x > λD
(43)

Eq. 43 requires a total of 4 boundary conditions. Those can be summarized as

φ1(x = 0) = Vapp, (44)

φ2(x = L) = Vbreak, (45)

φ1(x = λD) = φ2(x = λD), (46)

dφ1
dx

(x = λD) =
dφ2
dx

(x = λD), (47)

where φ1 is the potential in the anode sheath, φ2 is the potential in the quasineutral region, L is length of
the actuator and λD is a Debye length. The first boundary condition is Vapp at the cathode and the second
is based on experimental observations by Roupassov et. al.10 It was observed that a plasma discharge could
be approximated as stopping at the edge of the grounded electrode for asymmetric actuators independent of
the applied voltage; so the edge represents the absolute limit of ionization or the breakdown voltage of air.
Using Eqs. 44-47 as boundary conditions, the potential becomes Eq. 48.

φ(x) =


eNe

2ε0
x2 +

[
eNe

2ε0L
x20 − eNe

ε0
x0 +

Vbreak−Vapp

L

]
x+ Vapp if x ≤ λD[

eNe

2ε0L
x20 − eNe

ε0
x0 +

Vbreak−Vapp

L

]
(x− L) + Vbreak if x > λD

(48)

The Debye length provides an order of magnitude approximation for the extent of a plasma sheath by assum-
ing an exponential Boltzmann distribution in the charge density within the plasma discharge. Substituting
this into Poisson’s Eq.,

ε0
d2φ

dx2
= eN∞

[
exp

(
eφ

kbTe

)
− 1

]
, (49)

where N∞ is the charged particle density far away from the electrode. Taking a first-order Taylor expansion,
the Debye length can be given as7

λD ∼
(
ε0kbTe
N∞e2

) 1
2

. (50)

Although at high voltages, a first-order approximation fails, Eq. 50 still provides an order of magnitude
approximation of the extent of the anode sheath.
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D. Numerical Procedure

When solving for the energy imparted to neutral species, a coupled equation system results from Eqs. 4 and
28. The coupled terms include:

Rf ∝ Ne, (51)

Γe ∝ ∆V, (52)

β ∝ ∆V, (53)

φ1 ∝ Ne. (54)

To solve the resulting equation system, the Dormand-Prince Runge-Kutta method was employed. This
method provides an efficient way to incorporate an adaptive step size that is important for computational
efficiency in a problem that requires small time steps for convergence. The benefit of such a procedure can
be illustrated through a simplistic example. If the error of each time step is defined as

εik = y(t)− yik, (55)

then if two step sizes are considered, h1 and h2, the error of each iteration and their relative error respectively
can be given as

y(t)− y(1)n1 = ε
(1)
n1 = ah1, (56)

y(t)− y(2)n2 = ε
(2)
n2 = ah2, (57)

y
(2)
n2 − y

(1)
n1 = a(h1 − h2). (58)

Therefore for a given error tolerance, ε, a sequence of step sizes can be generated,

hi+2 = q
(hi − hi+1) ε

|y(i+1)
ni+1 − y

(i)
ni |

, (59)

which allows a numerical ODE solver, such as those employing the Dormand-Prince method to minimize
functional error by adjusting the step size after each time step.2 Numerical integration required for Eqs.
19-20 and energy derived from the circuit model, given as

Q =

∫ t

0

∆V 2

Rf (t)
dt, (60)

were performed via the Gauss-Kronrod quadrature method2 at each time step.

III. Results

A. Validation Against Experiment

To validate the accuracy of the model described in this paper, comparisons with data presented in Roupassov
et. al10 is provided. The experimental parameters that were mentioned and used in the circuit model are
given in Table 1. Ref. 10 uses the electrode configuration detailed in Fig. 8.

Fig. 9 illustrates an approximation of the applied voltage square wave that was introduced in the experimen-
tal work of Roupassov et. al.10 The slope that is introduced is to simulate a function that is differentiable.
This is needed for V ′app(t) in the governing differential equation as detailed by Eqs. 4-5. One could also
generate a continuous function using Fourier decomposition of a traditional square wave, however this would
not account for the minor rise and fall times found in experimentation.

