
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of Florida]
On: 24 September 2009
Access details: Access Details: [subscription number 908198731]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Numerical Heat Transfer, Part B: Fundamentals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713723316

NONLINEAR SUBGRID EMBEDDED FINITE-ELEMENT BASIS FOR STEADY
MONOTONE CFD SOLUTIONS, PART II: BENCHMARK NAVIER-STOKES
SOLUTIONS
Subrata Roy a; A. J. Baker b

a Computational Mechanics, Knoxuille, Tennessee, USA b Mechanical and Aerospace Engineering and
Engineering Science, University of Tennessee, Knoxuille, Tennessee, USA

Online Publication Date: 01 January 1998

To cite this Article Roy, Subrata and Baker, A. J.(1998)'NONLINEAR SUBGRID EMBEDDED FINITE-ELEMENT BASIS FOR STEADY
MONOTONE CFD SOLUTIONS, PART II: BENCHMARK NAVIER-STOKES SOLUTIONS',Numerical Heat Transfer, Part B:
Fundamentals,33:1,5 — 36

To link to this Article: DOI: 10.1080/10407799808915021

URL: http://dx.doi.org/10.1080/10407799808915021

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713723316
http://dx.doi.org/10.1080/10407799808915021
http://www.informaworld.com/terms-and-conditions-of-access.pdf


NONLINEAR SUBGRID EMBEDDED
FINITE-ELEMENT BASIS FOR STEADY
MONOTONE CFD SOLUTIONS, PART II:
BENCHMARK NAVIER-STOKES SOLUTIONS

Subrata Roy
ComputationalMechanicsCorporation, Knoxville, Tennessee, USA

A.I.Baker
Mechanicaland AerospaceEngineering and Engineering Science,
University of Tennessee, Knoxville, Tennessee, USA

A nonlinear subgrid emkdded (SGM) finite-element basis is established for genera/ing
monotone solutions via a CFD weak statement algorithm. The theory confirms tha: only the
Nauier-Stokes dissipative jlux vector term is appropriate for implementation of the SGM,
which thereafter employs element-level stauc condensation for efficiency and nodal-rank
homogeniety. Numerical results for select benchmark compressible and incompressible
steady-sUIte Nauier-Stokes problem definitions are presented, confirming theoretical predic­
tion for attainment of monotone solutions devoid of excess numerical diffusion on
minimal-degree-of-Jreedom meshes.

INTRODUCTION

Consider the Navier-Stokes conservation law system for state variable q =

q(xj , I) of the form

aq a
2'(q) = - + -(f. - f~) - s = 0at sx, } }

}

(lb)

where q = {p, m., E} or {U i , El} for compressible or incompressible fluids, while
f j = !(uj ' q, p) and fj = ![e(aq/axj ) ] are the kinetic and dissipative flux vectors,
respectively. For compressible flow, pressure p = p(q) is characterized by a ther­
modynamic gas law, the convection velocity definition is U i = mjp, and E > 0 is
typically inverse Reynolds number while s is the source. For incompressible flows,
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6 S. ROY AND A. J. BAKER

NOMENCLATURE

A scalar constant Q discrete state variable
C, Cj continuum SGM parameter (set) r rj 1 Tij distributed SGM parameter (set)
d dimension of the problem R statically reduced matrix
det, transformation matrix-determinant {R} solution residual vector
[D. I, Lagrange diffusion matrix !!ld real d-dimensional space
[Osl, SGM diffusion matrix !!l+ temporal half-space
e finite element Re Reynolds number
E volume-specific total energy s source tenn
f(-) function of (.) S SGM polynomial degree
rj kinematic flux vector S, element matrix assembly operator
r~ viscous fluxvector t time
J

fT,9ij SGM (correlation) function T temperature
{FQ} Newton residual vector uj,U velocity vector
s.s, SGM element embedding function [VI, convection matrix
{G} nodally distributed SGM vector IVI absolute value of velocity V
h, «; h1j finite-element length measure V, volume (area) of a finite element
[JACI Jacobian matrix x j spatial coordinates
k Lagrange Polynomial degree a SGM polynomial function of c
L,R element leftyright of node j (3 artificial diffusion coefficient
.9', -? partial differential equation Ojj Kronecker delta

operator i1t computational time step
m momentum flux E, e, physical diffusion coefficient
[Ml assembled mass (interpolation) , local normalized coordinate

matrix TI, 11; local natural coordinate
{N.} Lagrange basis function of degree k 9 implicitness parameter
{Ns} SGM basis function of degree S p density
p,P static pressure <I> continuityconstraint
Pr Prandtl number ljJ streamfunction
q continuum state variable w vorticity
IIqllE energy seminorm of q n domain

in (lb) the Laplacian operates on the auxilliary state variable q. = {t/>, P)T, where
t/> is a continuity constraint variable and P is kinematic pressure. Appropriate
initial and boundary conditions close system (1) for the well-posed statement.

Computational difficulties occur as e ..... 0, leading to occurence of "wall
layer" solutions containing large local gradients. In computational fluid dynamics,
(CFD), this is the natural occurrence for Reynolds number becoming large. Thus,
even though the analytical solution to (1) remains smooth, monotone, and bounded,
the spatially discretized CFD solution process becomes dominated by an oscillatory
error mode, prompting the creation of artificial (numerical) diffusion mechanisms
to control instability promoted by the inherent Navier-Stokes nonlinearity in f j .

The CFD algorithm research goal is to obtain an efficient, multidimensional,
"arbitrary" grid algorithm that extracts an accurate, stable, and monotone solution
for (In) on a practical mesh for arbitrary e. Stabilizing techniques such as artificial
viscosity methods [1-3], flux correction operators [4-6], nonlinear interpolation
limiters [7] for essentially nonoscillating (END) solution are available, but solutions
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NONLINEAR SUBGRID EMBEDDED FE, PART II 7

still exhibit oscillations near strictly local extrema and the multidimensional imple­
mentational can be problematical.

