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NONLINEAR, SUBGRID EMBEDDED
FINITE-ELEMENT BASIS FOR ACCURATE,
MONOTONE, STEADY CFD SOLUTIONS

Subrata Roy
Computational Mechanics Corporation, 601 Concord St., Suite 116,
Knoxuville, Tennessee 37919-3382, USA

A. J. Baker
Mechanical & Aerospace Engineering and Engineering Science,
University of Tennessee, Knoxville, Tennessee 37996-2030, USA

A nonlinear, subgrid embedded (SGM) finite-element basis is derived for generating
accurate monotone solutions to a computational fluid dynamics (CFD) weak statement
algorithm. The developed theory confirms that only the second derivative (diffusion} term is
appropriate for the SGM construction, which employs element-level static condensation for
efficiency and consistency. In comparison to other high-resolution methods, advantages of
the SGM element formulation include arbitrary (Lagrange) embedding degree, no explicitly
added artificial diffusion term, no flux limiters or switches, improved condition number for
the Jacobian matrix, and excellent algorithm stability. The statically condensed SGM
construction retains linear basis bandwidtk, for all problem dimensions, hence exhibits no
storage penalty for element or system matrices. Numerical results for 1-D, 2-D, and 3-D
verification / benchmark linear and nonlinear convection-diffusion problems in steady state
are presented, confirming theoretical predictions for nodally exact and monotone solutions
on minimal-degree-of-freedom meshes. As a side benefit, commensurate high-order accuracy
accrues to wall flux prediction on these coarse meshes, via a matriv manipuiation on the
weak statement algebraic construction.

INTRODUCTION

The Navier-Stokes conservation law system for state variable g = g(x;, 1) is
of the form

a d
.S’(q)=a—‘f+g(fj—f;’)—s=0 on QO XtcH XxF,1<j<d (1)
i

where f; = f(u;,q) and f} = fle(dq/ox))] are the kinetic and dissipative flux
vectors, respectively; the convection velocity is u ;> € > 0 is the diffusion coefficient,

Received 22 February 1996; accepted 19 August 1996.

This work was partially supported by a grant (no. MSS-9015912) from the National Science
Foundation. The authors gratefully acknowledge the support provided by the UT CFD Laboratory and
its corporate sponsors.

Address correspondence to Dr. A. J. Baker, Department of Mechanical and Aerospace Engineer-
ing, Engineering Science Program, University of Tennessee, 310 Perkins Hall, Knoxville, TN 37996-2030,
USA. E-mail: ajbaker@cfdlab.engr.utk.edu

Numerical Heat Transfer, Part B, 31:135-175, 1997
Copyright © 1997 Taylor & Francis
1040-7790 /97 $12.00 + .00 135



14: 34 24 Septenber 2009

[University of Florida] At:

Downl oaded By:

136 S. ROY AND A. J. BAKER

NOMENCLATURE
a; expansion coefficient Q  discrete state variable
A scalar constant r.e;,r;  distributed SGM parameter
¢,¢; continuum SGM parameter R element right of node j
d dimension of the problem R statically reduced matrix
det, transformation matrix determinant {R} solution residual vector
[D,), Lagrange diffusion matrix ol real d-dimensional space
[Dgl, SGM diffusion matrix xR temporal half-space
e finite element Re Reynolds number
flm) function of m 5 source term
f; kinematic flux vector Ay SGM polynomial degree
142 viscous flux vecto S, element matrix assembly operatorr
7.9 SGM (correlation) function ¢ time
(F { Newton residual vector u, U velocity vector
8, 8 SGM element embedding function (i, convection matrix
G} nodally distributed SGM vector 1] absolute value of velocity U
h,h,, h;; finite-element length measure v, volume (area) of a finite element
[JAC]  Jacobian matrix X; spatial coordinates
k Lagrange polynomial degree a SGM polynomial function of ¢
L element left of node j a, B, ¥ coefficients in assembly stencil
z partial differential equation operator vy, ¢ coefficients in assembly stencil
[M] assembled mass (interpolation) matrix &, Kronecker delta
{N} Lagrange element basis function of At computational time step
degree k €, € physical diffusion coefficient
{Ng) SGM element basis function of I'4 local normalized coordinate
degree S U tocal natural coordinate
Pe Peclet number 0 tmplicitness parameter
q continuum state variable p radial coordinate
llgllg ©  energy seminorm of g n domain

which varies parametrically; and s is a source. Appropriate initial and boundary
conditions close system (1) for the well-posed statement,

Computational difficulties occur as € — 0, leading to occurrence of “thin-
layer” solutions containing large gradients, e.g., boundary-layer, shock. In computa-
tional fluid dynamics (CFD), this is the natural occurrence for Reynolds number
becoming large. Thereby, even though the analytical solution to (1) remains
smooth, monotone, and bounded, the spatially discretized CFD solution process
becomes dominated by an oscillatory error mode, leading to instability in the
presence of the inherent Navier-Stokes nonlinearity in ;.

Thus, a persistent CFD algorithm research goal is to obtain an efficient,
multidimensional “arbitrary” grid algorithm that extracts an accurate, stable, and
monotone solution for (1) on a practical mesh for arbitrary e. Stabilizing tech-
niques such as artificial viscosity methods [1-3] and /or flux correction operations
[4, 5] contain one or more arbitrary parameters. Flux vector splitting methods [6]
replace parameters with switches, but solutions may still exhibit oscillations near
strictly local extrema. Implementation of nonlinear correction factors called lim-
iters [7] requires a relatively dense mesh for interpolation to attain an essentially
nonoscillatory (ENO) solution. Finally, most of these theories are developed via
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analysis on 1-D schemes, hence become theoretically tenuous in a multidimen-
sional application.

“Intelligent” algorithms for handling solution mesh adaptation in an auto-
matic manner have been examined extensively in finite-element (FE) solution-
adaptive “p and h-p” forms, [8—14]. Several advantages, including “unstructured
meshing,” accrue to these algorithms, but at a significant cost in increased
algorithm operation count and storage requirements, which can hinder achieving
practical mesh solutions. Solution monotonicity is typically not a theoretical ingredi-
ent in these theories, and as the number of degrees of freedom (DOF) increase,
especially for three dimensions, the algebraic system order increases rapidly, hence
also the computer resource requirement. Numerical linear algebra efficiency issues
then also become a central issue.

The development herein addresses the fundamental issue of multidimen-
sional practical (coarse} grid solution accuracy with monotonicity. Tt is based on a
newly derived, genuinely nonlinear subgrid embedded (SGM), nonhierarchical
finite-element basis for use in a discrete approximation of a weak statement
algorithm for (1). Recent developments in the area of subgrid-scale resolution
include hierarchical (£-p) elements [15] and inclusion of nodeless bubble functions
[16]. The current development is distinctly different from these approaches in
employing strictly classical Lagrange basis methodology. This leads to the key
theoretical observation that the SGM basis is applicable only to the dissipative flux
vector term in (1) [17], hence the kinetic flux vector remains a “centered”
construction for the parent strictly Galerkin weak statement. The key consistency
and efficiency ingredient of the SGM element is use of static condensation to
reduce element matrix rank to that of the linear basis for any embedded degree.
This is in sharp contrast to traditional enriched basis FE /FD algorithms, since the
SGM element totally contains matrix order escalation, hence computer resource
demands.

The SGM element construction for a 1-D model form of (1) leads to a
theoretical nonlinear monotonicity constraint via enforcement of a real eigenvalue
spectrum for the algorithm stencil. Thereby, the theory predicts the optimal
distribution of the SGM embedded parameter (set) on each element, hence the
mesh Q*. The generalization to nonuniform, d-dimensional discretization leads to
the potential for attainment of nodally exact monotone solutions on arbitrary
meshes. In concert, a high-order-accurate wall flux prediction accrues via a DOF
interchange in the weak statement matrix algebraic statement. This article devel-
ops the SGM theory and documents performance for 1-D, 2-D, and 3-D verifica-
tion and benchmark problem statements, belonging to the Navier-Stokes problem
class, for smooth and nonsmooth solutions including nenlinearity.

