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ABSTRACT
Achieving stable, accurate, monotone and efficient

(SAME) discrete approximate solution is of tremendous
interest for convection-dominated computational fluid
dynamics (CFD) applications. Recently, a non-linear Sub-
Grid eMbedded (SGM) finite element basis was developed
for generating multidimensional SAME solutions via the
weak statement (WS). The theory confirms that only the
Navier-Stokes dissipative flux vector term is appropriate for
implementing SGM, which thereafter employs element-level
static condensation for efficiency and nodal-rank
homogeneity. It is based on a genuinely non-linear, non-
hierarchical, high-degree finite element basis for use in a
discretized approximation of a WS algorithm. In this paper,
the SGM methodology is extended to the Element Free
Galerkin (EFG) method.

INTRODUCTION
The fundamental challenge in computational fluid

dynamics (CFD) algorithm design is creation of discretized
methodology possessing accuracy with stability in the
presence of solution distributions/discontinuities, as
aggravated by the fundamental nonlinearity of the Navier-
Stokes partial differential equation (PDE) system. Scientific
study emerged some 70 years ago, eventually leading to the
Taylor series-based development of the scalar Lax-Wendroff
dissipative algorithm. Following, the 1960s witnessed
emergence of a wide variety of finite difference CFD
algorithms, with stabilization induced by variations thereon,
termed upwind methods, often leading to first order-accurate
algorithms. The associated solutions experienced difficulty in
resolving shocks, turbulent flow details, and convection
processes with sharp fronts.

Therefore, the elusive CFD algorithm research goal
remained to develop a multi-dimensional arbitrary grid
algorithm extracting SAME solution on a practical mesh for
arbitrary Reynolds number. Stabilizing techniques like
artificial viscosity methods by Baker and Kim (1987), Lax
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(1954) and Kreiss and Lorenz (1989) and/or flux correction
operations of Boris and Book (1973) and Salezak (1979)
contain one or more arbitrary parameters. Flux vector
splitting methods of van Leer (1982) replace parameters with
switches, but solutions may still exhibit oscillations near
strictly local extrema. Techniques utilizing non-linear
correction factors called limiters require a relatively dense
mesh for interpolation to attain an essentially non-oscillatory
(ENO) solution (Huynh, 1993). These theories were
invariably developed via one-dimensional schemes, and the
theory and implementation remains tedious in a multi-
dimensional application.

“Adaptive" p and h-p FE algorithms have been
extensively examined by Babuska, et al. (1990), Demkowicz,
et al. (1992), Jensen (1992), Johnson and Hansbo (1992),
Oden (1994), Zienkiewicz and Craig (1984) and Zienkiewicz
et al. (1982). Despite several advantages, including
“unstructured meshing," these algorithms add significant
cost to operation count and storage requirements that can
hinder achieving practical mesh solutions. Recent
developments in the area of subgrid scale resolution include
hierarchical (h-p) elements by Zienkiewicz and Zhu (1992)
and inclusion of nodeless bubble functions by Hughes
(1995). Solution monotonicity is typically not an ingredient
in these theories, and as the number of degrees of freedom
(DOF) increase, especially for 3-D, the algebraic system
matrix order increases rapidly, hence also the computer
resource requirement. Numerical linear algebra efficiency
then also becomes a central issue.

Meshless methods such as EFG have recently been the
topic of a great deal of academic research. The
approximation in a meshless method is written in terms of a
set of nodes and the boundaries of the model.  Since no
predefined element connectivities are present, these methods
offer hope for problems involving sharp gradients because of
their ability to add nodal refinement without subdividing
elements.  In addition, it is quite easy to enhance the
approximation in situations where information is available
regarding the form of the solution, such as linear elastic
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fracture mechanics (Fleming et. al, 1997). This method has
been used extensively for fracture and crack growth in which
the meshless nature of the method is very beneficial
(Belytschko, Lu, and Gu, 1994).  Liu and coworkers have
applied meshless methods to problems involving fluid
mechanics and shock capturing (Liu and Chen, 1995, Liu et
al., 1996).

However, obtaining accurate EFG solutions for problems
with sharp gradients typically requires a great deal of nodal
refinement, and hence is computationally expensive. As a
remedy, we propose a new matrix procedure combining sub-
grid embedding (SGM) algorithm and EFG to extract the
minimal degree-of-freedom accuracy and monotonicity on
arbitrary node distribution that could be useful for both fluid
dynamics and structural analysis. The SGM basis
construction is distinct from reported developments in the
area of subgrid scale resolution, including hierarchical (h-p)
elements and nodeless bubble functions. The SGM
development by Roy (1994), Roy and Baker (1997, 1998)
employs strictly classical Lagrange basis methodology, and
the SGM basis is applicable only to the dissipative flux
vector term fj

v in (1). The discretized kinematic flux vector fj

remains a “centered” construction via the parent strictly
Galerkin weak statement. The key efficiency ingredient of
the SGM element is reduction to linear basis element matrix
rank for any embedded degree. This is in sharp contrast to
conventional enriched basis FE/FD algorithms, as the SGM
element strictly contains matrix order escalation, hence
increased computer resource demands.