Solution-adaptive "p and h-p" forms of finite-element (FE) algorithms for
handling solution mesh adaptation in an automatic manner have been extensively
examined [8-14]. At a significant cost in increased algorithm operation count and
storage requirements, several advantages including "unstructured meshing" accrue
to these algorithms. However, solution monotonicity is typically not a theoretical
ingredient in formulation of these algorithms.

In distinction, the subgrid embedded (SGM) finite-element basis theoretical
development [15] addresses the fundamental issue of multidimensional practical
(coarse) grid solution accuracy with guaranteed monotonicity and minimal (optimal)
numerical diffusion. It is based on a genuinely nonlinear, nonhierarchical, high-de­
gree finite-element basis for use in a discretized approximation of a weak state­
ment algorithm. Verification for both linear and nonlinear convection-diffusion
equation SGM finite-element solutions is documented in [15]; d. Figure 1, where
small E (t9'1O- 5) monotone and nodally accurate solutions are obtained on coarse
grids.

The SGM basis construction is distinct from reported developments in the
area of subgrid scale resolution, including hierarchical ih-p) elements [16] and
nodeless bubble functions [17]. The SGM development employs strictly classical
Lagrange basis methodology, and the SGM basis is applicable only to the dissipa­
tive flux vector term fj in (Izz) [18]. The discretized kinematic flux vector f j
remains a "centered" construction via the parent strictly Galerkin weak statement.

The key efficiency ingredient of the SGM element is reduction to linear basis
element matrix rank for any embedded degree. This is in sharp contrast to
conventional enriched basis finite-element/finite-difference algorithms, as the
SGM element strictly contains matrix order escalation, hence increased computer
resource demands. The results reported here are companion to [15], and document
algorithm performance for steady-state solutions of the Navier-Stokes equations
(Ia)-(lb) for quasi-ID compressible and 2D incompressible benchmark problem
statements.

NAVIER-STOKES CONSERVATION LAW FORMS

Three distinct formulations for the NS system (Ia)-(Ib) are considered in
this article. The compressible flow benchmark is an off-design de Laval nozzle flow
in a quasi-ID viscous specification. Hence,

q = {~}

m
m 2

-+p
p

(E + p)m

p

o
4 au

f/ =N = 3Re ax
7 or 2 au

-- -- + -u­
2Pe ax Re ax

(2a)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
F
l
o
r
i
d
a
]
 
A
t
:
 
1
4
:
4
8
 
2
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



8 S. ROY AND A. J. BAKER

2.0

ra- • -ea SaM .olutlon
Analytlca' .olutlon

1.6

Re Nnode

1.0

j 10.000 9

50.000 9
Jjj 0.6

I
0.0

-0.5

-1.0
0.0

937

4687

0.6
Mesh

(a)

0.0

Mesh

(b)

Dirichlet flux
x=O x=1

o
o

·8000

Figure 1. SOM clement steady-state solutions for convection-diffusion verification problems
[15]. (a) Linear Peclet problem. I/E = Pe .. 5 X 104 ; (b) nonlinear Burgers initial and final
solution at 1/E = Re = 10'.
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NONLINEAR SUBGRID EMBEDDED FE, PART II 9

P

(E + p)m

P

s=

din A(x)
- m --dx-:--

m 2 din A(x)

dx

din A(x)

dx

(2b)

where P is density, m is momentum, pressure is p = ('Y - 1XE - m 2j2p), E is
volume-specific total energy, 'Y is the ratio of specific heats, and A(x) is the nozzle
cross-sectional area distribution.

The nondimensional groups in (2a)-(2b) and thereafter are the Reynolds
and Prandtl numbers with definitions

and (3)

where L ref and U,ef are select reference length and velocity scales respectively, vrer
is the reference kinematic viscosity, cp is the reference specific heat, kref is the

ref

reference thermal conductivity, and Po is reference density.
Two 2D incompressible isothermal Navier-Stokes formulations are evaluated.

The vorticity-streamfunction (w - r/J )-dependent variable transformation ensures
continuity [19], hence for isothermal 2D flow,

q = (w} and qa = (r/J} (4)

The resultant forms for (l a) and (1b) are

aw aw 1 a2w

2'(w) = - + u· - - - - = 0at ) ax} Re ax}
(Sa)

(5b)

and the no-slip kinematic boundary condition constraint for w is derived from (5b).
The second incompressible formulation is of "pressure relaxation" form,

involving a constraint for continuity and a computation for genuine pressure [20].
The resultant state variable definition for isothermal flow is

and (6)
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10

where the forms for (I b) are

S. ROY AND A. J. BAKER

iJZp
y{p) = - - - stq) = 0

Q sx]

(7a)

(7b)

Pure Neumann boundary conditions exist for both members of qQ' and during
iteration, the approximation to the action of pressure is of the form

1 .
pn+l --+ P" "" P" + -- E4>'

(J tit i
(8)

The discretely divergence-free velocity field thus attained is employed in evaluation
of the source term in (7b).