THE FE WEAK STATEMENT FORMULATION

Discretization of a weak statement involves spatial and temporal components.
The finite-element (FE) spatial semidiscretization of the domain {1 of (1) employs
the mesh Q" = U, ,, where {), denotes the generic computational finite-ele-
ment domain. Using superscript # to denote “spatial discretization,” the FE weak
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statement process for (1) defines the approximation as

q(x,2) = g*(x,1) = |J q.(x,1) @

g.(x, 1) = (N} {1}, (3

where {-} denotes a column matrix, and the FE basis set {N,(x)} typically contains
Chebyshev, Lagrange, or Hermite interpolation polynomials complete to degree k,
plus perhaps “bubble functions” [16]. For completeness, in one dimension the
kth-degree, 1 < k < 3, Lagrange basis function sets are

. A - O -20)
{@2¢-1

A-¢L2-¢+3)

) a-0ee-30)
) =20 a-peee-1 @

((L-¢+3)

where {(x) = (1 + 5)/2 and 5:(—1,1) is the local normalized natural coordinate.
The spatially discrete FE evaluation of the weak statement WS* for (1) leads
to the form

h

aq a ok
fm{Nk} o e G s dr| =10

WSk = §_
at

aq" 3{N,) ik
=S¢[fnh{Nk)(T_s] dT_Lh ﬂxj (fj—fj) dT
P NG - f,-")”ﬁjda] (5)

where use of the Green-Gauss divergence theorem exposes the indicated boundary
fluxes on dQ*, §, symbolizes the “assembly operator” carrying local (element)
matrix coefficients into the global arrays, and dr and do denote differential
elements on  and 29}, respectively. The surface integral in (5) contains the
(unknown) boundary fluxes Dirichlet (fixed) boundary conditions are enforced.

Independent of the dimension d of (), and for general forms of the flux
vectors, the FE weak statement (5) always yields an ordinary differential equation
(ODE) system of the form

WS* = [MNQ()) + (R} = {0} 6)
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where {Q(¢)Y denotes d{Q}/dt, which vanishes for steady state. The system square
matrix [M] and “residual” column matrix {R} are formed via assembly over
" = U Q, of corresponding element rank matrices as

[M]=S5,[M]  and

(R) = SR}, = S.((U]. + [D. + [BINQ). — (b}) M

where subscript & in (7) emphasizes coefficient dependence on FE basis degree k
in (3). On each finite element Q,, the contained compositions are [ D], for the
dissipative flux vector f7, [U], for the convective flux vector f;, and [B], for the
(d — 1)-dimensional implementation of the boundary flux contribution; {b} is the
matrix of all known data.

The form (6) provides the statement of local time derivative necessary to
evaluate a temporal Taylor series (TS). Selecting the @-implicit one-step Euler
family, then

{QG,. N} ={0}as: = (Q), + AtIO(Q), 1 + (1 — O)O), ] + B(ALD))
= {0}, — AtLM] '(6{R}as+1 + (1 — &) R} ®)

where subscript n denotes time level. Clearing [M]~' and collecting terms to a
homogeneous form yields the WS" + 8 TS algorithm terminal statement,

{(FQ} = IMUKQ, .1 — @} + At(8{R}s+1 + (1 — 8){R}.) = {0} ®
The Newton algorithm for solution of (9) is

DACI{AQ),+) = —A{R}. linear (10a)

[JACKSQY ! = —(FQ}’, , | nonlinear (10b)

where, for iteration index p,

p .
{Q1FH ={Q) . + {80V = {0}, + ¥ {s0)"! (11)

i=]

The linear form (10a) converges in a single step, hence {Q},,, = (Q}, + {AQ),, .
In either instance, the Newton Jacobian is formed as

o{ FQ}

bact = Q)

R
il ] (12)

=[M]+ BAI(TQ}

For the steady-state problem, ¢/d¢ = 0 in (1), hence clearing through the At in
(9-(12) yields [JAC] = 4(R}/4{(Q} and {FQ)} = {R).
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THE SGM FINITE ELEMENT

The global assembly of the element canonical form of the diffusion matrix
[D), resembles an identity matrix, excellent for numerical computation indepen-
dent of the basis degree k, ([17, chap. 5.5). Conversely, the assembly of the element
canonical convection matrix [U], always yields a null matrix. In addition, in higher
dimensions, the matrix [U], cannot be statically condensed, as the convective
information contained at element mid-side nodes may not be eliminated. Hence,
contrary to the convective flux vector manipulation as a stability-enhancement
approach, the SGM element procedure is restricted to the diffusion matrix result-
ing from f (171

1-D Elements

The Lagrange linear (k = 1) and quadratic (k = 2) FE basis polynomial set,
the k£ =1, p =2 hierarchical (bubble) element, and the SGM S =2 (k =2,
reduced) Lagrange element for one dimension are compared in Figures 1a—1d.
Both the Lagrange k = 2 and p-hierarchical elements contain an extra degree of
freedom (node 2 in Figures 15 and 1c). For the SGM element, the explicit
appearance of the embedded degree of freedom is eliminated via static condensa-
tion (Appendix A), a well-known FE methodology leading to the Schur compliment
(18, 19].

For the linear dissipative flux vector FE construction, static condensation of
any k > 1 basis Lagrange element in one dimension simply returns the £ = 1 form
[17]). Therefore, the SGM theory augments the diffusion matrix via an embedding
function g(x,c), hence the name “SubGrid eMbedded.” The definite integral form
of the SGM basis function set, denoted {Ng}, for [D], in (7), is

AN} (N}
ox ax

(13)

A(Ng) 3{Ng}"
j;) — pral fﬂeg(x,c)
where the statically condensed, reduced Rank fdrm is denoted as |%. The embed-
ded polynomial g(x,c) contains one arbitrary (at present) parameter ¢ for each
additional Lagrange degree k& > 2. The form of the 1-D SGM element basis set
{N;} for k = 2 = § is expressed, analogous to the k = 1 Lagrange basis, (4), as

{Ng} = {1 ;”’} but  p= ) al" (14)

i=1

In (14), p is a polynomial function of an expansion coefficient set, a;, dependent
on embedding degree k, and the k£ = 1 element local coordinate ¢, and « is a
function of c¢. A detailed computation of the SGM 1-D basis is provided in
Appendix B. -

If the embedded polynomial in (13) is selected as quadratic, then g, =
{1, ¢, 1{N,}, where {N,} is the Lagrange quadratic basis. Then, for § = 2 = k, the -
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Figure 1. Comparison of standard, hierarchical, and SGM elements in one
and two dimensions: (a) 1-D Lagrange element, k = 1; () 1-D Lagrange
element, £ = 2; (¢) 1-D hierarchical element, k = 1, p = 2; (d) 1-D SGM
Lagrange element, k = 2 reduced; (¢) 2-D hierarchical p-element, k¥ = 1,2,3
selectively; (f) 2-D SGM element, $ = 2.

3 X 3 element matrix form for [D], prior to condensation is

(18¢c + 17) (7 — 2¢) —(16¢c + 24)
15_h (7 - 2¢) (18 + 17) —(16¢ + 24) (15)
¢l —(16¢c + 24) —(16¢c + 24) (32¢ + 48)

[Dk=-2]e =

Static condensation of this matrix yields

Qc+1) —(2c+1)
38, - Q2c+1) Q@c+ 1)

[Dk-zlf = [Ds-zL = (16)
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The discussion in Appendix B confirms that ¢ > 1 is the requirement. For ¢ = 1,
[Dg_,], in (16) is identical to the linear Lagrange matrix,

PRI

This degeneracy is termed consistent, which occurs only for d = 1. Specifically, for
d > 1 dimensions, static condensation of a k& > 1 diffusion matrix does not yield
the k£ = 1 form.

