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NONLINEAR SUBGRID EMBEDDED
FINITE-ELEMENT BASIS FOR STEADY
MONOTONE CFD SOLUTIONS, PART I
BENCHMARK NAVIER-STOKES SOLUTIONS

Subrata Roy
Computational Mechanics Corporation, Knoxwille, Tennessee, USA

A. J. Baker

Mechanical and Aerospace Engineering and Engineering Science,
University of Tennessee, Knoxuville, Tennessee, USA

A nonlinear subgrid embedded (SGM) finite-element basis is established for generating
monotone solutions via a CFD weak statement algorithm. The theory confirms that only the
Navier-Stokes dissipative flux vector term is appropriate for implementation of the SGM,
which thereafter employs element-level static condensation for efficiency and nodal-rank
homogeniety. Numerical results for select benchmark compressible and incompressible
steady-state Navier-Stokes problem definitions are presented, confirming theoretical predic-
tion for attainment of monotone solutions devoid of excess numerical diffusion on
I-degree-of-freedom meshes.

INTRODUCTION

Consider the Navier-Stokes conservation law system for state variable g =
q(x;, ) of the form

aq d
= v — d .
.?(q)—&t+axj(fj—l'j)—s—0 on xtCcH!' XA 1<j<d (la)

d*q,
Zlq,) = - P s(g)=0 b)

i

where g = {p, m;, E} or {u;,®} for compressible or incompressible fluids, while
f; = f(u;, q, p) and f} = fle(3q/dx;)] are the kinetic and dissipative flux vectors,
respectively. For compressible flow, pressure p = p(q) is characterized by a ther-
modynamic gas law, the convection velocity definition is u; = m_ /p, and € > 0 is
typically inverse Reynolds number while s is the source. For incompressible flows,
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6 S. ROY AND A. J. BAKER

NOMENCLATURE
A scalar constant Q discrete state variable
€ ¢ continuum SGM parameter {sct) P i distributed SGM parameter (set)
dimension of the problem R statically reduced matrix
det, transformation matrix-determinant {R} solution residual vector
(D] Lagrange diffusion matrix R real d-dimensional space
fogl, SGM diffusion matrix Rt temporal half-space
e finite element Re Reynolds number
E volume-specific total energy s source term
JiQ function of (-} S SGM polynomial degree
f; kinematic flux vector S, element matrix assembly operator
f; viscous flux vector t time
7.9, SGM (correlation) function T temperature
{FQ} Newton residual vector u;, U velocity vector
£, 8 SGM element embedding function wi. convection matrix
{G) nodally distributed SGM vector U1 absolute value of velocity U
h,h,, h; finite-element length measure v, volume (area) of a finite element
[JACI Jacobian matrix X spatial coordinates
k Lagrange Polynomial degree « SGM polynomial function of ¢
L. R element left /right of node 8 artificial diffusion coefficient
A4 partial differential equation 8;; Kronecker delta
operator At computational time step
m momentumn flux €€ physical diffusion coefficient
[M] assembled mass (interpolation} 4 local normalized coordinate
matrix n % local natural coordinate
(N} Lagrange basis function of degree k@ implicitness parameter
(v} SGM basis function of degree 5 p density
p, P static pressure ¢ continuity constraint
Pr Prandtl number & streamfunction
q continuum state variable w vorticity
llglle energy seminorm of ¢ Q domain

in (1#) the Laplacian operates on the auxilliary state variable g, = {¢, P}", where
¢ is a continuity constraint variable and P is kinematic pressure. Appropriate
initial and boundary conditions close system (1) for the well-posed statement.
Computational difficulties occur as € — 0, leading to occurence of “wall
layer” solutions containing large local gradients. In computational fluid dynamics,
(CFD), this is the natural occurrence for Reynolds number becoming large. Thus,
even though the analytical solution to (1) remains smooth, monotone, and bounded,
the spatially discretized CFD solution process becomes dominated by an oscillatory
error mode, prompting the creation of artificial (numerical) diffusion mechanisms
1o control instability promoted by the inherent Navier-Stokes nonlinearity in f;.
The CFD algorithm research goal is to obtain an efficient, multidimensional,
“arbitrary” grid algorithm that extracts an accurate, stable, and monotone solution
for (1a) on a practical mesh for arbitrary e. Stabilizing techniques such as artificial
viscosity methods [1-3], flux correction operators [4-6], nonlinear interpolation
limiters [7] for essentially nonoscillating (ENO) solution are available, but solutions
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still exhibit oscillations near strictly local extrema and the multidimensional imple-
mentational can be problematical.