In this paper we document the newly developed theory
for the subgrid embedded element-free Galerkin (SGEFG)
method that guarantees solution monotonicity via eigenvalue
analysis.  The EFG approximation is first formulated and
then the SGM theory is reviewed and implemented for EFG.
The SGEFG method is applied for both linear and non-linear
convection-diffusion fluid dynamics problems.

THEOERTICAL DEVELOPMENT
Consider the d-dimensional steady state NS conservation

law system for state variable q=q(x) of the form
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εff v == are kinetic and dissipative

flux vectors respectively, the convection velocity is u, ε > 0 is
the diffusion coefficient that varies parametrically and s is a
source. Appropriate initial and boundary conditions close
system (1) for the well-posed statement.

The analytical solution to (1) is smooth, monotone and
bounded. However, computational difficulties occur as ε
leading to occurrence of “thin layer" solutions containing
large gradients, e.g., wall layer, shock. This is the natural
occurrence in CFD for a large Reynolds number (Re).  Here
an oscillatory error mode dominates the spatially discretized
2 
CFD solution process leading to instability in the presence of
the inherent Navier-Stokes non-linearity in f.
Element Free Galerkin (EFG) Method

The approximation of the general field variable q(x) at
any point x in the domain Ω is written

where p(x) is a basis and a(x) is a vector of unknown
coefficients.  In one dimension, we have used

To write the approximation of the field variable q(x) in terms
of nodal coefficients, a moving least squares methodology is
employed (see Lancaster and Salkauskas, 1981).  An L2 norm
can be written as

[ ] (4)          )()()(
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where qI is a set of nodal coefficients and w(x-xI) is a weight
function centered at node I.  We have used a Gaussian weight
function

where dI=||x – xI|| is the distance from node xI to a sampling
point x and dmI is the domain of influence for node I and the
parameter c is the dilation parameter (Fleming, et al., 1996).
The characteristic nodal spacing, cI, is used to define these
parameters and dmax and α are constants.  We have set cI

equal to the distance to the second nearest neighboring node.
For the Gaussian weight function in (5a), it is recommended
that dmax/α ≥ 4.

The minimum of J with respect to a(x) leads to

where NI(x) is the shape function and
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(see Belytschko, Lu and Gu, 1994, and Belytschko and
Fleming, 1999).

Sub-Grid Embedding (SGM) Theory
Independent of the generality of the flux vectors and

dimension d, the weak form of (1) always produces a nodal-
order ordinary differential equation (ODE) system consisting
of a mass matrix [M] from the time derivative, a velocity
matrix [U] from the convective flux vector and a diffusion
matrix [D] from the dissipative flux vector. In standard
methods, for a basis function {Nk} of Lagrange polynomial
order k, the element level diffusion matrix [Dk]e is defined as
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The SGM theory augments the diffusion term in WS via
an embedding function gS(x,c), hence the name “SubGrid
eMbedded." The embedded polynomial contains one
definable parameter c for each additional Lagrange degree
k>1. A key ingredient of this embedding process involves
static condensation as described in Roy and Baker (1997).
The final form of the SGM element-like basis set {NS} for
k=2=S is expressed in 1-D, analogous to the k=1 Lagrange
basis, as
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In (8), µ is a polynomial function of an expansion coefficient
set, ai, dependent on embedding degree k, and the k=1
element local coordinate ζ(x) and α=f(c). The discussion in
Roy and Baker (1997) confirms c≥1 is the requirement. For
general applications, a nodally distributed SGM parameter
rI(c) on node I is defined in Roy and Baker (1997). For the
node where rI<1, the value is averaged from the neighboring
nodes. The Lagrange linear (k=1) and quadratic (k=2) FE
basis polynomial set, the k=1, p=2 hierarchical (bubble)
element, and the SGM S=2 (k=2, reduced) Lagrange element
for 1-D and 2-D are compared in Figure 1a-f.

The form of rI, a theoretically non-linear monotonicity
constraint, is determined via (1) leads to a theoretically non-
linear monotonicity constraint via enforcement of a real
eigenvalue spectrum for the algorithm stencil of a 1-D model
SGM element form. Thereby, the theory predicts the optimal
distribution of the SGM embedded parameter (set) on each
element, hence the mesh Ωh. The generalization to non-
uniform, d-dimensional discretizations leads to the potential
for attainment of nodally exact monotone solutions on
arbitrary meshes. The multidimensional form of the nodally
distributed SGM solution monotonicity constraint rI (RSGM)
is directional and the parameter is derived as a function of
convection velocity, mesh projection and Re. Verification for
both linear and non-linear convection-diffusion equation
SGM solutions is documented in Roy and Baker (1997), c.f.
Figure 2, where for a small ε (O10-5) SAME nodally accurate
solutions are obtained on very coarse meshes.