THE FE WEAK STATEMENT FORMULATION

The three selected conservation law Navier-Stokes (NS) systems exhibit
distinct formulational aspects. Independent of the specific form for q, ~, 1/, and
qQ in (Ia)-(Ib), spatial and temporal discretization of a Galerkin weak statement
always produces a nonlinear algebraic statement. The finite-element (FE) spatial
semidiscretization of the domain 0 of (la)-{lb) employs the mesh Oh = U, 0e'
where 0e denotes the generic computational finite-element domain. Using super­
script h to denote "spatial discretization," the FE approximation form for the state
variables in (Ia)-(Ib)

(9)
e

(IO)

where {.} denotes a column matrix, superscript T its transpose, and the FE basis
set (Nk(x)} contains Lagrange polynomials complete to kth degree. For example,
the 10 Lagrange basis function sets for 1 .. k .. 3 are

(

(I - O(I - 20)
{Nz}= 4(I - OC

C{2C -;- 1)

(I- OUz - C+ n
(I- OC(2 - 30
(I - C)C{3C - 1)

cuz-C+~)

(II)
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NONUNEAR SUBGRID EMBEDDED FE, PART II 11

where C(x) = (1 + T/)/2 and T/:(-1,1) is the local normalized natural coordinate.
The d-dimensional forms and extensions are well known; cf. [15).

The spatially discrete FE evaluation of the Galerkin weak statement GWSh for
(La) leads to the form

(12a)

(12b)

where the Green-Gauss divergence theorem exposes the indicated boundary fluxes
on anh, S. symbolizes the "assembly operator" carrying local (element) matrix
coefficients into the global arrays, and dr and d a denote differential elements on
n and an, respectively. The surface integrals in (12b) contain unknown boundary
fluxes wherever Dirichlet (fixed) boundary conditions are enforced.

The companion Taylor weak statement TWSh [1) extended to system (La),
under certain simplifications, yields the modified form

(13)

(14)

where A j = af}/sq is the kinetic flux vector Jacobian and f3 is a parameter
eligible for optimization [1). Independent of the dimension d of n, and for general
forms of the flux vectors, GWSh in (12a) always produces a nodal-order (large)
ordinary differential equation (ODE) system of the form

d{Q(t)}
GWSh = [M) + {R(Q)} = {OJ

dt

where d{Ql!dt == {QY vanishes at steady state. The system square matrix [M) and
residual column matrix {RQ} are formed via assembly over nh = un. of corre­
sponding element rank matrices, i.e.,

[M) = S.[Md. and (15)

where subscript k in (15) emphasizes dependence on FE basis degree k in (10).
The form (14) provides the statement of local time derivative necessary to

evaluate a temporal Taylor series. For example, selecting the 9-implicit one-step
Euler family,

{Q(tn+l)} == {Q}n+l = {Q}n + ~t[O{Ql'n+1 + (1 - O)(Ql'n) + ~(~tf(O)

= {Q}n - MMr1(O{R}n+l + (1 - O)(R}.) (16)
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12 s. ROY AND A. J. BAKER

where subscript n deno1es discrete time level. Clearing [MI- 1 and collecting terms
to a homogeneous form yields the WS h + OTS algorithm terminal algebraic form,

{FQ} = [MI{Qn+l - Qn} + M(O{R}n+l + (i - O){R}n) = {OJ (17)

The discrete Galerkin weak statement for (1b) produces a companion matrix
system,

{FQA} = [DllQa} - {SeQ)} = {O} (18)

where the symmetric square matrix [DI is the discrete Laplacian, {Qa} is the nodal
array of q:, and (SeQ)} contains dependence on q'' via solution {Q(t}} from (17).

The Newton algorithm forsolution of (17) is

[JAC]{8QjP+ 1 = - {FQ}~+ I

where, for iteration index p,

p

{Q}~~\ == {Q}~+l + {8QjP+l = {Q}n + E {8Q}i+l
i= 1

and the Newton Jacobian definition is

(19)

(20)

a{FQ} ( a{R) )
[JACI = a{Q} = [MI + OAt a{Q}

a{FQA}
a{QA} = [DI (21)

THE SGM FINITE ELEMENT

The SGM element construction for a 1D scalar model of (1a) leading to a
theoretical nonlinear monotonicity constraint via enforcement of a real eigenvalue
spectrum for the GWSh algorithm recursion stencil is detailed in [15]. The
nonlinear extension of this theory leads to prediction of an optimal distribution of
the SGM embedded parameter (sets) on each element, hence over the mesh nh •

The theoretical generalization to nonuniform, d-dimensional discretizations leads
to some issues still requiring resolution, to fully achieve the potential for attain­
ment of nodally accurate monotone solutions on arbitrary d-dimensional meshes.

The global assembly of the element canonical form of the diffusion matrix
[D I. resembles an identity matrix, excellent for numerical computation indepen­
dent of the basis degree k ([181, sec 5.5). Conversely, the assembly of the element
canonical convection matrix [VI. always yields a null matrix. In addition, in higher
dimensions, the matrix [UI. cannot be statically condensed, as the convective
information contained at element mid-side nodes may not be eliminated. Hence,
contrary to the convective flux vector manipulation as a stability-enhancement
approach, the SGM element procedure is restricted to the diffusion matrix result­
ing from f/ [181.

,The 1D Lagrange linear (k = 1) and quadratic (k = 2) FE basis polynomial
set, the k = 1, p = 2 hierarchical (bubble) element, and the SGM S = 2 (k = 2,
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NONLINEAR SUBGRID EMBEDDED FE, PART II 13

reduced} Lagrange element for one dimension are compared in Figures 2a-2d.
Both the Lagrange k = 2 and p-hierarchical elements contain an extra degree of
freedom {node 2 in Figures 2b and Zc). For the SGM element, the explicit
appearance of the embedded degree of freedom is eliminated via static condensa­
tion (15).