B. ‘Hot Spot’ Results

For the small region of 0.4 mm x 0.4 mm over all time outside of the anode sheath, the time variation in
the number density can be established. As an initial condition for Eq. 28, 1015 m−3 electrons were assumed
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Figure 8. Experimental scheme used by Roupassov et. al10 for the discharge gap. 1 high-voltage electrode; 2
dielectric layer; 3 low-voltage electrode, 4 zone of discharge propagation, 5 insulating plane.

Table 1. Experimental Parameters11

ha 0.4 mm

hd 0.3 mm

εd 2.7

εa 1

An 30 mm2

Ad 30 mm2

V 50 kV

∆T 65 ns

Figure 9. Plot of the input Voltage, Vapp vs. time used in the model.

based on work by Ref. 10. As displayed in Fig. 10, there is a large gradient that occurs during the rise time
that peaks around 1.13×1019 m−3. It is also evident in Fig. 10 that the recombination of electrons is largely
negligible on the nanosecond time scale. If a frequency of 1 kHz is used, the recombination of electrons
with atoms allows a steady-state electron number density to be achieved on the nanosecond time scale. The
recombination of electrons becomes a significant quantity when exploring the dynamics of a plasma discharge
on the microsecond time scale.

Using Eq. 4 and Fig. 5, the model was able to produce a time-varying electron temperature. As displayed
in Fig 11, there is an initial spike in the electron temperature to 29 eV (340 000 K) that coincides with
the peak in electron number density at 11 ns. Fig. 11 also suggests that the assumption of a constant
electron temperature is not an accurate assumption for nanosecond pulsed DBD plasmas. The variability
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Figure 10. Plot of electron number density vs. time for the ‘hot spot’.

in the electron temperature beyond 40 ns is due to the numerical error tolerances that are selected when
solving Eqs. 4, 19 and 28. Fig. 11 shows that when reducing the relative error in the Dormand-Prince
method from 10−2 to 10−3, the strong functional variability experiences a significant reduction. The higher
the gradients are during the rise and fall time, the finer the relative error tolerances are required to be to
guarantee convergence of a solution.

Figure 11. Plot of electron temperature vs. time for the ‘hot spot’. Left- 10−2 error. Right- 10−3 error.

Using the results displayed in Figs. 10-11, the total power dissipated to neutral species as a function of
time can be established. Using the result of Eq. 4 and the relationship for the instantaneous power, the
time-varying power imparted to the flow can be given as5

P (t) =
∆V 2(t)

Rf (t)
. (61)

As shown in Fig. 12, the instantaneous power is dominate during the rise time for the ‘hot spot’ region.
Upon integrating the instantaneous power over time using Eq. 60, this model produces an energy value of
2.1 mJ for this region. When compared to the experimentally determined value of 4.2 mJ by Roupassov et.
al,10 this model produces an order of magnitude estimate for the energy imparted to neutral species in this
region.
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Figure 12. Plot of power vs. time for the ‘hot spot’.

C. ‘Hot Spot’ Sheath Results

Using the Debye length approximation provided by Eq. 50 and the solution from the quasineutral ‘hot spot’
region (ne ∼ 1019 1/m3, Te ∼ 10 eV) a Debye length of 7.43 µm is generated. The electron number density
experienced in the anode sheath is assumed to be equal to the values calculated in the adjacent ‘hot spot’
region. Fig. 13 shows the time variation in the electron number density within the sheath and also shows a
peak number density of 1.13× 1019 m−3.

Figure 13. Plot of electron number density vs. time for the ‘hot spot’ sheath.

Using the revised form of the electric potential within the anode sheath given by Eq. 48 and using Fig. 5,
the electric temperature variation over the duration of the pulse can be established. As displayed in Fig 14,
there is an initial spike in the electron temperature to (348 000 K) that coincides with the peak in electron
number density at 11 ns much like the hot spot region.
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Figure 14. Plot of electron temperature vs. time for the ‘hot spot’ sheath.

As shown in Fig. 15, the instantaneous power is dominate during the rise time for the anode sheath region.
Upon integrating the instantaneous power over time using Eq. 60, this model produces an energy value
of 0.045 mJ for this region. This number is quite small compared to the 2.1 mJ experienced in the ‘hot
spot’ region. However, the anode sheath does have a slightly higher linear energy density than the ‘hot spot’
region (6 J/m vs. 5.25 J/m). The reason that there is not significant deviation predicted in the anode sheath
and quasineutral ‘hot spot’ regions is that explicit charge buildup is not accounted for in the circuit model
within the sheath region. As shown by Ref. 13, the electric field in the sheath and adjacent quasineutral
regions are approximately equal until charge buildup is allowed within the anode sheath during the length
of the pulse or a series of pulses.