Solution-adaptive “p and h-p” forms of finite-element (FE) algorithms for
handling solution mesh adaptation in an automatic manner have been extensively
examined [8-14]. At a significant cost in increased algorithm operation count and
storage requirements, several advantages including “unstructured meshing” accrue
to these algorithms. However, solution monotonicity is typically not a theoretical
ingredient in formulation of these algorithms,

In distinction, the subgrid embedded (SGM) finite-element basis theoretical
development [15] addresses the fundamental issue of multidimensional practical
(coarse) grid solution accuracy with guaranteed monotonicity and minimal (optimal)
numerical diffusion. It is based on a genuinely nonlinear, nonhierarchical, high-de-
gree finite-element basis for use in a discretized approximation of a weak state-
ment algorithm. Verification for both linear and nonlinear convection-diffusion
equation SGM finite-element solutions is documented in [15]; c.f. Figure 1, where
small ¢ (#10~°) monotone and nodaily accurate solutions are obtained on coarse
grids.

The SGM basis construction is distinct from reported developments in the
area of subgrid scale resolution, including hierarchical (k-p) elements [16] and
nodeless bubble functions [17]. The SGM development employs strictly classical
Lagrange basis methodology, and the SGM basis is applicable only to the dissipa-
tive flux vector term f? in (1a) [18]. The discretized kinematic flux vector f;
remains a “centered” construction via the parent strictly Galerkin weak statement.

The key efficiency ingredient of the SGM element is reduction to linear basis
element matrix rank for any embedded degree. This is in sharp contrast to
conventional enriched basis finite-element/finite-difference aigorithms, as the
SGM element strictly contains matrix order escalation, hence increased computer
resource demands. The results reported here are companion to [15)], and document
algorithm performance for steady-state solutions of the Navier-Stokes equations
(12)-(15) for quasi-1D compressible and 2D incompressible benchmark problem
statements.

NAVIER-STOKES CONSERVATION LAW FORMS

Three distinct formulations for the NS system (1a)—(1b) are considered in
this article. The compressible flow benchmark is an off-design de Laval nozzle flow
in a quasi-1D viscous specification. Hence,

m 0
2
m
p —+p 4 6_u
g=<m fj=f1= P fj”=fl”= 3Re odx
E (E+pm 7 oT 2 du
p 2Pe ox Re ox

(2a)
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Figure 1. SGM element steady-state solutions for convection-diffusion verification problems
[15). (@) Linear Peclet problem, 1 /e = Pe < 5 X 10%; (b} nonlinear Burgers initial and final

solution at 1/¢ = Re = 10°.
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dln A(x)
dx

m? dln A(x)

5= - 7 & @b)

(E +p)m din A(x)

P dx

—m

where p is density, m is momentum, pressure is p = (y — IXE — m?/2p), E is
volume-specific total energy, v is the ratio of specific heats, and A(x) is the nozzle
cross-sectional area distribution.

The nondimensional groups in (2a)-(2b) and thereafter are the Reynolds
and Prandt] numbers with definitions

Lre [jl'e vl'e p C
Re = —=L =l and Pr = —L 0 Put (3)

Veer kref

where L. and U, are select reference length and velacity scales respectively, v,
is the reference kinematic viscosity, ¢, is the reference specific heat, k., is the
reference thermal conductivity, and g, 1s reference density.

Two 2D incompressible isothermal Navier-Stokes formulations are evaluated.
The vorticity-streamfunction (w — ¢)-dependent variable transformation ensures
continuity [19], hence for isothermal 2D flow,

g = (w} and q, = {¢} (4)

The resultant forms for {1a) and (1) are

Pw) dw N Jw 1 % 0 (5a)
Wr= e T ox; Re ox} B a
R
FZW)=~-—F—-w=0 (5b)
ax

J

and the no-slip kinematic boundary condition constraint for w is derived from (5b).

The second incompressible formulation is of “pressure relaxation” form,
involving a constraint for continuity and a computation for genuine pressure [20].
The resultant state variable definition for isothermal flow is

_ _ |
) moenl)
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where the forms for (1b) are

(e = % aa;-'*‘_ Ta)

a(¢)-—a—x}'——$~0 a
52

Z(P) = e s(g) =0 (7b)

i

Pure Neumann boundary conditions exist for both members of g,, and during
iteration, the approximation to the action of pressure is of the form

1
Pn+1 P*"'-'-'Pn‘f* i 8
- BAIE¢ ®

i
The discretely divergence-free velocity field thus attained is employed in evaluation
of the source term in (7b).

THE FE WEAK STATEMENT FORMULATION

The three selected conservation law Navier-Stokes (NS) systems exhibit
distinct formulational aspects. Independent of the specific form for g, f;, f’, and
q, in (1a)-(1b), spatial and temporal discretization of a Galerkin weak statement
always produces a nonlinear algebraic statement. The finite-element (FE) spatial
semidiscretization of the domain Q@ of (1a)-(1b) employs the mesh Q* = U, Q,,
where 2, denotes the generic computational finite-element domain. Using super-
script h to denote “spatial discretization,” the FE approximation form for the state
variables in (1a)-(1b)

9.9, = q"(x, 1) = |J q.(x,1) 9)

q.(x,1) = {N,®){Q), Q4(1)). (10)

where {-} denotes a column matrix, superscript T its transpose, and the FE basis
set {NV,(x)) contains Lagrange polynomials complete to kth degree. For example,
the 1D Lagrange basis function sets for 1 < k < 3 are

- (-0 -2¢)
{N1}={ [ } {N,)= 41 — £
(21
(1 _ g)({l’ _ £+§) (11)
(N, =3 (1-)@2-130

(-6 -1
{(L2-¢+3)
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where ¢(x) = (1 + 5}/2 and 5:(—1, 1) is the local normalized natural coordinate.
The d-dimensional forms and extensions are well known; cf. [15].