I
I

I~~:l (1-~)(1:-2~

1~ 3 '~__---:='6<;:::--__---..,.3----.:'
-I 0 I

(a)

1~:lj4~(1-~~ (~:I

1~~3
-I 1

(c)

4.

s t 6

I~'
(e)

1
-I

(b)

o
(d)

+ z'- I

[ >1,.-
I ,

t
~oricbW
~

X

(f)

y

Figure 2. Comparison of standard, hierarchical, SGM elements in one and two dimensions. (a) 1-0
Lagrange element, k = 1; (b) 1-0 Lagrange element, k = 2; (c) 1-0 hierarchical element, k = I,
P = 2; (d) 1-0 SGM Lagrange element, k', reduced; (e) 2-0 hierarchical element, k = 1,2,3 selec­
tively; (f) 2-0 SGM element, S = 2.
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14 S. ROY AND A. J. BAKER

For the linear dissipative flux vector FE construction, static condensation of
any k > 1 basis Lagrange element in one dimension simply returns the k = 1 form
[IS]. Therefore, the SGM theory augments the diffusion matrix via an embedding
function g(x, c), hence the name "SubGrid eMbedded." The definite integral form
of the SGM basis function set, denoted {Ns}, for [D]. in (15) is

(22)

where the statically condensed, reduced Rank form is denoted as IR• The embed­
ded polynomial g(x, c) contains one arbitrary parameter c for each additional
Lagrange degree k » 2. The form of the 1D SGM element basis set {Ns} for
k = 2 = S is expressed, analogous to the k = 1 Lagrange basis, (l I), as

(23)

where /L = '[,7.la; (jn is a polynomial function of an expansion coefficient set, a.,
dependent on embedding degree k, and the k = 1 local coordinate (, and a is a
function of c. A detailed computation of the SGM 1D basis is provided in [IS].

If the embedded polynomial in (22) is selected as quadratic, then g2 =
{l , c, 1}{N2}, where {Nz} is the Lagrange quadratic basis. Then, for S = 2 = k, the
3 X 3 element matrix form for [D]. prior to condensation is

1 [(l8C + 17)
[D k _ 2 ]. = ISh (7 - 2c)

e -(l6c + 24)

Static condensation of this matrix yields

(7 - 2c)
(l8c + 17)

-(l6c + 24)

-(l6c + 24)]
-(l6c + 24)
(32c + 48)

(24)

-(2c + 1)]
(2c + 1)

(25)

The discussion in [IS] (Appendix B) confirms that c ;;. 1 is the requirement. For
cal, [Ds_ 2 ]. in (25) is identical to the linear Lagrange matrix,

-il
This degeneracy is termed consistent, which occurs only for d = 1. Specifically, for
d > 1 dimensions, static condensation of a k > 1 diffusion matrix does not yield
the k = 1 form.
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NONLINEAR SUBGRID EMBEDDED FE, PART II IS

The d-dimensional form in the dissipative flux vector diffusion matrix [D], in
(11), formed via the SGM element (denoted by subscript S), is

(26)

(27)

and many selections are possible. For d ;;. 1, g2(x,c) is written as

(28)

For the d = 2 vector c = (cx,cy), the element array is {OJ[ = {l,l,l,l,cx'cy,cX '

cy' cxcyJ and {N2J is the corresponding Lagrange quadratic basis set. The array {OJ.
may be represented by the matrix outer product

(29)

which is pictured as the tensor product A 0 B of A = {l , cx' l} and B = {I, cy, 1J,
that is,

1 Cx 1.-0-. 0

The d = 3 extension is obvious. Element constructions for d = 2 are illus­
trated in Figures 2e-2f. Figure 2e graphs a p-hierarchical 2D element with two
quadratic sides (p = 2), one cubic side (p = 3), and a linear side. The k = 2
(S = 2) condensed 2D SGM element, graphed in Figure 2[, is very distinct from
both the p-element and the Lagrange k = 2 element.

The diffusive flux vector matrix [D], in (11), formed with the Lagrange
bilinear (k = 1) basis in two dimensions for a generic cartesian element of unit
span is

-1
4

-1
-2

-2
-1

4
-1

-1]-2
-1

4

(30)

where det, is the transformation matrix determinant, equal to one-fourth the plane
area of fi•. The S = 2 extremized form for (26) for two dimensions is constructed
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t6 S. ROY AND A. J. BAKER

as

[ dB
d12 d l3

d" ]_ det, d2 1 d 22 d23 d24 (31)lOsI. - -6- d d 32 d33 d3431

d41 d42 d43 d44

where each matrix element dij in (31) is a distinct polynomial function of c; and cy
[181. For example, assuming that Cx = c = cy, the first term in (31) becomes

2c + 1
d ll = 15(l48c2 + 164c + 73) (656c

3 + 2,032c
2 + 1,838c + 549) (32)

Simplifying further to c, = cy = c = 1, the S = 2 SGM diffusion matrix form is

[

29
det._11

[Dsl. = 66 -7

-11

-11
29

-11
-7

-7
-11

29
-11

-11]-7
-11

29

(33)

The distinctions between (30) and (33) are apparent.
For general applications, a nodally distributed (subscript j) SGM parameter

is preferable to an element parameter. Therefore, defining rj = (2c j + 1)/3, the
mono tonicity constraint form becomes

2c + 1 lulh. IU.lh.~e
1 == r, ~ _1_1 = 1 1 (34)
3 t r E.'T 7

where Reynolds number Re replaces E and 7> ° is a real number. In one
dimension, 7 is precisely .determined from the eigenvalue analysis, hence 7 = 2
for the linear convection-diffusion (Peclet) problem, 7 = 6 for the linear stationary
wave definition, while 7= 3 for the nonlinear convection-diffusion (viscous Burg­
ers) equation [151. However, for multidimensional problems, determining a suitable
functional form for 7 involves definition of a correlation function .'T;j = !(Re, det.),
the form of which must be validated.