In the case of distributed data in the dissipative flux vector, as might occur,
for example, with eddy viscosity in a turbulent flow simulation, the base form of the
element diffusion matrix is

d{N,} d(N,}
dx dx

(D1, = [ {a,b)(N) 17

where {a, b} are nodal eddy viscosity and the interpolations in [D,], use mixed
degree k. Then, for one dimension and § = 2, for example, the SGM base
definition upon static condensation is

(a® + b? + 4ab). —(a* + b? + 4ab).

D], = —————
LD:1. 3(a + b)eh, [ —(a%* + b* + 4ab).  (a® + b? + dab).

(18)

Note that only for @ = 1 = b does (18) reduce to the Lagrange linear basis matrix
[D,],. The combination of a, b, and g, is admissible as g, = {a, c, bB{N,} .
Thereby, the turbulent viscosity is distributed using coefficients @ and b, while ¢
remains available for an optimal selection.

2-D and 3-D SGM Finite Elements

The d-dimensional form in the dissipative flux vector diffusion matrix [ D], in
(4), formed via the SGM element (denoted by subscript S), is

N, Ny
ALY dr‘ (19)

[Ds], = fng(x,C) p x

_ alNg (NG
Hfﬂ. ax ax

dr 20)

and many selections are possible. For d > 1, g,(x, ¢) is written as

g, = {GY (N} 1)
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For the d = 2 vector ¢ = (c,, ¢,), the element array is (GY ={,1,1,1,¢,, €y s
¢,,¢,c,} and {N,} is the corresponding Lagrange quadratic basis set. The array (G},
may be represented by the matrix outer product

G = (L,c,,1) ® {1,¢,,1} (22)

hence is pictured as the tensor product 4 @ B of 4 = {1,¢,,1} and B = {1, cys 1},
that is,

1 [ 1
o—o—e ® .
[

X
1 @ 19— 0O0—@ 1

The d = 3 extension is obvious. Element constructions for d = 2 are illus-
trated in Figures le and 1f. Figure 1e graphs a p-hierarchical 2-D element with
two quadratic sides (p = 2), one cubic side (p = 3), and a linear side. The &k = 2
(S = 2) condensed 2-D SGM element, graphed in Figure 1f, is very distinct from
both the p-element and the Lagrange k = 2 element.

The diffusive flux vector matrix [D], in (4), formed with the Lagrange
bilinear (k = 1) basis in two dimensions for a generic Cartesian element of unit
span, is

4 -1 -2 -1
det. 3 4 -1 -2
6 [-2 -1 4 -1
-1 -2 -1 4

ID,], = fﬂ VIN) - VN dr = (23)

]

where det, is the transformation matrix determinant, equal to one-fourth the plane
area of (},. The § = 2 extremized form for (19) for two dimensions is constructed
as

[Dgl, = (24)

where each matrix element d;; in (24) is a distinct polynomial function of ¢, and ¢,
(Appendix C). Assuming that ¢, = ¢ = ¢, the first term in (24) becomes

d 2c+1
17 15(148¢2 + 164¢ + 73)

(656¢” + 2,032¢ + 1,838¢ + 549)  (25)



14: 34 24 Septenber 2009

Downl oaded By: [University of Florida] At:

144 S. ROY AND A. J. BAKER

Simplifying further to ¢, = ¢, = ¢ = |, the § = 2 SGM diffusion matrix form is

29 -1 -7 -1
_ et f 11 20 -11 -7
66 | -7 -1 29 -11
-1 -7 -1 29

[DS ]a (26)

The distinctions between (23) and (26) are apparent.

STABILITY, MONOTONICITY, EIGENVALUE SPECTRUM

An eigenvalue analysis of an algorithm stencil is used classically for determin-
ing stability. For the algorithm algebraic system [ A{{Q} = {b}, the solution vector
{Q} is nonoscillatory (monotone) only if the eigenvalues of [ 4] are devoid of an
imaginary component. Furthermore, if the real parts of these eigenvalues are
non-negative, then the solution is stable.

The general assembled stencil at node j for a finite-element discretization
with [ D], is

o+ GQ, + ﬁQ}._l + 90, + ﬁQjH +aQ,,+ =0 @n

In comparison, for a uniform 1-D discretization with node spacing 4, the set of
higher-order compact finite-difference (FD) schemes for the diffusion term in (1) is
expression as [20]

dq, diq;, d'q dg d’q;. 2
¢— 7 +x le+ 7t X ;;1_’_4’_;;
dx dx dx dx dx
_ Qj+l - ZQ,' + Q;'—l Qj+2 - 2Qj + Qj—z

- K2 tF h?

y Qi+ —20,+ Q4 N

o (28)

Hence, any higher (than second)-order-accurate FD or FE stencil is at least
pentadiagonal involving node j + 2 to describe action at node j.

The relations between the coefficients «, 8,7, and ¢, ¥ in (28) determine
the truncation error of the approximation. Table 1 summarizes these data. For the
Lagrange basis 1-D FE assembly on a uniform mesh centered at node j, for the
second derivative in (1) written as (27), the comparison determination is presented
in Table 2.

The SGM condensed matrix assembly, for any embedding degree in the
second derivative term in (1), always yields a constant times the k = 1 basis
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Table 1. FD recursion coefficients a, 8, ¥

Truncation order Coefficients in (28)

Third a+B+y=1+2y+2¢
4!

Fifth a+22B+32‘y=§(x+22¢)
6!

Seventh a+ 28+ 3y= E(x + 2%)
8! ‘

Ninth a+ 28+ 3%y = BT(X + 2%)
10!

Eleventh a+ 28+ 38y = ?( x + 2%)

tridiagonal stencil, i.e.,

dij _ Qi — 20,109,
PR A

(29)

where ag = (2c¢ + 1)/3 for k =2 embedding g,. Thus, for S =2, FE weak
statement algorithm (6) for the 1-D steady convection-diffusion form of (1) with no
source (s = 0), assembled at node j for notation Q; = Q(jh), yields the recursion

(2c + De U
T[—Qj—l+2Qj-Qj+1]+E[—Qj—1+Qj+l]=O (30)

On a nonuniform meshing, the stencil form is

(e, + e U (e, + De (g + e
| ——+ =0, + + .
3h, 2 )™ 3h, 3k, i

2 1 U
_[( Cg t Ye Qj+1=0 (31)

where subscripts L and R denote to the “left” and “right” of node j, respectively.
Finally, § =2 SGM element stencil with linear embedding g, = {a, b}(N,} for

Table 2. FE recursion coefficients &, g, ¥

Truncation order Coefficients in 27)
Third G=—-hf=0,%=0
Fifth . 4h . 2h 0
i a=-= B= 537"
S th . 63k . 98 39h
even a = 40,,6—5,7——?
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arbitrary meshing is

(a + b} +4da,b)e U
+ ——
3(a, + b dh, 2 )it

(a? + b} + 4a,b,)e N (ak + b: + 4aghg)e

(32)

(a% + b + daghg)e U 0
3ag + bphy 2|

For the (m + 1) X (m + 1) tridiagonal matrix system assembly of the § = 2
SGM basis on an m uniform 1-D FE discretization (30), the eigenvalue distribution
of the tridiagona! matrix stencil is [21]}

A‘_2(2c+1)e 2\F2c+1)e UV((2c+1DDe U k)
T 3k (T+2)(T_E)°°S”

I<l<sm (33)

Thus, A’ can be represented as a Pick function [21] of form ®({) = a(¢) + iB(Z),
where i =V — 1. Thereby, the FE solution of (29) will be monotone for A
possessing no imaginary part [22]. This is ensured by the parameter c¢ satisfying the
constraint

U

r (34)

Qec + De

2
3h

Further, for any ¢ > — % and € > 0, the A’ are uniformly positive. Hence, the FE
algorithm is absolutely stable for all admissible ¢ > 1.