Figure 15. Plot of power vs. time for the ‘hot spot’ sheath.

D. ‘Tail’ Results

For the region 0.4 mm x 4.6 mm, the time variation in the number density can be established. As an initial
condition for Eq. 28, 1015 m−3 electrons were assumed, the same number of electrons assumed for the ‘hot
spot’ region. When comparing Figs. 10 and 16, the tail region experiences a lower growth rate in the number
of electrons which is due to the lower electric field experienced by this region. As described by Eq. 28, a
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lower electric field produces a lower number of ionizations and therefore a more gradual rise and lower total
peak in Ne, approximately 3.4× 1017.

Figure 16. Plot of electron number density vs. time for the ‘tail’.

Using Eq. 4 and Fig. 5 the model was able to produce a time-varying electron temperature. As displayed
in Fig 17, the traditional assumption of 1 eV (11 600 K) does not agree well with the results obtained in
this model for the tail region on the nanosecond time scale. Instead Fig. 17 suggests that the peak electron
temperature is achieved during the rise time of the pulse, 220 000 K (19 eV) and then trends downward
during the plateau portion of the voltage waveform. Much like Fig. 11, the highest electron temperatures
are achieved during the initial high gradient of the pulse. Fig 17., unlike Fig. 11, also shows a rise in electron
temperature during the fall time of the pulse as well. This is due to the lower electric potential and negative
gradient experienced in the tail region during the fall time.

Figure 17. Plot of electron temperature vs. time for the ‘tail’.
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As shown in Fig. 18, the instantaneous power is dominate during the plateau portion of the applied voltage
pulse for the ‘tail’ region. Upon integrating the instantaneous power over time using Eq. 60, this model
produces an energy value of 6.6 mJ. When compared to the experimentally determined value of 8 mJ by
Roupassov et. al,10 this model produces an absolute error of ≈ 17.5%. The significant improvement in
accuracy for the tail region can likely be attributed to the larger distance from the cathode. This increase
in distance improves the assumptions of quasineutrality and that the spatial diffusion of charged species is
negligible. The region close to the cathode features complicated ion and electron buildup and as the relative
distance from the cathode increases, its impact on the problem becomes negligible.

Figure 18. Plot of power vs. time for the ‘tail’.

Table 2 summarizes the results obtained using the circuit model presented in this paper and associated
experimental measurements made by Roupassov et. al10 for both the ‘hot spot’ and ‘tail’ regions.

Table 2. Comparison between calculated and experimentally measured energy deposition.

Circuit Model [mJ] Experimental10 [mJ] Abs. Error [%]

‘Hot Spot’ 2.1 4.2 50.0

‘Tail’ 6.6 8.0 17.5

Total 8.7 12.2 28.7

IV. Conclusion

A new lumped element circuit model was presented that is valid for pulsed DC Dielectric Barrier Discharge
(DBD) plasmas. The model approximates the total energy dissipated into neutral species using a lumped
element circuit while containing relevant plasma physics in the form of a variable electron temperature
and number density. An approximate expression was formulated using the conductivity of the discharge
to calculate the resistance value for the air gap. Asymmetric wall effects were also approximated in the
model by including the effect of the anode sheath. Results of the model were verified against a pulsed DC
experiment conducted by Roupassov et. al10 and order of magnitude agreement was obtained for the energy
imparted into the plasma in both the homogeneous ‘hot spot’ region and ‘tail’ region.

Appendix

The momentum cross sections used for the numerical approximations in the model are shown in Table 3.
These values were obtained by A.V. Phelps.8
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Table 3. Momentum Cross Sections8

Kinetic Energy (eV) N2 (1E-16 cm2) O2 (1E-16 cm2)

1 10 7.2

2.1 27 6.6

3 21.7 5.7

4 12.6 5.5

5 10.9 5.6

10 10.4 5

15 11 8.8

20 10.2 8.6
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