For general applications in 1-D, a nodally distributed
(subscript I) SGM parameter is preferable to an element
parameter. Therefore, defining rI =(2cI+1)/3 the
monotonicity constraint form becomes
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where Reynolds number Re replaces ε and F>0 is a real
number. In 1-D, F is precisely determined from the
eigenvalue analysis, hence F=2 for the linear convection-
diffusion (Peclet) problem, F=6 for the linear stationary
wave definition, while F=3 for non-linear convection-
diffusion (viscous Burgers) equation (Roy, 1994). However,
3 
for d>1 multidimensional problems, determining a suitable
functional form for F involves definition of a correlation
function FIj= f(Re, dete), the form of which must be
validated.

For velocity field uI = (uI1, uI2, uI3), principal coordinate
mesh measures hI1, hI2 and hI3 and principal coordinate
diffusion parameter set ε ε ⇒⇒ (εI1, εI2, εI3), the condition for a
d-dimensional monotone solution is expressed for  scalar
components of rI = (rI1, rI2, rI3), in (9) and this correlation
function FIj is
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Hence, only the scalar 0<A<2 remains undefined, and must
be estimated. Ve (=2ddete) is the volume (area) of the d-
dimensional element, and the form for FIj was determined
using computational data from the 2-D and 3-D linear Peclet
problem solutions (Roy and Baker, 1998).

Sub-Grid eMbedded Element Free Galerkin (SGEFG)
solution process :

The steps forming the SGM augmented EFG WSh

solution process include:
1. Formulate the EFG algorithm as in (2)-(8).
2. Use the monotonicity constraint (9)-(10) to compute cI

or rI or estimate rIj = f(uIj, hIj, Re)≥1. For the node where
rI, rIj <1, the value is averaged from the neighboring
nodes.

3. Form the SGM augmented element-like diffusion matrix
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= , where g2(r)={G}T {N2},

and {G}T={1,cx,1}⊗{1,cy,1}⊗{1,cz,1}.
4. Rank reduce [D]e to [DS]e via static condensation as

described in Roy and Baker (1997).
5. Form the weak statement WSh for the discretized

domain Ωh.
6. Solve for the numerical linear algebra.
7. Return to step 1 and repeat process until solution

converges to a negligible residual.

RESULTS AND DISCUSSION
Computational experiments are presented to demonstrate

the advantages of SGEFG algorithm for problems involving
sharp gradients. Documentary computational results verify
theory and summarize performance for a range of linear and
nonlinear verification and benchmark problems that model
the character of solutions to the Navier-Stokes equation
system. For the EFG method, the parameters dmax = 2.01 and
α = 0.5 in (5b) are used for these examples.

Linear Stationary Wave (u≠≠0, εε→→0, s=0)
The governing parabolic differential equation is
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ε
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The analytical solution to (11) as parameterized by the
familiar “Reynolds number”, Re=ul/ε, is of the form
q(x)=A+B exp(xuRe). For the Dirichlet boundary conditions
q(0)=-1 and q(1)=1, the analytical solution is

As Re becomes large, q(x) approaches a step function equal to
unity ahead of the front u=-1 and q=-1 behind the u=1 front.
The slope of the solution q at the front is

Clearly, for large Re, as |u|→0, at the wave intersection, |q|
approaches 0 and the solution becomes highly singular near
the region where u changes sign.

As Reynolds number increases, achieving a monotone,
accurate approximate solution becomes increasingly difficult.
For standard finite element (or finite difference) methods, this
has been traditionally handled by including artificial
diffusion. For this verification case, the standard FEM
solution with k=1, p=0 for Re=106 is totally dispersive on
meshes up to 1001 nodes (see Roy and Baker, 1997). Even
the EFG solution in Figure 3a shows error oscillation
dominant in the domain.

In distinction, for the comparison SGEFG g2 optimal
choice r, Re=106, on the uniform 21 node mesh, yields an
absolute monotone nodally-exact solution, Figure 3b. For this
problem definition, F=6 in (9) and the theoretical prediction
of the subgrid embedding parameter corresponding to Re=106

and h=1/20 is r=25000/3 or c=24999/2. Table 1 documents
the comparison element and system matrices for standard
EFG and SGEFG g2 choice. Via (13), the analytical end
fluxes for (11) are exactly zero for any large Re. While the
standard EFG solution predictions for these fluxes  are highly
erroneous (almost three orders of magnitude error), the
SGEFG g2 choice yields end fluxes accurate to machine
precision.