Extending to a nonuniform mesh of measure #,, and with U — u, a cellwise
constant, for all € > 0, the SGM § = 2 solution should be strictly monotone for

' 1 3lu,lh,
. > —( - 1] (35)

2 2e
For the SGM linear embedding g,, the solution is monotone, provided

(a? + b* + 4ab)e
3(a + b)h

E 0
2

and (a, b), > 0 by definition.
For general applications, a nodally distributed (subscript j) SGM parameter
is preferable to an element parameter. Therefore, defining r; = (2¢; + 1)/3, the
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monotonicity constraint form (34) becomes

2c; + 1 AL B lu;lh; Re
r; > =
3 J ¥ F

@7

where Reynolds number Re can replace € and & > 0 is a real number. In one
dimension, & is precisely determined from the eigenvalue analysis, ¥ = 2 for the
linear convection-diffusion (Peclet) problem, & = 6 for the linear stationary wave
solution, while & = 3 for nonlinear convection-diffusion (viscous Burgers) equation
[17]. However, for multidimensional problems, determining the exact form for &
involves definition of a correlation function %; = f(Re,det,), the form of which
was validated using the test data of the 2-D and 3-D linear Peclet problem
solutions.

For this correlation function #; and for velocity field w; = (u,;, u,;, u;)),
principal coordinate mesh measures 4,;, h,;, and h,;, and principal coordinate
diffusion parameter set €; = (¢, €;;, €;;), the condition for a d-dimensional
monotone solution is expressed for scalar components of r; = (ry;, ry;, r3;) in (22)
as

1/d
luijlhi.l ALe / i )

Tij 2 where = —_"'lh ,1<i<d,and1 < j < Nnode
Zj€ij €; Ry

(38)

Hence, only the scalar 0 < 4 < 2 remains undefined, hence must be estimated,
and V, (= 2% det,) is the volume (area) of the d-dimensional element.

RESULTS AND DISCUSSION

Computational results, verifying theory, and summarizing performance for a
range of verification and benchmark problems that model the Navier-Stokes
equation system are presented herein. The problem domains lie on #¢ for
d = 1,2,3 in (1), with an SGM function approximation on 1-D, 2-D, and 3-D finite
elements. The following steps form the SGM element solution process.

Step 1. Use monotonicity constraint (37) or (38) to compute distributed c; or r;, or
estimate r;; = f(lu;\, h;;, €;).
Step 2. Form

AN aNY

axj axj

T

w¢=L&w

where g,(c) = (G}{N,).
Step 3. Reduce [D,], to [Dg], using static condensation, (704).
Step 4. Form the weak statement WS* (9):(71) for the discretization Q% U, 2.
Step 5. Solve (10a) or (10b), including flux computation at all Dirichlet boundary
nodes.
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A traditional measure for estimating semidiscrete approximation error, e* =
q — gq", is the L, “energy seminorm” |- ||z, defined as

lg"llz = 0.5 fn Vg* - € Vg" dr €)

where € remains the diffusion coefficient in the dissipative flux vector in (1). For a
linear elliptic boundary-value problem, if g is the exact solution to an mth-order
variational statement, hence the parent differential equation is of order 2m, then
the discrete approximation error is bounded in energy in the form [23]

lle®lgiqy < CREEH1=mIgllees (40)

where C is a constant independent of k,, a mesh measure, and llgliy++1 is the
Sobolev norm containing up to the (k + 1)st derivative of the exact solution.
Hence, for sufficiently smooth solutions, the error in the finite-element approxima-
tion, measured in energy, converges as the 2(k + 1 — m) power of a mesh measure
under uniform discretization refinement.

For a 1-D axisymmetric steady conduction problem, the § = 2 g, = {a, b}{ N;}
linear SGM form results on the radius identification, recall (17), hence a = R, and
b = Ry, for the generic element. Conversely, the S = 2 g, quadratic SGM with
distributed parameter c;, r; > 0 is validated for all other steady linear and nonlin-
ear convection-diffusion problem statements in one, two, and three dimensions.

Axisymmetric Steady-State Conduction

The heat conduction statement in polar coordinates is

L4 4 0 (41a)
———|pe—|-5s= <p< a

p dp P dp £rL< PP
ag+€eVg-fi —aq, =0 p = p,, for arbitrary a (41b)
q(py) = q, pP=p (41c)

The g, SGM form occurs naturally for this statement, for which ¢ = p, and
b = py for the generic master element. For constant e, the exact solution to (41a)
is logarithmic,

g(p)=A, +B,Inp (42)

Therefore, any piecewise polynomial approximate solution will clearly exhibit error,
hence quantizable solution convergence trends will exist. Figure 2 summarizes
algorithm asymptotic convergence for the base Lagrange and various SGM forms
of degree k, hence reduced form §. The data confirm the classical theory for
k = 1,2 Lagrange basis elements, as the data are logarithmically interpolated by
straight lines of slope equal to 2k. In distinction, for the g, embedding and S > 2
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Figure 2. Convergence study, 1-D steady heat conduction
problem: (a) Max norm; (b) energy norm; (c) flux point norm,
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SGM element, the convergence rate (slope) increases rapidly as S increases.
Specifically, for § = 4, the convergence data are interpolated by a line of slope
12.6, which exceeds the classical k = 4 slope of 8. Convergence rates measured in
the max norm, Figure 24, are somewhat lower than in energy for § > 2, Figure 2b.

For the Dirichlet boundary condition (41c), one can easily compute the
(unknown) boundary flux via the WS* construction. The resultant WS” algebraic
rearrangement of the Newton statement (10a), for direct flux computation (Ap-
pendix D) on a uniform mesh is

1 -1 O 2 agq,

-1 2 71 <, 0
= . Cor=1 - (43)

-1 1 -Allog,., 0

o A A | F o

where A = h /e, for the terminal ),, and F, is the associated (unknown) normal
boundary flux at the last node J.

Figure 2¢ graphs boundary flux convergence for the rearranged WS* (43).
While the k = 2 Lagrange FE algorithm results are significantly better than the
k =1 solutions, the SGM § > 1 boundary flux computations are at least two
orders of magnitude more accurate than either Lagrange FE result and exhibit a
higher convergence rate. The flux computed via any finite-difference formula is
totally dependent on the mesh measure h,, hence the associated error is up to five
orders of magnitude larger than the SGM WS” prediction on the coarsest mesh,
Figure 2c.

Steady Conduction with Source

Consider the parabelic equation
1 d dq]
——|p—]|=-s 1<pg?2 (44)
p dp[ dp

where s = s( p) is assumed linear. The generic solution to (44) is

2

q=—%+lnp+b (45)

with specific forms.
Case I: Both ends Dirichlet.

1
qlp_1=0=>b=z and q|P_2=0=>a=4ln2

Hence,

5
©

+

__7
9 4

Hw
|
[\
+
] =
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Case 1l: Left end Dirichlet, right end homogeneous Neumann

| 0=5b ! d “ 0 2
Qlp=1 =U=D= — an r =u=4q=
p=t 4 dp p=2

Hence,

2

Y !
q——T+ np+z

The corresponding matrix statement (6) is S,({ p}7[D1{0Q), — { p}7[M.1.{S),)
= {0}, where { p}, contains the nodally discretized values of radius p and [M, ], are
the corresponding FE hypermatrices [19]. The locally extremized SGM element is as
given earlier. For the linear embedding g, = { p,, pxrH{N,}7, the resulting change in
the data structure is readily illustrated. On element e = 1, choosing the linear
basis for [D, ], yields

35 =35

1 -35 35 (46)

[Dk]e-l

In comparison, using the & = 2 basis function for [D,] and the corresponding data
{p}., =(1,%,%), and then reducing the square matrix { p)7[D,], via (70a) yields

3.47619049 —3.47619049

[Dsle- = —3.47619049 3.47619049 47
For a four-node uniform mesh, the S-embedded (S > 1) solution comparison
details are summarized in Figure 3. These results clearly confirm a sharp decrease
in error as § goes from 1 to 2. Conversely, for § > 2, increasing S does not
significantly affect the solution (error), Figures 3a, 3¢, and 3e-3f. Convergence
comparison in energy between the standard linear basis FE (k = 1) and the
combination k-$ solutions is graphed in Figures 3b and 3d. These results indicate
that the convergence slope increases significantly as the (4-S) combination spans
(12,2) to (48, 4). Specifically, the solution error trend confirms selection of § = 2
as essentially optimal for improved solution accuracy and computational efficiency.