For velocity field Uj = (u l j ' U2j' U3)' principal coordinate mesh measures h l j ,

h 2j , and h 3j , and principal coordinate diffusion parameter set Ej = (Elj, E2j, E3j),

the condition for a d-dimensional monotone solution is expressed for scalar
components of rj = (r i j , r2j , r3j ) in (29), and this correlation function .'T;j is

where.'T;j = (

AV )l/d
d _ / ' 1 .;; i .;; d, and 1 .;; j .;; N node

El j h l j

(35)
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Hence, only the scalar 0 < A < 2 remains undefined, and must be estimated. V.
(= 2d det.) is the volume (area) of the d-dimensional element, and the form for!T;j
was determined using computational data from the 2D and 3D linear Peelet
problem solutions [15].

The steps forming the SGM element GWSh solution process include:

1. Use the monotonicity constraint (34)-(35) to compute cj or rj , or estimate
rij = [(u j ' hj' Re), For the node where rj , ri j , cj < 1, the value is obtained
as the average from neighboring nodes.

2. Form

where gz(c) = {GV{Nz}'
3. Rank reduce [D]e to [Ds]e via static condensation.
4. Form the weak statement WSh (17)-(21) for the discretized domain

fih Ue fie'

5. Solve (19).
6. Return to step 1 and repeat the process until solution is converged.

RESULTS AND DISCUSSION

Computational results verifying theory and summarizing performance for
select Navier-Stokes problem statements are presented. The problem domains lie
on ffid for d = 1,2 in (la)-(1b), with the SGM element appropriately formed.
Steady-state solutions of the Navier-Stokes equations (la)-(1b) for quasi-H)
compressible de Laval nozzle shock, 2D incompressible flow in a shear-driven
cavity, and 2D incompressible flow over a backward-facing step duct document
application of the SGM element.

A traditional measure for estimating semidiscrete approximation error, eh =

q - q", is the L z"energy seminorm" 11,11£, defined as

for 1 '" j '" d (36)

where € remains the diffusion coefficient in the dissipative flux vector in (Lc),
For a ID axisymmetric steady conduction problem, the gt embedding and

S .. 2 SGM element solution convergence rate is documented in [15]; d. Figure 3.
The slope of the convergence rate increases rapidly as S increases. Specifically, for
S = 4, the convergence data are interpolated by a line of slope 12.6, which exceeds
the classical k = 4 slope of 8. It is also noted in [15] that for ID linear and
nonlinear convection-diffusion problem, the gz embedding and S = 2 SGM ele­
ment "solutions exhibit no convergence rate, since the solution is nodally exact"
for the computed value of cj or rj via (34). However, the solution energy norm may
overshoot or undershoot for an overprediction or underprediction of cj or rj •
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<,
Q 3 6 g 17

Number of nodes In mesh (NnOde)

(a)

2: 3 a 9 17
Number of nodes In mesh (Nnode)

(b)

a 3 5 g 17
Number of nod•• In mesh (NnoCle)

(e)

line 00. k S slope

1 1 0 2.0
2 2 0 4.0
3 0 2 4.5
4 0 3 6.2
5 0 4 10.6

line no. k S slope

1 1 0 2.0
2 2 0 4.0
3 0 2 5.5
4 0 3 6.9
5 0 4 12.6

Flux from Weak Statement

IIn8no. k S slope

1 1 0 2.0
2 2 0 4.0
3 0 2 5.3
4 0 3 6.5
5 0 4 10.0

Figure 3. Convergence study for 10 steady heat conduction problem [15]. (a) Max norm; (b) energy
norm; (e) boundary flux point.
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Quasi-1 D Compressible de Laval Nozzle Shock Verification

The quasi-1D compressible Navier-Stokes form is stated in (20)-(2b). The
normalized variable crossection A is defined for a de Laval nozzle geometry,
Figure 40, using the problem specification of [21], that is,

A(x) = {1.75 - 0.75 cos[2(x - O.5hrl
1.25 - 0.25 cos[2(x - 0.5hrl

0.0 ~x ~ 0.5
0.5 ~ x ~ 1.0

The nondimensional initial condition for state variable q is the sonic throat,
shock-free isentropic solution for (37). The reference state is inflow, hence the
boundary conditions are p(O, t) = 1.0 = Pin' £(0, t) = 1.0 = £in, and p(l, t) =

Pnut = 0.909. The corresponding inlet Mach number is Main = 0.2395.
The verification problem definition is the steady state following an impulsive

change from isentropic flow by decreasing the exit pressure Pout from 0.909 to
0.864. The resultant expansion wave propagates upstream to the throat, hence
triggers formation of a (normal) shock that moves downstream. The analytical
solution shock is located at x = 0.65 and the shock Mach number is Mas = 1.37.
First, the nozzle domain is uniformly discretized into 50 elements. The nondissipa­
tive GWS algorithm solution diverges for this problem. The TWS dissipative
algorithm for fJ = fJq = 0.1-0.2 converges to a steady state with shock location
and sharpness, hence nonmonotone character, as a function of fJ, Figure 4b. A
close look near the shock region reveals that the TWS fJ = 0.2 solution is
substantially diffused, while the fJ = 0.1 solution is nonmonotone (oscillatory). The
SGM solution Mach number distribution for g,; = 9, .9E = 10, g;;, = 12.0 at Re =
106 is also plotted in Figure 4b It is monotone and follows the analytical solution
more closely than either TWS solution. Figure 4c verifies the monotonicity of the
SGM solution during time evolution to steady state. Finally, the SGM solution on a
modestly nonuniform 50-element mesh is monotone and accurately captures the
steady-state shock across two nodes at Ma = 1.369 and 0.78, Figure 4d. The
analytical solution is also plotted for comparison, documenting that this nonuni­
form mesh SGM solution is essentially the Lagrange interpolant of the exact
solution. The iteratively determined SGM parameter set, as determined via (35)
and the distributed rsgmqr is plotted in Figure 4e. For Re = 106

, the parameters
range between 103 and 104

, and a very sharp shock point operator is confirmed
present.