Non-linear stationary wave (u≠≠0, εε→→0, s=0)
The non-linear form of (11) results from the definition of

q≡u, hence

The nondimensional form of the above 1-D stationary viscous
Burgers equation (14) introduces the Reynolds number in the
viscous term and for u=1 at x=-1 and u=-1 at x=1, the
analytical solution to (14) is

and corresponding slope is
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A detailed discussion of standard FEM solution procedures
for the unsteady Burgers equation may be found in Baker
(1983, Ch. 4.14) and Roy and Baker (1997).
As Re becomes large, the iterative algebraic solution process
for (14) becomes highly unstable, as the dispersive error mode
totally corrupts the entire solution process. Figure 4
summarizes computed solution character for this problem for
Re=103. The initial condition is a symmetric ramp as shown
in Figure 2. Figure 4a illustrates the nonlinear instability
present for the standard EFG solutions, stopping iterative
convergence at δ<0.001. Although the quadratic basis degree
standard FEM solution has reduced oscillations by about 25%
in Roy and Baker (1997), the solution remains unsatisfactory
even for a 2000 node uniform mesh.  The corresponding EFG
solution in Figure 4a is also very oscillatory even on a 101
node mesh. In distinction, for the nodally adaptive SGEFG g2

choice and for F=3, an optimal 21-node uniform mesh yields
a monotone, nodally exact solution for Re=105, Figure 4b.
The corresponding SGEFG solution iteration process is stable
and convergent to δ<0.000001.

Linear advection-diffusion with source (u≠≠0, εε→→0, s≠≠0)
The problem definition is similar to (11) except for the

source terms, s, on the right hand side.

The analytical solution for the nonhomogeneous equation
(17) is  clearly a function of the source term s. For our
consideration, the source s can be any spatial function, e.g.
s=Ax2+Bx+C, where A=10ex-0.5, B=20sin(x-0.5), and
C=10cos(x-0.5sin(x)). The particular solution to (17) for this
source function is
where coefficients AL=A/(3uRe); BL=B/(2uRe)+A/(uRe)2;

and CL=2A/(uRe)3+B/(uRe)2-C/(uRe). For this test case, we
used Re=103 and the dirichlet boundary q(0)=-1 and q(1)=1.
The EFG algorithm computational solution to this problem as
documented in Figure 5 shows the dispersive error wave is
present on 101 node mesh while the corresponding SGEFG
solution shows an oscillation free solution on a coarse 21
node mesh.

CONCLUSIONS
The presented results confirm the theory for

incompressible Navier-Stokes applications. In comparison to
other theories for generating  higher-order accurate and/or
monotone solutions, the SGEFG algorithm advantages
include guaranteed (non-linear) monotone solution, excellent
conditioning of the minimum-band system matrix, and
improved stability via retained diagonal dominance. Further,
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the SGEFG methodology permits retention of lexicographic
ordering for any embedding degree, hence exhibits the
efficiency of strictly linear basis (or centered FD) algorithms.
The SGEFG algorithm thus exhibits the potential for
fundamental impact on CFD as well as structural problems,
via its intrinsic non-linearity and guarantee of minimum
computer memory and CPU requirements for high accuracy
monotone solutions on relatively coarse 3-D meshes.
Extension of the SGEFG to higher dimensional problem
specification is an obvious next step.

Table 1. Comparison for linear advection-diffusion results of
EFG and SGEFG for Re=106 on 21 node mesh.
21 node mesh EFG SGEFG
System matrix

near the
central  node

[0.0 0.5 0.0]
[-0.5 1.0 -0.5]
[ 0.0 0.5 0.0 ]

[ 1.0 0.0 0.0]
[-1.0 1.0 0.0]
[0.0 -1.0 1.0]

Solution vector
{q}T

[…  .009 108.3 0.0
-108.3 -.009 …]

[…-1 -1 0 1 1…]

Boundary
fluxes

[left, right]
[7  -7] [0  0]
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Figure 1:  Comparison between standard, hierarchical and
SGM elements.

Figure 2:  Steady state SGM element SAME solution for 1-D
linear and non-linear convection-diffusion problems.
6 
a) Solution with 1001 nodes.

b) Solution with 21 nodes.

Figure 3:  Results for a linear stationary wave with EFG and
SGEFG methods.  For the solution with 21 nodes, the EFG
solution was extremely oscillatory and is not shown.

Re = 106

Re = 106
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a) Solution with 101 nodes.

b) Solution with 21 nodes.

Figure 4:  Solution for a non-linear stationary wave (Burgers
equation) by EFG and SGEFG methods.  The solution is not
plotted for EFG with Re = 105 due to the severe oscillations.

Re = 103

Re = 105
7 
Figure 5:  Solution to the linear advection-diffusion equation
with a source term.

Re = 103
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