The spatially discrete FE evaluation of the Galerkin weak statement GWS* for
(1a) leads to the form

GWSs" =5 f (N} —6qh + i(f- — )" —s|dr| = {0) (12a)
| Jgr K| ar ax;
aq" N} ok
= Se(fnh{Nk}(T - S] dr — fﬂ" 7%, (fj - f; Y dr
+ (N, = £2)'R,do | (12b)
N, nank

where the Green-Gauss divergence theorem exposes the indicated boundary fluxes
on 4€)*, S, symbolizes the “assembly operator” carrying local {element) matrix
coefficients into the global arrays, and dr and do denote differential elements on
) and ¢Q}, respectively. The surface integrals in (12b) contain unknown boundary
fluxes wherever Dirichlet (fixed) boundary conditions are enforced.

The companion Taylor weak statement TWS" [1] extended to system (la),
under certain simplifications, yields the modified form

F(q) = —AaAA %) _ (13)
q)=%(q) =8 f‘gx—j jkd_xk =0 3

where A; = df,/dq is the kinetic flux vector Jacobian and B is a parameter
eligible for optimization [1]. Independent of the dimension d of (), and for general
forms of the flux vectors, GWS” in (12a) always produces a nodal-order (large)

ordinary differential equation (ODE) system of the form

d{QCt))

GWS* = [M
[(M] 7

+ {R(Q)} = (0} (14)

where d{Q}/dt = {Q) vanishes at steady state. The system square matrix [M] and
residual column matrix {RQ} are formed via assembly over Q* = U, of corre-
sponding element rank matrices, i.e.,

[M]=SIM]  and (R(Q} =S(R.(Q)). (15)

where subscript k in (15) emphasizes dependence on FE basis degree & in (10).

The form (14) provides the statement of local time derivative necessary to
evaluate a temporal Taylor series. For example, selecting the 6-implicit one-step
Euler family,

(QGt, . )} = {0}, 41 = (Q), + ALHO(QY, 4 + (1 — DAY, ] + #(AE)
= {0}, — AIM] " (6{R}ns1 + (1 — 8)(R},) (16)
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where subscript n denotes discrete time level. Clearing [M ]! and collecting terms
to a homogeneous form yields the WS* + TS algorithm terminal algebraic form,

{FQ) = [M{Q,,: — Q,} + At(6{R}as1 + (1 — 0R}} = (0}  (17)

The discrete Galerkin weak statement for (1b) produces a companion matrix
system,

{FQA} = [DI{Q,} - (S(Q)} = {0} (18)

where the symmetric square matrix [ D] is the discrete Laplacian, {Q;,} is the nodal
array of g7, and (§(Q)} contains dependence on g” via solution {Q(¢)} from (17).
The Newton algorithm for solution of (17) is

BACK8QY™*! = —(FQ},,, (19)
where, for iteration index p,
+1 +1 ‘ 4 P+ 1
Q1 = QYo + (8QY" = (0}, + XL {80 (20)
i=1
and the Newton Jacobian definition is

A FQ}
Q)

DAC] = =[D] (21)

— M+ BAI( &{R}] o FQA)

a{Q} a{QA)

THE SGM FINITE ELEMENT

The SGM element construction for a 1D scalar model of (1a) leading to a
theoretical nonlinear monotonicity constraint via enforcement of a real eigenvalue
spectrum for the GWS* algorithm recursion stencil is detailed in [15]. The
nonlinear extension of this theory leads to prediction of an optimal distribution of
the SGM embedded parameter (sets) on each element, hence over the mesh Q*.
The theoretical generalization to nonuniform, d-dimensional discretizations leads
to some issues still requiring resolution, to fully achieve the potential for attain-
ment of nodally accurate monotone solutions on arbitrary d-dimensional meshes.

The global assembly of the element canonical form of the diffusion matrix
[D], resembles an identity matrix, excellent for numerical computation indepen-
dent of the basis degree k ([18], sec 5.5). Conversely, the assembly of the element
canonical convection matrix [U], always yields a null matrix. In addition, in higher
dimensions, the matrix [U], cannot be statically condensed, as the convective
information contained at element mid-side nodes may not be eliminated. Hence,
contrary to the convective flux vector manipulation as a stability-enhancement
approach, the SGM element procedure is restricted to the diffusion matrix result-
ing from f;” [18].