Shear-Driven Cavity Flow

The laminar flow of an incompressible fluid in a square cavity with the top lid
translating at constant velocity in its own plane is a standard benchmark problem.
Despite the boundary condition singularities at the two comers, for moderately
high values of the Reynolds number Re, published comparative results of accepted
accuracy are available (cf., [22]-[25]) on moderate to very dense meshes. For
example, [25] used a 51 x 51 uniform mesh for a least-squares finite-element

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
F
l
o
r
i
d
a
]
 
A
t
:
 
1
4
:
4
8
 
2
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



20

3

S. ROY AND A. J. BAKER

Unlfonn mesh. 5 I nodes
..................................................... 0&•••• u .

0.0

1.2

0.2 0.'
(a)

0.'

I

0.8 1.0

0.0 0.2 0.' O.B 0.8 1.0
Diswlco.

(b)

...
lnitialCondition
4.00E-01

1.2
8.00J!.<l1

I.l)OE+OO- SOMS_S1xIo
1.0

I
~

0.8

j O.B

0.'

0.0 0.2 0.' O.B D.8 1.0
Diswlco.

(c)

Figure 4. Steady-state solution Ma and rsgm q distribution for
compressible flow, Re = lOB. (a) de Laval nozzle geometry; (b) TWS
and SGM comparison on uniform mesh; (c) time evolution of SGM
solution.
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AnAJytical Solution
o SOMSteady Swe1.2

1.0

t
~

0.'

j 0..

0.'

0.0

..,.,
'.01!3

'.0£3

0.0

0.2

-RSQR

-- RSOB
-ROOM

0.2

0.4 0.6
Distance'"

(d)

0." 0.6
IlisIaDco x

(e)

0.'

0..

1.0

1.0

Figure 4. Steady-state solution Ma and rsgmq distribution
for compressible flow, Re = 106 (Continued). (d) SGM
solution on 51-node nonuniform mesh; (e) steady-state
distributed SGM parameter rsgmq •

method (LSFEM) solution, while [22] employed up to a 257 X 257 uniform mesh
via a multigrid approach for 100 <;; Re <;; 10,000. For Re <;; 100, all results agree
well, indicating that coarser grids usually employed by practitioners are adequate.
As Re increases, however, coarse mesh inadequacy becomes fully apparent. This is
particularly evident in the solutions reported in [23]. Nevertheless, the fourth­
order-accurate spline method [24] solution remains satisfactory computed on a
17 X 17 mesh at Re = 1,000, but "the corresponding computer time becomes
large."
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The driven-cavity problem, via the vorticity-streamfunction form (5a)-(5b),
was studied using GWSh and SGM h algorithms for 100 E; Re E; 3,200 on coarse
(17 X 17) to moderately dense (65 X 65) meshes [18]. The solution comparisons
are documented here for Re = 3,200 computed on nonuniform meshings. Figure 5
compares two GWSh and SGM h vorticity solution distributions in perspective with
corresponding 17 X 17 meshes overlaid. (Color figures are available for Figures
5-8 and Figures 12-14 at http://cfdlab.engr.utk.edu/htmI/SGM/index.htmI.)
The GWSh vorticity solution, Figure 5a, is totally polluted by a mesh-scale
dispersive error oscillation near the moving lid. The companion SGM h vorticity

z

.A.

z

.-'

(a)

(b)

TOPLID MOVING _____

FE MESH, NNODE .17<'7

TOP LID MOVING ___

FE MESH, NNODE .'7.'7

LoveI OMGA

6E2
2E2
'EO

.IEO
·2EO
·2EO
·2EO
·2EO
·2E,
·5E,
·5E,
.7E,
·9E,
,'E2
-6E2

LoveI OMGA

F 6E2
E 2E2
OlEO
C ·IEO
B ·2EO
A -2EO
9 -2EO
8 -2EO
7 ·2EI
8 -5EI
5 -5EI
4 .7E'
3 -liE'
2 .,E2
I -6E2

Figure S. GWS· (a) and SGM· (b) vorticity solution comparison for driven cavity (Re = 3,200;
(3 - 0.0).
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leY.. OMGA

F 6E2

E 2E2
D lEO

C ·IEO
B ·2EO
A ·2EO

9 ·2EO

8 ·2EO
7 ·2El
6 -5El

5 ·SEI
4 ·7EI
3 ·SEI

2 ·lE2
1 -8E2

TOP LIDMOVING _

FE MESH. NNODE.33x33
z

X~

(c)

Figure 5. GWS· (Continued), (c) Vorticity solution comparison for driven cavity (Re = 3,200; f3 - 0,0).

solution, obtained with optimal nodally distributed parameter rsgmj ~ 1 on the
identical nonuniform 17 X 17 mesh, Figure 5b, verifies attainment of a monotone
solution exhibiting very sharp comer (singularity) extrema. This solution resolution
is comparable to that obtained via the GWSh algorithm on a double-density
(33 X 33), highly nonuniform mesh, Figure 5c. While neither was optimized, the
Newton algorithm computation time for the GWSh solution was nearly six times
that required for the SGMh solution, Figure 5b, and the memory requirement was
four times larger.

The accuracy comparisons to benchmark data for the 33 X 33 GWSh solution
is essentially identical to the 17 X 17 SGM h solution summarized in Figure 6. The
normal arrowheads on each secondary vortex region graph locate the attachment
points documented in [22], Figure 3, on a 129 X 129 uniform mesh; the nonuniform
17 X 17 SGM solution agreement is excellent. The SGM solution u- and v-velocity
profiles through the geometric center, Figure 6, also agree within -1% with those
generated by the 57 times denser mesh solution of [22], Figures 2a and 2b, as
documented by the circles in Figure 6.