Steady “‘Peclet’’ Problem, d=1

The governing parabolic convection-diffusion equation is

d

Ex—[uq—eg]-—-ﬂ on0<x</ (48)

which upon nondimensionalization and for constant u becomes

= on0<xgl (49)
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where Pe = u//¢ is the model problem “Peclet number.” Solutions to (49) are
thus parameterized by Pe. For Dirichlet boundary conditions g(0) = 0 and ¢(1) = 1,
the analytical solution to (49) is

exPe -1

q(x) = P (50)

which exhibits a sharp thin-layer character dependent on Pe. Further, via (39), the
analytical solution energy seminorm is [lgllz = 0.25(e™ + 1)/(e* — 1), which con-
verges to exactly [lglls = 0.25 as Pe — oo, Finally, the associated endpoint bound-
ary fluxes for (50) equal exactly zero and unity.

In practical CFD situations, Pe can range to 10°. Accurately resolving such a
solution numerically requires local fine meshing, and/or artificial diffusion, and
the dominant error mechanism is dispersive. This is clearly illustrated in Figures 4a
and 4b for the Lagrange k = 1 and k = 2 Galerkin WS solutions on a uniform
Nnode = 13 mesh for Pe = 10°. A nonuniform 13-node mesh can suppress the
large oscillations, without added artificial diffusion, but the solution is not mono-
tone. A uniform mesh containing 100 nodes will not yield a monotene solution for
Pe = 1,000 using either the Lagrange k = 1 or kK = 2 GWS algorithm. 4

In distinction, the optimal SGM g, nodeless parameter c, yields a monotone,
essentially nodally exact (to roundoff error) solution on any mesh, with coincident
exact determination of the boundary fluxes. For example, for a uniform 13-node
(h = 1/12) mesh using (35), the theoretically predicted value for ¢ for a monotone
solution is

2

U{3hPe 1 1 o 5
[ ] 2 2 B

> =

3 X 1,000 i
2x12 2

The resultant SGM g, solution is absolutely monotone and nodally exact to
roundoff (Figure 4¢). The energy seminorm for the computed solution is 0.25 to
eight significant decimals, which exactly matches the analytical solution energy
seminorm to this significance. For comparison, the SGM g, choice with ¢ = 70,
which exceeds the theoretical level, produces a diffused monotone solution, Figure
4d. Conversely, for ¢ < theory, the resultant SGM Solution is nonmonotone.

As another example, the appropriate ¢ for Pe = 10,000 on a uniform five-node
mesh (h = 1/4) is

1(3hPe 1 (30,000
c=5( - ):-——1]=1,874.5 (52)

2 8

Figures 4¢ and 4f confirm the monotone, nodally exact SGM solutions attainable
for a range of Pe for different mesh measure #, and corresponding selection of ¢
via (35). The WS"-computed boundary fluxes also remain exact to roundoff.
Table 3 compares the Lagrange k = 1,2 and § = 2 SGM g, element matrix
for the convection-diffusion problem at Pe = 1000. The two Lagrange basis
matrices are slightly biased by the convection term, while the SGM element matrix
is theoretically constructed as pure upwind to the digits shown. For Lagrange FE
bases k = 1,2, the diagonal terms of the system matrix approach zero as the Peclet
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Figure 4. Verification of optimal SGM parabolic parameter ¢ for different Pe on various meshes. (a)
Lagrange k = 1, Pe = 1000; (b) Lagrange & = 2, Pe = 1000; {c) = SGM g,, ¢ = 62, § = 2, Pe = 1000;
(d) SGM g3, ¢ = 70, § = 2, Pe = 1000. '

number becomes large. Conversely, for this problem statement the theoretically
computed SGM algorithm becomes purely upwind as Pe increases, the system
matrix diagonal approaches unity. Importantly, the developed SGM theory predicts
exactly the correct value for ¢ on any mesh. Thereby, algorithm solutions can
exhibit no convergence rate, since every solution is nodally exact!
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Figure 4. Verification of optimal SGM parabolic parameter ¢ for different Pe on various meshes.
(Continued). (¢} SGM g,, 5-node uniform mesh, Pe = 1000-10,000; (f) SGM g5, 9-node uniform mesh,
Pe = 10,000~50,000; (g) boundary fluxes from WS$", Pe = 1000, u = 1, steady state solution.

Table 3. Compariscn element matrices [D + U],, Pe = 1,000, Lagrange

FE and SGM g,

Standard GWS SGM g,
k=1{c=1) k=2(c=1) c =62
—0488 0488 Tosss dedl —0.165 0000 0.000
—0512 0512 —0683 0032 0651 ~1.000 1.000

0169 —0683 0514
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Accurate prediction of the boundary fluxes is a challenge for this problem,
even if the approximate solution is nodally exact. The Lagrange FE linear and
quadratic WS” solution, for Pe = 1,000, produces a 200% error in flux even on a
highly nonuniform mesh, Figure 4g. In distinction, for the optimal SGM, the
boundary flux calculation via the weak statement is accurate to machine precision
at both the left and right boundaries. Flux prediction from finite-difference
formulas always have higher error than that from the WS*, and the associated
error does not decrease asymptotically unless the solution is monotone,

The velocity field for a practical problem is never a constant. This verification
problem generalized for varying velocity distribution u = mx + g possesses the
solution

g(x)=e* [/e"r(x) dx + C] (53)
where h = — [Pe(mx + g) dx
1 dg
r(x) = (mx +g) — Pe &

Assuming Pe » 1, (dg/dx)|,.o =0 = r(x) =0. Then, for g(x =0)=0 and
g(x = 1) = 1, the analytical solution is

e!’c(mx2 /2+gx) _ 1

q(x) = (54)

ePc(m /2+g) _ 1

which exhibits an even sharper wall layer than does the standard Peclet problem
solution.
Specifically, for m = —1and g =1, u = U =1 — x, (54) yields
ePe(x—xz/Z) -1
c!"4':/2 -1

g(x) = (55)

The linear FE and S = 2 SGM solutions for the variable-velocity problem are

compared in Figures 5a and 5b for an eight-element mesh at Pe = 105 The k = 1
Lagrange basis solution remains oscillatory, while the § = 2 SGM solution is again
nodally exact for the distributed SGM” parameter distribution r; determined from
(37). Figure 5c¢ confirms the SGM" theory extension to nonuniform mesh and
velocity.

Elliptic Peclet Problem, d=2
The 2-D form of (48) is

—{ujq—e— =0 1<j<?2 (56)
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and the nondimensional analytical solution on 0 <x,y <1, for u; =1 =u, and
Dirichlet data ¢(0, y) = 0 = g(x,0), and ¢(1,1) =1, is

e* Pe _ 1 e’ Pe _ 1

q(x)=[e!’e_1 II ePe_l] (57)
As € — 0, i.e., Pe becomes large, the analytical solution is smooth but approaches
point-singular in the near region (x, y) = 1. For Pe = 20, the exact solution (57)

interpolated onto an Nnode = 13 X 13 uniform mesh is illustrated in Figure 6a.
The error distributions for the GWS Lagrange k¥ = 1,2 and the S = 2 SGM
solutions are presented in Figures 6b—6d. The k = 1 solution (dispersive) error
exceeds 30% in the near vicinity of (1,1), Figure 6b, while the k =2 error
extremum in this region is nominally identical at 27%, Figure 6c. Thus, both
Lagrange basis solutions are clearly nonmonotone on this mesh, even for the
modest Pe = 20, and remain nonmonotone on mesh densities up to 50 X 50. In
distinction, the § =2 SGM algorithm solution with optimal ¢ =13 =¢, =¢,,
A = 1.2 (numerically estimated) and .%; = % = 1.4 from (38) on the 13 X 13 node

uniform mesh is monotone with local error extremum of order ~1072%, Figure
6d.