The 1D Lagrange linear (k = 1) and quadratic {k = 2) FE basis polynomial
set, the k = 1, p = 2 hierarchical (bubble) element, and the SGM § = 2 (k = 2,
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reduced) Lagrange element for one dimension are compared in Figures 2a-2d.
Both the Lagrange & = 2 and p-hierarchical elements contain an extra degree of
freedom (node 2 in Figures 2b and 2c¢). For the SGM element, the explicit
appearance of the embedded degree of freedom is eliminated via static condensa-
tion [15}.

L O-DaR2) 4D

ll—c\’ (C

1 2, 05 3 1
-1 0 1 =1

(a) )

9]

Figure 2. Comparison of standard, hierarchical, SGM elements in one and two dimensions, (a) 1-D
Lagrange element, &k = 1; (b) 1-D Lagrange element, k = 2; (c¢) 1-D hierarchical element, k = 1,
p = 2; (d) 1-D SGM Lagrange element, k2, reduced; (e} 2-D hierarchical element, & = 1,2, 3 selec-
tively; (f) 2-D SGM element, § = 2.
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For the linear dissipative flux vector FE construction, static condensation of
any k > 1 basis Lagrange element in one dimension simply returns the k = 1 form
[15]. Therefore, the SGM theory augments the diffusion matrix via an embedding
function g(x, ¢), hence the name “SubGrid eMbedded.” The definite integral form
of the SGM basis function set, denoted {N;), for [ D], in (15) is

a{Ng} a(Ng}"
fﬂ ax ax

€

N} N
ax ax

R
dx = f g(x,¢) dx‘ (22)
QC

where the statically condensed, reduced Rank form is denoted as |, The embed-
ded polynomial g(x,c) contains one arbitrary parameter ¢ for each additional
Lagrange degree k > 2. The form of the 1D SGM element basis set {N;} for
k = 2 = § is expressed, analogous to the k == 1 Lagrange basis, (11), as

_[1-n
{Ns}—{ “ } (23)

where u = 7,4, is a polynomial function of an expansion coefficient set, a;,
dependent on embedding degree k, and the & = 1 local coordinate ¢, and « is a
function of c. A detailed computation of the SGM 1D basis is provided in [15].

If the embedded polynomial in (22) is selected as quadratic, then g, =
{1, c, IKN,}, where {N,} is the Lagrange quadratic basis. Then, for § = 2 = k, the
3 x 3 element matrix form for [ D], prior to condensation is

(18¢ + 17) (7 - 2¢) —(16¢ + 24)
[D,_,], = TR (7 - 2¢) (18¢ + 17) —(16¢ + 24) (24)
el —(16¢ + 24) —(16¢c + 24) (32¢c + 48)

Static condensation of this matrix yields

[Dk-z]f = [Ds.,]. = (25)

Qe+ —Qc+ 1
—(2¢c+1) @c+D

3h,

The discussion in [15] (Appendix B) confirms that ¢ > 1 is the requirement. For
¢ = 1,[Dg_,], in (25) is identical to the linear Lagrange matrix,

o2

This degeneracy is termed consistent, which occurs only for d = 1. Specifically, for
d > 1 dimensions, static condensation of a k > 1 diffusion matrix does not yield
the k = 1 form.
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The d-dimensional form in the dissipative flux vector diffusion matrix { D], in
(11), formed via the SGM element (denoted by subscript ), is

R
3N} AHNY" 7‘

(D51, = [ gtxe) — = — —d (26)

3(Ns} a(Ng)"
= > o 27

0, 9x Ix
and many selections are possible. For d > 1, g,(x, ¢) is written as

g: = {GYi(N,) (28)

For the d = 2 vector ¢ = (c,, cy), the element array is (G)] = {1,1,1,1, CysCyy Cy
¢, ¢,c,} and {N,} is the corresponding Lagrange quadratic basis set. The array {G},
may be represented by the matrix outer product

(GY = {1,c,,1) ® {1,¢,,1} (29

which is pictured as the tensor product 4 ® B of A ={1,c,,1} and B ={L,c,, 1},
that is,

CX
@1 10—0O0—@1
1 c, 1 | | c,C, |
e—0O0—@ ¢ C|)cy=cy0 O Cl)cy
Cx

@1 1e—O—@1

The d = 3 extension is obvious. Element constructions for d = 2 are illus-
trated in Figures 2e-2f. Figure 2¢ graphs a p-hierarchical 2D element with two
quadratic sides (p = 2), one cubic side (p = 3), and a linear side. The k =2
(S = 2) condensed 2D SGM element, graphed in Figure 2f, is very distinct from
both the p-element and the Lagrange k = 2 element.