Pressure prediction is a postprocessing operation with a vorticity-streamfunc­
tion algorithm solution [20, 26] via solving a Poisson equation with source (the
nonlinear product of velocity derivatives). Pressure distributions computed from
the 172 and 332 GWSh solutions, and the 172 SGMh solution, are compared in
Figure 7. The SGM h solution clearly exhibits the "best" local extrema prediction.
However, an adverse effect of the coarse centroidal region mesh is also apparent;
compare Figures 7b and 7c.

The nonlinearly computed nodal distributions of the SGM h theory parameter
sets RSGM. and RSGM y are graphed in perspective in Figures 8a and 8b. To
assist in visualizing these data, the local u, v velocity scales are employed as the
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Figure 6. SOMh streamfunction and velocity solution details for driven cavity, Re = 3,200, rsgm, .. I.
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(a)

(b)

Level PRES

F 2E-l

E 8E·3
o 6E-3
C 5E·3
B 4E·3
A 5E-4
9 ·5E·3
8 ·7E·3
7 -lE-2
8 ·2E·2
5 -2E-2

4 ·2E·2
3 ·3E·2
2 ·3E·2
1 -3E-2
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E 2E·l
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6 ·IE-2
5 ·2E·2
4 -3E-2
3 -4E-2
2 ·5E·2
1 ·5E·2

2S

Figure 7. GWSh and SGM h comparison pressure solutions for driven cavity (Re = 3,200). (a) GWSh on
289-node mesh; (b) GWSh on 1089-node mesh.

elevation (z) reference. These distributions clearly indicate that the highest-level
RSGM x (RSGMy ) is computed where the scalar magnitude of u (v) is the highest,
and these data range (1,9) and (1, 13) for this nonuniform meshing.

Close-Coupled Step Wall Diffuser

This 2D benchmark geometry has been widely studied [27-30], specifically for
the wide, close-coupled geometry of [27], reporting laser-Doppler anemometer
measurements of velocity distribution and separation region attachment intercepts.
These data, for laminar, transitional, and turbulent flow measurements in air for
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(c)

\.8Y8I PRES
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o lE·2
C 5E·3
B -4E·3
A ·7E·3
9 ·lE·2
6 ·2E·2
7 ·2E·2
6 ·3E·2
5 ·3E·2
4 -4E·2
3 -4E·2
2 -4E·2
1 ·5E·2

Figure 7. OWS· and SOM· comparison pressure solutions for driven cavity (Re = 3,200) (Continued).
(c) SOM· on 289-node mesh, rsgm, ~ 1.0.

70 < Re < 8,000, confirm that the flow downstream of the step is essentially
two-dimensional only for Re < 400, and becomes fully turbulent and returns to
essential two-dimensionality for Re > 6,500.

Available fully 3D computational data for this geometry [20] predict that the
three-dimensionality for 400 .. Re .. 800 is confined mainly to the lateral sidewall
regions, while the symmetry center plane flow field exhibits an essential two-di­
mensionality (as the normal velocity component vanishes). In both two and three
dimensions, dispersion error control plays a critical role in maintaining CFD
solution process stability for Re > 400. Prior to these data, [28] conjectured that
the "abrupt change" in the flow structure from 2D to 3D flow was due to a
Taylor-Gertler vortex instability that caused spanwise-periodic counterrotating
vortex pairs aligned with the duct axis.

The fully 3D CFD solutions for 100 .. Re .. 800, [20], refute this conjecture;
i.e., the flow field transition to three dimensions proceeds smoothly for Re > 400.
In either two or three dimensions, as the Reynolds number increases, the solution
process becomes very sensitive to mesh resolution, hence stability, even using a Re
continuation procedure, i.e., using the lower Re solution as the initial condition.
The resultant instability in the GWSh algorithm flow field prediction in three
dimensions on an inadequate mesh was observed as periodic generation/annihila­
tion of the secondary vortex structure (x, to xs) along the top wall [20].

Therefore, a critical validation assessment in two dimensions is to predict the
laminar flow solution at Re = 800, which according to experiment and the 3D
computational solution, exhibits a steady state. There has existed some controversy
regarding the CFD existence of a 2D steady-state; recently, a quadratic basis
GWSh algorithm on a dense mesh [30] confirmed that the steady solution was
stable. The GWSh , TWSh , and SGM h algorithms were implemented for the
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Level RSGX

F 9EO
E 9EO
0 BEO
C BEO
B 7EO
A 6EO
9 6EO
B 5EO
7 5EO
6 4EO
5 3EO
4 3EO
3 2EO

Z(UII 2 2EO

J.-y 1 lEO

x
(a)

Level RSGY

F 3EO
E 3EO
0 3EO
C 3EO
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9 2EO
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7 2EO
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5 2EO
4 2EO
3 lEO

ZIU2) 2 lEO

x--'
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(b)

Figure 8. Nodal distribution of SGM" parameter RSGM for driven cavity (Re - 3,200) on a 289-node
mesh. (a) RSGMx perspective view, rsgm, '" 1; (b) RSGMy perspective view, rsgmy '" 1.
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continuity constraint algorithm, (6)-(7b), for 2D isothermal flow. The boundary
conditions are fully developed (parabolic) laminar inlet U profile with the V inlet
velocity zero and no slip on the top and bottom walls. At outflow, the Dirichlet
boundary conditions for pressure and 4> in (6)-(7b) were fixed at zero and the
velocity boundary condition was homogeneous Neumann.