For Pe = 2,000 on a 9 X 9 uniform mesh, the error distributions for the
Lagrange k = 1 and the § = 2 SGM solutions are compared in Figures 6e and 6f.
The intrinsic WS dispersive error for the Lagrange basis is propagated throughout
the entire domain, Figure 6e. Conversely, for optimal ¢ =¢, = ¢, = 38, A =04
(estimated) and F; =5 = 9.75 from (38), the SGM § = 2 solution is monotone
with error extremum remaining &#10°2, Figure 6f. Finally, the essentially nodally
exact SGM g, solution for Pe = 20,000 on a 9 X 9 uniform mesh is shown in
Figure 6g, as obtained for ¢ = 125 =¢, =¢,, A =04 and ¥; =% = 30. The

y’
extremum nodal error is again #1072,

Linear Stationary Wave, d=1

The governing PDE remains
= onl <x</ (58)

Interpreting (58) as the momentum equation in system (1), the nondimensional
form is

——]=0 onl<xx1 (59

where Re is the Reynolds number. For Dirichlet boundary conditions (0} = —1
and g(1) = 1, with u(x < 0) =1 and u(x > 0) = —1, the steady-state analytical
solution is

1 + euRc —- 2equc

—= (60)

q(x) =



14: 34 24 Septenber 2009

[University of Florida] At:

Downl oaded By:

159

Q
A AR A - - - ~
a4 AR
e e sl ™
e > A A= A
A et el e e
R A A A R - S AR
10 T e R e
— e Al
a o I Zall
~10
aak\
-3 0
0.5
3 0.5 L :
©) jfosm mesh:



14: 34 24 Septenber 2009

[University of Florida] At:

Downl oaded By:

160

S. ROY AND A. J. BAKER

&0

of

sof

20}

10

’ — e e e

= . B, —

-0 ‘-._?\\ —

20 |- —s- e
xrys
-40 -
1 = >~

)
1 us
N

Figure 6. Two-dimensional elliptic Peclet
(Continued). (d) Nnode = 132, Pe =20
¢ =13, &= 14 (e) and (f) Nnode = 92
Lagrange k = 1; (f) error distribution, S

problem solutions on uniform mesh
, error distribution, SGM § = 2,
» Pe = 2,000. (¢) Error distribution,
GM § =2, ¢ =38 #=097s



14: 34 24 Septenber 2009

Downl oaded By: [University of Florida] At:

NONLINEAR, SUBGRID-EMBEDDED FE 161

(g

Figure 6. Two-dimensional elliptic Peclet problem solutions on uniform mesh
(Continued): (g) Nnode = 92, Pe = 20,000; SGM solution, § = 2, ¢ = 1245,
F=30.

Figure 7a graphs this a solution schematic. As Re becomes large, g(x} monotoni-
cally approaches a step function with g = 1 behind the front trailing u = —1 and
g = —1 behind the u = 1 front. The slope of the steady-state solution at front
coalescence is

dg 2u Re e*“R¢
dx

- — 61
l_euRe ( )

and as Re — », dg/dx approaches + Re, that is, ». Clearly, for large Re, the
solution approaches a step function where u (nodally) changes sign.

The Lagrange k = 1 basis solution for Re = 10° is totally oscillatory on a
uniform 10-node mesh, Figure 7d. In fact, any Lagrange basis GWS solution will be
totally dispersive on meshes up to 1,000 nodes. For this problem definition, with
& = 6 in (37), the theoretical prediction of the optimal subgrid embedding parame-
ter corresponding to Re = 10% and 7 = } is

2¢+1 1,000,000
3 6X%X9

r= = 18,518.519 hence c=27,771.278 (62)

The resultant § = 2 SGM solution on the uniform 10-node mesh is absolutely
monotone and nodally exact (to roundoff, 10~%), Figure 7c.

Table 4 compares element matrices for the Lagrange k = 1 basis and § = 2
SGM basis for elements 46, Figure 7. The analytical-solution end fluxes for (59)
are exactly zero for any Re > 1. Any Lagrange basis solution prediction of these
fluxes will be totally erroneous due to the dispersive error propagation to the
Dirichlet nodes. Table 5 presents to § = 2 SGM WS solution for end-point fluxes,
which agree to roundoff with the analytical values.
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Figure 7, Linear square wave steady solutions on 10-node uni-
form mesh; (a) schematic wave solution, (b) Lagrange k=1
solution.

Burgers Equation, Nonlinear Stationary Wave, d= 1

The nonlinear momentum variable form of (59) is the stationary viscous
Burgers equation,

— —| =0 (63)
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20

Anatytical Schution
@ --0 SGM nodal sohution, c=28,000

0.0

Stationary Weve Solution g(x)

-1.0 -

-2.0 L
0.0 05 1.0

Uniform Mash, NNODE=10

Figure 7. (Continued). (¢) 10-node uniform mesh, Re = 105,
§ =28GM, c =27777.278, F = 6.

The weak statement algorithm (6)-(10b) for solution of (63) is thereby iterative.

For Dirichlet boundary conditions ¥ =1 at x= —1, u = —1 at x =1, and for
symmetric initial data specification, the analytical solution to (63) is [17]
—xRe
u= tanh( ) (64)

The analytical-solution slope at x = 0 thus approaches « for large Re as
du

Re . n2 Re x 0 du 0 Re (65)
= e — —_— — —_— [ —
e 7 tan 3 as x I approaches 2

The solution schematic, Figure 84, illustrates this character.

Table 4, Example element matrices for Lagrange GWS and
SGM g, computation

Element number SGM g,
see Figures 7b and 7¢ Lagrange GWS (¢ = 27,777.278)
Ir-1 1 -1 1
4 5[—1 1] 3[—2 2]
1 4
ST 1 -1
#5 6[ 1 —ll 3x10“[-1 J

o EES 112 -2
#6 5[1 —1] 3[1 -1
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Table 5. Boundary fluxes

Lagrange k = 1 S = 25GM, ¢ = 27,777.278
Leftend, x = 0 Right end, x = 1 leftend, x =0 Rightend, x = 1
0.666986 —0.666705 —1.6667D — 10 1.6667D — 10
1 U soluticn
. Finite
v R:K Elemem

#5 #6

K} .

(a)

20
G- - -0 kai, niter=10, ope=0.001
—— Analytical Solution
1.0 & &
‘\ ,'I ‘\‘ I! l\
\ . \~ ' 1
§ \ ’-' \ ”' \
v v \
A e |
oo & 3 @ ® @ A
5 \ ,.’ 3 ,.’ \
\ ' \ . \
> B ~ v
5 \ ! vl
(. v \
) -’ A .I \
1.0 & & 4
20 .
0.0 0.5 1.0
Uniform Mesh, NNODE=11
(b}

Figure 8. GWS and SGM solutions for nonlinear Burgers ‘equa-
tion, Re = 100,000: (@) solution schematic, Nnode = 11; (b)
k = 1, uniform mesh, Nnode = 11.
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Figure 8. GWS and SGM solutions for nonlinear Burgers equa-
tion, Re = 100,000 (Continued): (c) k = 2, uniform mesh, Nnode

= 11; (d) § = 2 SGM, uniform mesh, Nnode = 11.
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Figure 8, GWS and SGM solutions for nonlinear Burgers equa-
tion, Re = 100,000 (Continued): (¢) § = 2 SGM, uniform mesh,
Nnode = 10; (f) § = 2 SGM, nonuniform mesh, Nnode = 11.