The diffusive flux vector matrix [D], in (11), formed with the Lagrange
bilinear (k = 1) basis in two dimensions for a generic cartesian element of unit
span is

4 -1 -2 -1
I{N,} a'?{Nl}TdT=d6t, -1 4 -1 -2

D _
(D], fn, ox,  ox, 6 | -2 -1 4 -1
-1 -2 -1 4

(30)

where det, is the transformation matrix determinant, equal to one-fourth the plane
area of Q2,. The § = 2 extremized form for (26) for two dimensions is constructed
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as

[DS ]e = (31)

where each matrix element d;; in (31) is a distinct polynomial function of ¢, and c,
[18]. For example, assuming that ¢, = ¢ = c,, the first term in (31) becomes

2c+1
" 15(148¢2 + 164c¢ + 73)

d (656¢* + 2,032¢% + 1,838¢ + 549) (32)

Simplifying further to ¢, = ¢, = ¢ = 1, the § = 2 SGM diffusion matrix form is

29 -11 -7 -11
det, ] —11 29 -1 -7
6 | -7 —-11 29 -11

-1 -7 -11 29

[Dgl, = (33)

The distinctions between (30) and (33) are apparent.

For general applications, a nodally distributed (subscript j) SGM parameter
is preferable to an element parameter. Therefore, defining r; = (2¢; + 1)/3, the
monotonicity constraint form becomes

2¢; + 1 N Iujlhj 3 Iujlhj Re
=r > = (34)
3 ! eF F
where Reynolds number Re replaces e and > 0 is a real number. In one
dimension, ¥ is precisely determined from the eigenvalue analysis, hence ¥ = 2
for the linear convection-diffusion (Peclet) problem, & = 6 for the linear stationary
wave definition, while ¥ = 3 for the nonlinear convection-diffusion (viscous Burg-
ers) equation [15]. However, for multidimensional problems, determining a suitable
functional form for # involves definition of a correlation function &; = f(Re, det,),
the form of which must be validated.

For velocity field u; = (u,,, 4,;, u;), principal coordinate mesh measures i,
hs;, and ks, and principal coordinate diffusion parameter set € = (e, €;;, €3),
the condition for a d-dimensional monotone solution is expressed for scalar
components of r; = (ry;, r;, r3;) in (29), and this correlation function %; is

oy 1/d
r,-jzf where &, = ,1<i<d,and1 <j <N node (35)
I"E

ij

4v,

d—1
€] h,-,-
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Hence, only the scalar 0 <A < 2 remains undefined, and must be estimated. V,
(= 29 det,) is the volume (area) of the d-dimensional element, and the form for 7,
was determined using computational data from the 2D and 3D linear Peclet
problem solutions [15].

The steps forming the SGM element GWS” solution process include:

1. Use the monotonicity constraint (34)-(35) to compute ¢; or r;, or estimate
rij = f(u;, hj, Re). For the node where r;, r,;, ¢; < 1, the value is obtained
as the average from neighboring nodes.

2. Form

ANg)T a{Ng)T

ij c?xj

dr

[D]. = [ﬂ g,(¢)

where g,(c) = {G)T(N,}.
3. Rank reduce [ D], to [Dg], via static condensation.
4. Form the weak statement WS" (17)-(21) for the discretized domain
"y, Q..
. Solve (19),
6. Return to step 1 and repeat the process until solution is converged.

wn

RESULTS AND DISCUSSION

Computational results verifying theory and summarizing performance for
select Navier-Stokes problem statements are presented. The problem domains lie
on R? for d = 1,2 in (1a)—(1b), with the SGM element appropriately formed.
Steady-state solutions of the Navier-Stokes equations (1a)-(1b) for quasi-1D
compressible de Laval nozzle shock, 2D incompressible flow in a shear-driven
cavity, and 2D incompressible flow over a backward-facing step duct document
application of the SGM element.

A traditional measure for estimating semidiscrete approximation error, e® =

q — q", is the L,“energy seminorm” || - || z, defined as
q" aq"
Rl = .
=05 —e—4d forl<j<d 36
llg*lle /n oz, € ax, T T J (36)

where € remains the diffusion coefficient in the dissipative flux vector in (1a).
For a 1D axisymmetric steady conduction problem, the g, embedding and
S = 2 SGM element solution convergence rate is documented in [15]; c.f. Figure 3.
The slope of the convergence rate increases rapidly as § increases. Specifically, for
§ = 4, the convergence data are interpolated by a line of slope 12.6, which exceeds
the classical k = 4 slope of 8. It is also noted in [15] that for 1D linear and
nonlinear convection-diffusion problem, the g, embedding and § = 2 SGM ele-
ment “solutions exhibit no convergence rate, since the solution is nodally exact”
for the computed value of c; or r; via (34). However, the solution energy norm may
overshoot or undershoot for an overprediction or underprediction of c; or r;.
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Figure 3. Convergence study for 1D steady heat conduction problem [15]. (¢) Max norm; (b) energy
norm; (c) boundary flux point.
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Quasi-1D Compressible de Laval Nozzle Shock Verification

The quasi-1D compressible Navier-Stokes form is stated in (2a)-(2b). The
normalized variable crossection A is defined for a de Laval nozzle geometry,
Figure 4a, using the problem specification of {21], that is,

1.75 — 0.75cos[2(x — 0.5)w] 00 <
1.25 — 0.25¢cos[2(x - 0.9) 7] 0.5 <

n A

x<0.S5
A(x) { <10 37
The nondimensional initial condition for state variable g is the sonic throat,
shack-free isentropic solution for (37). The reference state is inflow, hence the
boundary conditions are p(0,¢) = 1.0 = p;,, E(0,t) = 1.0=E;, and p(1,1) =
Pour = 0.909. The corresponding inlet Mach number is Ma,, = 0.2395.