Figure 9 summarizes GWSh algorithm-computed velocity vector distributions
for 100 ,:;;; Re ,:;;; 800, as obtained on a nominal-density 7 X 18 + 48 X 35 nonuni­
form mesh. The arrows perpendicular to the duct walls indicate the primary and
secondary recirculation reattachment coordinates reported in [27]. The solution for
the primary reattachment coordinate for 100 ,:;;; Re ,:;;; 400, Figures 9a-9c, agrees
essentially exactly with the experimental data, and the steady solution predicts the
insipient secondary region at Re = 400. However, agreement with data degrades
sharply with increasing Reynolds number for Re > 400, as the intrinsic GWSh

algorithm dispersive error mechanism yields an unsteady secondary separation
bubble that never achieves steady state, Figures 9d-ge. Figure 10 summarizes data
for a range of unsuccessful CFD attempts to obtain a 2D steady-state and accurate
solution for 100 ,:;;; Re ,:;;; 800.

The application of SGM h in promoting monotonicity, hence controlling the
GWSh dispersion error mechanism, constitutes the critical Re = 800 validation.
The velocity vector fields computed using the GWSh

, dissipative TWSh
, and a

statically condensed (but not SGMh ) quadratic-basis GWSh algorithm (labeled
p_WS h

) , and the SGM h algorithm are compared in Figures lla-lle. The arrows
labeled xl/S, x4/S, and xs/S indicate the measured primary and secondary
reattachment coordinates [27]. The GWSh and p_WSh algorithms did not produce
steady-state solutions on this mesh (these data are "snapshots" in the unsteady
solution). The TWS h steady solution comparisons confirm that inaccuracy in
predicting the shallow upper-surface secondary recirculation bubble leads to errors
of the order 20% in primary recirculation reattachment location. Conversely, the
SGM h algorithm solution primary reattachment coordinate (xt/S) error is about
2%, as the shallow secondary recirculation region is contained in span and with
extent within 95% agreement with data, although the X 4 intercept is displaced 0.15
xl/S units downstream of the data. The SGM h data for primary recirculation
attachment for 400 ,:;;; Re ,:;;; 800 are included in Figure 10, and clearly confirm
superior accuracy for the range of solution data plotted.

The monotonicity issue distinctions are graphically enforced using perspective
plotting of speed isosurfaces. The comparison U (scalar) perspective plots for the
GWS\ TWS\ and p_WS h algorithms at Re = 800, Figures 12a-12d, clearly show
the 2.ix error mode as "color diamonds" in the ( - 0.15-0.016), yellow (1.0-1.2),
and lemon yellow (0.84-1.0) ranges. The linear basis GWSh solution is clearly the
most dispersive, while the two TWSh solutions show selective improvement of this
error mode. The larger {3 = 0.20 TWSh solution, Figure 12c, does dissipate
essentially all local mesh-scale error. The nonartificially dissipative quadratic basis
p_WSh solution, Figure 12d, shows an increasing region of yellow level, while
evidencing modest nonmonotonicity in the orange-red diamonds. In clear distinc­
tion, the SGM h .algorithm solution, Figure 12e, is genuinely monotone, showing no
dispersion error (color diamonds). As a consequence, the ranges of red (1.2-1.3)
and yellow (0.84-1.0) fully extend into the solution domain, yielding the indicated
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Figure 9. GWS· solutions for 2D backward-facing step, 100 <; Re <; 800, on a nonuniform 7 X 18 +
48 x 35 node mesh.
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Figure 10. Primary recirculation reattachment coordinate, various solutions for 100 .. Re ..
800.

agreement with the primary recirculation data. The companion presentation for V
solutions, with mesh overlays for emphasis, is presented in Figure 13.

Figure 14 summarizes the SGM nonlinearly determined algorithm parameter
sets rsgmx and rsgmy' computed during the iterative solution process according to
(35), as a function of nodal velocity components, and the local directional mesh
measures, h , and hy and Re. The near-step finite-element mesh and SGM h U and
V speed solutions are also shown in perspective. The SGM h theory parameter
extrema are logically correlated with velocity and mesh coarseness, Figures
14d-14e, and the rsgmj levels for U are three orders larger than for V. The data
of Figure 14d could logically lead to a solution-adaptive meshing strategy, to
restrict the local variation in rsgmj , hence reduce the SGM h intrinsic dissipative
levels.

CONCLUSIONS

The subgrid embedded (SGM) Lagrange finite-element basis construction has
been implemented, verified, and benchmarked for semidiscrete approximate con­
structions of Galerkin weak statements for steady Navier-Stokes applications.
Element-level static condensation of the SGM Lagrange basis S '" 2 diffusion
matrix facilitates embedding of arbitrary-degree polynomials, guaranteeing the
minimal storage requirement associated with a k = 1 Lagrange-basis algorithm.
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GWS' velocity vectors, ~ = 0

X, IS

31
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10 15

SGM' velocity vectors, rsgm. <?: I, rsgm, <?: 1

X, IS
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xIS o 5

(e)

10 15

Figure n. Comparison velocity vectors for 2D backward-facing step, Re = 800, nonuniform 7 X 18 +
48 X 35 node mesh.
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Finite element mesh. 7 x 18 + 48 x 35
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Figure 14. SGM h solution perspective details for 2D backward-facing step, Re = 800.
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The presented results confirm the theory for both compressible and incom­
pressible Navier-Stokes applications. In comparison to other theories for gen­
erating higher-order-accurate and/or monotone solutions, the SGM element
advantages include guaranteed (nonlinear) monotone solution, excellent condition­
ing of the minimum-band system matrix, and improved stability via retained
diagonal dominance. Further, the SGM methodology permits retention of lexico­
graphic ordering for any embedding degree, hence exhibits the efficiency of strictly
linear basis (or centered FD) algorithms. The SGM finite-element Galerkin weak
statement algorithm thus exhibits the potential for fundamental impact on CFD
methodology, via its intrinsic nonlinearity and guarantee of minimum computer
memory and CPU requirements for high-accuracy monotone solutions on relatively
coarse meshes on !1P.
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