Computationally, as Re becomes large, (63) moves toward becoming of
hyperbolic conservation law form. The Newton iteration solution process (10b) for
the Lagrange k = 1,2 basis solution for (63) is convergent, but the dispersive error
mode totally dominates the resultant nodal solution, Figures 8b and 8c for
Re = 10° on an 11-node uniform mesh. Although the k = 2 basis solution exhibits
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somewhat reduced oscillation level (25%), any Lagrange basis solution on any
mesh is totally unsatisfactory due to dispersive error pollution.

The nonlinear § =2 SGM algorithm requires iterative determination of
¢ = ¢;(u(x)), that is, solution- and element-dependent data. Via (37):(38), the WS
form of nodally distributed SGM element parameter r; = (N;}"{RJ} is

Re det,
7

Ws.(r) = [ (NHNY driR). - [ (NN dr(iUDe = (0)

(66)

For this nonlinear solution iteration, the eigenvalue analysis for & = 1 confirms
that & = 3 in (37) ([17], p. 71). Verification tests were conducted with and without
a u = 0 centroidal node on uniform meshes for the symmetric-ramp initial condi-
tion graphed as open symbols in Figures 84 and 8e. The Newton algorithm
converged directly for u = f(u, ), and the steady-state SGM solutions are plotted
as solid symbols in Figures 8d and 8e. For the 11-node uniform mesh, the SGM
solution is nodally exact, Figure 8d, to #(107°), in predicting the zero node value
midway in the shock. The 10-node SGM solution, Figure Be, is nodally exact to
&(10~) without the mid-shock node.

Table 6 compares the Lagrange and SGM element matrices in the region
where the analytical solution changes sign (elements 5 and 6, Figure 8a) for
Newton iterations 1 and 6. The SGM element parameter r; = r(u;, h,,Re) is
computed at each node j during the iterative process. Finally, for a highly
nonuniform mesh, attracted to the shock location, the SGM nodal solution, and the
corresponding initial and final computed distribution of the SGM parameter r;, are
shown in Figure 8f. The SGM solution is monotone and essentially nodally exact
to #(107%), and r{u;, h,) spans the range +10*, dependent on both #, and u;.

Gaussian Plume, Directional Diffusion in a Convective Field, d=3

The standard benchmark problem ([19], chap. 4.12) calls for prediction of the
steady-state convective-diffusive transport of a neutrally buoyant contaminant
introduced into a directional uniform velocity field in three dimensions. The

Table 6. Element matrices for Burgers equation algorithms, 11-node mesh, Re = 10°

Elem. Iter. Lagrange SGM
no. no. k=1 §=2 Comments

5 1 —-0.167 0.167 0.166678 —0.166678 GWS matrices are not
—0.083 0083 —0.416678 0.416678 positive semidefinite

6 1 0.083 -0083 0.416678 —0.416678 SGM matrices are
0.167 -0.167 -0.166678 0.166678 positive semidefinite

5 6 B g‘;%g 82612 [ 32_5(? 4;984 _3‘3“1?99_ 04] GWS solution nonmonotone
0.163 -0.163 0.4999 -0.4999 .

6 6 0325 —0325 [ 325D - 04 325D — 04 $GM solution monotone




14: 34 24 Septenber 2009

Downl oaded By: [University of Florida] At:

168 8. ROY AND A. J. BAKER

diffusion tensor is orthotropic with negligible component parallel to the onset flow
direction. This problem was devised to verify CFD methods applied to atmospheric
transport of a contaminant continuously emitted from a point source. Computa-
tionally, the “point” is distributed over a block of eight cells in a pyramidal
distribution.

The governing PDE with orthotropic diffusion tensor in principal coordinates
is

3q dq d ( aq

rrl GOl R
J

+up— - —5s=0 onQxrc#*xH* (67)
at ox;  dx,

For the standard benchmark, the uniform imposed velocity field isu = 1i + 0j + Ok
with €, =0, €, = 0.02 = ¢,. For these specifications, the Lagrange k£ =1 and

k=2 WS algorithm solutions produce accurate plume prediction with modest

select negative concentrations predicted about the source [19). To better quantify
dispersion error annihilation via SGM, u = 1i + 1j + 1k is preferred with signifi-
cantly decreased diffusion levels. Hence, €, = 0.0001, €, = 0.1, and €; = 0.001 are
defined for (67).

The uniform 17 X 17 X 21 standard benchmark computational mesh is re-
tained with domain span an 80-km cube. For the modified velocity field, the source
was moved to lie on the domain diagonal near the lower left domain corner. The
Lagrange k = 1 WS algorithm steady-state solution predicts ranges of negative
concentration, as shown by the “red levels” in the solution perspective, Figure 9a
(see Color Plate), with extremum —6%. The comparison § = 2 SGM solution,
Figure 95 (see Color Plate), is absolutely monotone, hence totally devoid of any
“red levels.” Elsewhere, the k = 1 and S = 2 solution fields are nominally nodally
identical,

CONCLUSIONS

A subgrid embedded (SGM) finite-element basis construction has been
developed, validated, and benchmarked for semidiscrete approximate constructions
of a Galerkin weak statement for steady convection-diffusion applications. Ele-
ment-level static condensation of the SGM-altered Lagrange k > 2 diffusion
matrix facilitates embedding of arbitrary-degree polynomials, guaranteeing the
minimal storage requirement associated with a & = 1 Lagrange basis algorithm.

In comparison to other theories for generating higher-order-accurate and/or
monotone solutions, SGM element advantages include guaranteed (nonlinear)
monotone solution with excellent conditioning of the minimum-band system matrix
and improved stability via retained diagonal dominance. Further, the methodology
permits retention of lexicographic ordering, for any SGM embedding, hence
potentially exhibits the efficiency of strictly linear basis (or centered FD) algo-
rithms. The verification and benchmark tests presented confirm that the SGM
element solution can be guaranteed monotone via the theoretically established
parameters a,b,c on arbitrary {(coarse) meshes. As a weak statement adjunct,
boundary fluxes computed therefrom are confirmed to be orders of magnitude
more accurate than those estimated by FD or standard FE basis methods on coarse
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meshes. The SGM element Galerkin weak statement algorithm has the potential to
exert a fundamental impact on CFD methodology, via its intrinsic nonlinearity and
guarantee of minimum computer memory and CPU requirements for high accuracy
on coarse meshes in #°.
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APPENDIX A: SGM ELEMENT BASIS FUNCTIONS

A basic ingredient of the SGM element, for implementation and efficiency, is
static condensation [18, 19]. As the mesh is refined, with Lagrange FE methods and
k > 1, the system degrees of freedom increase rapidly, especially in multiple
dimensions. This order escallation is traced directly to (7), hence computer re-
source requirements for (9) increase even more rapidly. For example, in one



14: 34 24 Septenber 2009

Downl oaded By: [University of Florida] At:

170 S. ROY AND A. J. BAKER

dimension, the global matrix is (2k + 1)-diagonal, and for an m-element discretiza-
tion the global system is m + 1 rows long. For two dimensions and lexicographic
ordering of the mesh, the global matrix optimum bandwidth expands to 2k(/ + 1) +
1, where [ is the minimum number of nodes in either the x or y direction. In three
dimensions the optimum bandwidth order is 2k((! + 1)/2 + 1) + 1, where [ is the
minimum number of nodes in either the x, y, or z direction and /2 is the minimum
number of nodes in the other two directions.

Static condensation stops escalation of matrix order for increased k& and d at
the element-level via element matrix rank reduction prior to global assembly. For
the element residual {FQ), contribution containing the product of a square matrix
[JAC), of order m?m > 2), with a column matrix g, the partitioned form is

FQ ¢
{FQ}mt) = { @ )} = [JAC)m¢, m{(q}m#y
(m?%)

{4(2‘) } (68)
(m4, m%) EO {m?)