The verification problem definition is the steady state following an impulsive
change from isentropic flow by decreasing the exit pressure p_,, from 0.909 to
0.864. The resultant expansion wave propagates upstream to the throat, hence
triggers formation of a (normal) shock that moves downstream. The analytical
solution shock is located at x = 0.65 and the shock Mach number is Ma, = 1.37.
First, the nozzle domain is uniformly discretized into 50 elements. The nondissipa-
tive GWS algorithm solution diverges for this problem. The TWS dissipative
algorithm for g = B, = 0.1-0.2 converges to a steady state with shock location
and sharpness, hence nonmenotone character, as a function of B, Figure 4b. A
close look near the shock region reveals that the TWS B = 0.2 solution is
substantially diffused, while the 8 = 0.1 solution is nonmonotone (oscillatory). The
SGM solution Mach number distribution for &, =9, % = 10, &, = 12.0 at Re =
105 is also plotted in Figure 4b It is monotone and follows the analytical solution
more closely than either TWS solution. Figure 4¢ verifies the monotonicity of the
SGM solution during time evolution to steady state. Finally, the SGM solution on a
modestly nonuniform 50-element mesh is monotone and accurately captures the
steady-state shock across two nodes at Ma = 1.369 and 0.78, Figure 44. The
analytical solution is also plotted for comparison, documenting that this nonuni-
form mesh SGM solution is essentially the Lagrange interpolant of the exact
solution. The iteratively determined SGM parameter set, as determined via (35)
and the distributed rsgm ,, is plotted in Figure 4e. For Re = 10°, the parameters
range between 10° and 10°, and a very sharp shock point operator is confirmed
present.

Shear-Driven Cavity Flow

The laminar flow of an incompressible fluid in a square cavity with the top lid
translating at constant velocity in its own plane is a standard benchmark problem.
Despite the boundary condition singularities at the two corners, for moderately
high values of the Reynolds number Re, published comparative results of accepted
accuracy are available (cf., [22]-[25]) on moderate to very dense meshes. For
example, [25] used a 51 X 51 uniform mesh for a least-squares finite-element



14: 48 24 Septenber 2009

[University of Florida] At:

Downl oaded By:

20

5. ROY AND A. J. BAKER

3~
= F
.g 't
= E
8 [ U
‘S [—™
g o Uniform mesh, 51 nodes
[ : : N ; ,
0.0 0.2 0.4 0.6 o8 1.0
(a2)
1
!
. SGM Steady State
12k ° TWS, B202{1.1.1) o
[ - TWS. g=0.1{1.1.1) ol
———  Amlytical Solution

L P |
0.8 1.0
b)
14
Initial Condi
s 400501
12p °  gouEO!
1.00E+00 .y b
ol T SoMSustysue L7
’ -
A
3 s} “
g 06
04
L N L L ]
0.0 0.2 04 0.6 o8 1.0
Distance x
()

Figure 4, Steady-state solution Ma and rsgm, distribution for
compressible flow, Re = 105. (a) de Laval nozzle geometry; (b) TWS
and SGM comparison on uniform mesh; (¢) time evolution of SGM
solution.
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Figure 4. Steady-state solution Ma and rsgm, distribution
for compressible flow, Re = 10% {Continued). (d) SGM
solution on 51-node nonuniform mesh; (e) steady-state
distributed SGM parameter rsgm,.

method (LSFEM) solution, while [22] employed up to a 257 X 257 uniform mesh
via a multigrid approach for 100 < Re < 10,000. For Re < 100, all results agree
well, indicating that coarser grids usually employed by practitioners are adequate.
As Re increases, however, coarse mesh inadequacy becomes fully apparent. This is
particularly evident in the solutions reported in [23]. Nevertheless, the fourth-
order-accurate spline method [24] solution remains satisfactory computed on a
17 X 17 mesh at Re = 1,000, but “the corresponding computer time becomes
large.”
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The driven-cavity problem, via the vorticity-streamfunction form (5a)-(5b),
was studied using GWS* and SGM" algorithms for 100 < Re < 3,200 on coarse
(17 X 17) to moderately dense (65 X 65) meshes [18]. The solution comparisons
are documented here for Re = 3,200 computed on nonuniform meshings. Figure 5
compares two GWS" and SGM* vorticity solution distributions in perspective with
corresponding 17 X 17 meshes overlaid. {Color figures are available for Figures
5-8 and Figures 12-14 at http:/ /cfdlab.engr.utk.edu/html /SGM /index.html.}
The GWS* vorticity solution, Figure Sa, is totally polluted by a mesh-scale
dispessive error oscillation near the moving lid. The companion SGM* vorticity
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Figure 5. GWS" (a) and SGM" (b) vorticity solution comparison for driven cavity (Re = 3,200;
B = 0.0).
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Figure 5. GWS* (Continued). (c) Vorticity solution comparison for driven cavity (Re = 3,200; 8 = 0.0).

solution, obtained with optimal nodally distributed parameter rsgm; > 1 on the
identical nonuniform 17 X 17 mesh, Figure 5b, verifies attainment of a monotone
solution exhibiting very sharp corner (singularity) extrema. This solution resolution
is comparable to that obtained via the GWS” algorithm on a double-density
(33 x 33), highly nonuniform mesh, Figure 5c. While neither was optimized, the
Newton algorithm computation time for the GWS” solution was nearly six times
that required for the SGM” solution, Figure 5b, and the memory requirement was
four times larger.

The accuracy comparisons to benchmark data for the 33 X 33 GWS” solution
is essentially identical to the 17 X 17 SGM" solution summarized in Figure 6. The
normal arrowheads on each secondary vortex region graph locate the attachment
points documented in [22], Figure 3, on a 129 X 129 uniform mesh; the nonuniform
17 X 17 SGM solution agreement is excellent. The SGM solution - and v-velocity
profiles through the geometric center, Figure 6, also agree within ~ 1% with those
generated by the 57 times denser mesh solution of [22], Figures 2a and 2b, as
documented by the circles in Figure 6.

Pressure prediction is a postprocessing operation with a vorticity-streamfunc-
tion algorithm solution [20, 26] via solving a Poisson equation with source (the
nonlinear product of velocity derivatives). Pressure distributions computed from
the 172 and 33? GWS” solutions, and the 172 SGM” solution, are compared in
Figure 7. The SGM" solution clearly exhibits the “best” local extrema prediction.
However, an adverse effect of the coarse centroidal region mesh is also apparent;
compare Figures 7b and 7c.

The nonlinearly computed nodal distributions of the SGM” theory parameter
sets RSGM, and RSGM,, are graphed in perspective in Figures 8a and 8b. To
assist in visualizing these data, the local u,v velocity scales are employed as the
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Figure 7. GWS* and SGM*" comparison pressure solutions for driven cavity (Re = 3,200). (a) GWS" on
289-node mesh; (5) GWS* on 1089-node mesh.

elevation (z) reference. These distributions clearly indicate that the highest-level
RSGM, (RSGM ) is computed where the scalar magnitude of « (v) is the highest,
and these data range (1,9) and (1, 13) for this nonuniform meshing.

Close-Coupled Step Wall Diffuser

This 2D benchmark geometry has been widely studied [27-30], specifically for
the wide, close-coupled geometry of [27), reporting laser-Doppler anemometer
measurements of velocity distribution and separation region attachment intercepts.
These data, for laminar, transitional, and turbulent flow measurements in air for
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Figure 7. GWS® and SGM” comparison pressure solutions for driven cavity (Re = 3,200) (Continued).
(c) SGM* on 289-node mesh, rsgm; > 1.0.

70 < Re < 8,000, confirm that the flow downstream of the step is essentially
two-dimensional only for Re < 400, and becomes fully turbulent and returns to
essential two-dimensionality for Re > 6,500.

Available fully 3D computational data for this geometry [20] predict that the
three-dimensionality for 400 € Re < 800 is confined mainly to the lateral sidewall
regions, while the symmetry center plane flow field exhibits an essential two-di-
mensionality (as the normal velocity component vanishes). In both two and three
dimensions, dispersion error control plays a critical role in maintaining CFD
solution process stability for Re > 400. Prior to these data, [28] conjectured that
the “abrupt change” in the flow structure from 2D to 3D flow was due to a
Taylor-Gortler vortex instability that caused spanwise-periodic counterrotating
vortex pairs aligned with the duct axis.

The fully 3D CFD solutions for 100 £ Re < 800, [20], refute this conjecture;
i.e., the flow field transition to three dimensions proceeds smoothly for Re > 400.
In either two or three dimensions, as the Reynolds number increases, the solution
process becomes very sensitive to mesh resolution, hence stability, even using a Re
continuation procedure, i.e., using the lower Re solution as the initial condition.
The resultant instability in the GWS” algorithm flow field prediction in three
dimensions on an inadequate mesh was observed as periodic generation/annihila-
tion of the secondary vortex structure (x, to x;) along the top wall [20].

Therefore, a critical validation assessment in two dimensions is to predict the
laminar flow solution at Re = 800, which according to experiment and the 3D
computational solution, exhibits a steady state. There has existed some controversy
regarding the CFD existence of a 2D steady-state; recently, a quadratic basis
GWS" algorithm on a dense mesh [30] confirmed that the steady solution was
stable. The GWS”, TWS*, and SGM* algorithms were implemented for the
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continuity constraint algorithm, (6)—-(7b), for 2D isothermal flow. The boundary
conditions are fully developed (parabolic) laminar inlet U profile with the V' inlet
velocity zero and no slip on the top and bottom walls. At outflow, the Dirichlet
boundary conditions for pressure and ¢ in (6)-(7b) were fixed at zero and the
velocity boundary condition was homogeneous Neumann.