The subscripts in parentheses denote the order of the matrix. The degrees of
freedom to be eliminated are contained in {g,), and a = m? — 2% This is
accomplished by reducing (denoted by superscript R) [JAC] to another matrix
[JACIR of order 2¢ via recasting (68) in the form

JAC(24|24) JAC(Zd,d)
- |JAC, .4 JAC,,,

UACIG 2{g}s = (FQ)Ge) (69)

The definitions in (68)-(69) are
AC)E4,24 = [JAC)at,2¢) — [JAC)2#, alJAC]G 0[JAC](a, 299 (70a)
(FQY4y = {FQ)sy — [TAC)a4, olJACIG o FQlw (7056)

Thereby, in (69), a = m? — 2¢ degrees of freedom on {}, have been reduced out.
In the following, we propose, only (70a) is required formed, since {F} in (70b)
vanishes for a converged solution to (9) and/or (10a-10b).

Reduction of element matrix order to the linear basis form via (70a) poten-'
tially admits selective basis degree manipulation for SGM element matrices. All
higher-degree (k > 1) Lagrange basis functions may be chosen for condensed
element diffusion matrices. However, the admissible forms are not arbitrary.
Specifically, the thorough analysis documented in [17] confirms that condensation
is consistent only for the diffusion matrix, [Dk]f. The condensed mass matrix,
[M, )%, loses normalization, while the condensed convection matrix, [U; J?, contains
an inverse of a zero. Hence, in comparison to (7), the SGM FE semidiscrete
evaluation of a Galerkin weak statement produces the modest rearrangement

[M]=S.[M,],
{R} = S.(({U,), + €[ D1 Q1)) — (b(2)}e)

)
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The subscript S denotes the extremum polynomial degree order of the diffusion
matrix SGM embedding, while the superscript R specifies condensation operation
described in (704). Note that in (71) the order of all element matrices is identical.
For notational simplicity, hereafter we denote [ D, J® simply as [ D).

APPENDIX B: 1-D SGM FINITE ELEMENT BASIS

In search of the SGM basis functions in one dimension (13), {N}" = {Nj, Ny }
(say), recall Figure 1d, Macsyma™ (1988) is used to derive a set of integrals, via
(13), that are finite and definite integrable. Selecting the SGM g,, the final
indefinite integral expressions for N} and N are

lxl{ C,C,

Ns(x) = [ w\"

Jx} A
&

172 172
i -—] & Nef) = [ ] dr  (72)

where

A =576(c — 1)°x® — 3,456(c — 1)’hx” + 48(c ~ 1)°(175¢ — 198)h2x"
— 240(c — 1)%(43c — 66)h%x° + 20(c — 1)(320¢? — 1,161c + 873)h*x*
— 160(c — 1)(10c2 — 75¢ + 81)A°x® — 100(28¢> — 90c + 63)h°x?
— 300(5c — 6)A’x — 225h° (73)
B = 2,304(c — 1)*x® — 11,520(¢ — 1)*hx” + 960(c — 1X25¢ — 27)h%x®
~ 3,840(c — 1)(7c — DA% + 80(215¢? — 488c + 378)h’x*
— 1,200(5¢% - 19¢ + 15)A%x + 300(c — 6)(3c — 4)h’x?
+ 900(c — 2)A"x + 225k® (74)
C, = dcx? — 4x* — dchx + 4hx — h? (75)

C, = (12ax® — 12x° — 30chx? + 30hx? + 20cxh® — 30xh? + 15k%)°  (76)

D = 48cx* — 48x* — 120chx® + 120hx® + 100ch?x?
— 120h%x?% — 30ch®x + 60K°x — 15h* N

Despite the complexity of these polynomials as a general function of ¢, for a
particular ¢ the rational fractions becomes much simpler.

Consider the S = 2 (that is, k = 2 reduced) 1-D basis function set {N;} as
defined by (13):

d{Ng} di{Ng}"
fn dx dx

e

(78)

d(N,_,} d(N,_,}" d"“
dx dx

ds = j;) g{x,¢)
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The general form of 1-D SGM bases is expressed in (14) as

(79)

(Ns}={1—n(€)}

w(<)

For g(x,c) = {1,¢,1{N,.,}, the 1-D SGM matrix is given in (16). Substituting
s, = dp({)/d{, one may rewrite (78) as [23]

d{NS} d{Ns}T 1 1 -1 1, 2c+1 1 =1
jn! — dx=h—e[_1 ]fou;d{= 3, [_1 1] (80)

12
jo utdl = — (81)

Let us select, @, = 1 and a; = 0,i > 2 for x in (14). Then, u = {°, where «
will be determined from (81) as follows:

f,(dga]z 2¢+1  a%?2 ' 2c+1
= ie., = or
o | dg 3 2a—1 1 3 )
a? 2c+1 _
2a-1 3

Hence, a=r + Vr? —r, where r =(2c + 1)/3. One may readily verify that
a = 1for ¢ = 1 and a becomes imaginary for ¢ < 1, thus ¢ = 1 is the lower limit.
Examples of {Ny(c)} are graphed in Figures 10a and 10b.

APPENDIX C: EFFECT OF ¢, AND ¢, IN 2-D SGM MATRICES

In higher dimensions, however, the directional influence becomes important.
The aspect ratio of an element (e.g., in 2-D 8§X/8Y, Figure 10) and the directional
values of ¢ affect the ratios of the diagonal to off-diagonal terms of a diffusion
matrix. A general relationship for the terms in the 2-D diffusion matrix is graphed
in Figure 10. Unlike the Lagrange diffusion matrix, in the SGM diffusion matrix
the ratio dy,/d,; increases as a function of ¢,c, increases, Figure 10c. In Figure
10d, the comparison between the Lagrange (connected lines) and the SGM
(points) diffusion matrices are documented as a function of the element aspect
ratio.
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For ¢, = ¢ = c,, the SGM diffusion matrix is of the form (24) with

_ (2c + 1)(656¢° + 2,032¢? + 1,838¢ + 549)

n 15(148¢? + 164¢ + 73) 2 = dy = du
(2c + 1)(2¢ + 3)X(148¢? + 164¢ + 73)

do == 15(148¢? + 164¢ + 73) = dy =dy = dy )
(2Zc + D(4c + 1)(16¢% + 118¢ + 111)

hs = - 15(148¢? + 164c¢ + 73) =dy =du =dg
(2c + 1)(2¢ + 3)(148¢? + 164¢ + 73)

d,=— =dy =dy=dy

15(148¢2 + 164c + 73)

APPENDIX D: BOUNDARY FLUX COMPUTATION

In one dimension, the system matrix algebra statement for the linear form of
(9) can be written as

by ¢ o ] (9] B._g
a; b, ¢ Q2 0
. = (84)
a;_1 by o ||QT-1 0
O a, b, Qi B,

rather than as a Newton algorithm (104). While solving for the {Q} in (84), one may
enforce the Dirichlet boundary condition (say, at x = 0) by setting ¢, = 0 by
setting ¢, = 0 and B,_, = b,Q,. Similarly, setting a, =0, b, = 1, and B,_, =0,
in (84) will enforce a Dirichlet boundary condition at (x = L) on the solution of
(84) for {Q).

Once the solution fluid {Q} is known, the boundary fluxes corresponding to
locations where Dirichlet node(s) exist may be determined in two ways. The
simplest way is to use

. =60, + O,

X -

(85)

F=d_L =a,0,_, +b,0,
-L

Replacing (85) in (84), one may also opt for finding the (Dirichlet) boundary
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flux(es) via solving the redefined system matrix algebra statement,

O
| - L
b . — €114 Cr1 Qr -1
a;_, 71 b, b, FJ
a,; 1
b; b,

17§

(86)

Note in (86) that both ends of the domain are considered as containing Dirichlet
boundary data.
In general, therefore, the direct flux computation at nodes on a dirichlet
boundary can be done via the following matrix product:

[VHQ} = (flux}

(87

where @ is the final solution for a d-dimensional problem statement and [J] is the
decoupled, full-dimensional Jacobian formed for each particular dependent vari-
able.