Figure 9 summarizes GWS" algorithm-computed velocity vector distributions
for 100 < Re < 800, as obtained on a nominal-density 7 X 18 + 48 X 35 nonuni-
form mesh. The arrows perpendicular to the duct walls indicate the primary and
secondary recirculation reattachment coordinates reported in [27]. The solution for
the primary reattachment coordinate for 100 € Re < 400, Figures 9a—9¢, agrees
essentially exactly with the experimental data, and the steady solution predicts the
insipient secondary region at Re = 400. However, agreement with data degrades
sharply with increasing Reynolds number for Re > 400, as the intrinsic GWS*
algorithm dispersive error mechanism yields an unsteady secondary separation
bubble that never achieves steady state, Figures 9d—9e. Figure 10 summarizes data
for a range of unsuccessful CFD attempts to obtain a 2D steady-state and accurate
solution for 100 < Re < 800.

The application of SGM”* in promoting monotonicity, hence controlling the
GWS” dispersion error mechanism, constitutes the critical Re = 800 validation.
The velocity vector fields computed using the GWS”, dissipative TWS”, and a
statically condensed (but not SGM*) quadratic-basis GWS* algorithm (labeled
p-WS"), and the SGM" algorithm are compared in Figures 11a—11le. The arrows
labeled x,/S, x,/S, and x;/S indicate the measured primary and secondary
reattachment coordinates [27]. The GWS”" and p-WS" algorithms did not produce
steady-state solutions on this mesh (these data are “snapshots” in the unsteady
solution). The TWS" steady solution comparisons confirm that inaccuracy in
predicting the shallow upper-surface secondary recirculation bubble leads to errors
of the order 20% in primary recirculation reattachment location. Conversely, the
SGM*" algorithm solution primary reattachment coordinate (x,/S) error is about
2%, as the shallow secondary recirculation region is contained in span and with
extent within 95% agreement with data, although the x, intercept is displaced 0.15
x;/S units downstream of the data. The SGM" data for primary recirculation
attachment for 400 < Re < 800 are included in Figure 10, and clearly confirm
superior accuracy for the range of solution data plotted.

The monotonicity issue distinctions are graphically enforced using perspective
plotting of speed isosurfaces. The comparison U (scalar) perspective plots for the
GWS”, TWS”, and p-WS” algorithms at Re = 800, Figures 12a—12d, clearly show
the 2 Ax error mode as “color diamonds” in the (—0.15-0.016), yellow (1.0-1.2),
and lemon yellow (0.84—1.0) ranges. The linear basis GWS”" solution is clearly the
most dispersive, while the two TWS" solutions show selective improvement of this
error mode. The larger 8 = 0.20 TWS”" solution, Figure 12¢, does dissipate
essentially all local mesh-scale error. The nonartificially dissipative quadratic basis
p-WS” solution, Figure 12d, shows an increasing region of yellow level, while
evidencing modest nonmonotonicity in the orange-red diamonds. In clear distinc-
tion, the SGM" .algorithm solution, Figure 12e, is genuinely monotone, showing no
dispersion error (color diamonds). As a consequence, the ranges of red (1.2-1.3)
and yellow (0.84-1.0) fully extend into the solution domain, yielding the indicated
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Figure 9. GWS* solutions for 2D backward-facing step, 100 € Re < 800, on a nonuniform 7 X 18 +
48 X 35 node mesh.
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Figure 10. Primary recirculation reattachment coordinate, various solutions for 100 < Re <
800.

agreement with the primary recirculation data. The companion presentation for V/
solutions, with mesh overlays for emphasis, is presented in Figure 13.

Figure 14 summarizes the SGM nonlinearly determined algorithm parameter
sets rsgm, and rsgm ,, computed during the iterative solution process according to
(35), as a function of nodal velocity components, and the local directional mesh
measures, £, and h, and Re. The near-step finite-element mesh and SGM* U and
V speed solutions are also shown in perspective. The SGM" theory parameter
extrema are logically correlated with velocity and mesh coarseness, Figures
14d-14e, and the rsgm; levels for U are three orders larger than for V. The data
of Figure 14d could logically lead to a solution-adaptive meshing strategy, to
restrict the local variation in rsgm;, hence reduce the SGM" intrinsic dissipative
levels.

CONCLUSIONS

The subgrid embedded (SGM) Lagrange finite-element basis construction has
been implemented, verified, and benchmarked for semidiscrete approximate con-
structions of Galerkin weak statements for steady Navier-Stokes applications.
Element-level static condensation of the SGM Lagrange basis S > 2 diffusion
matrix facilitates embedding of arbitrary-degree polynomials, guaranteeing the
minimal storage requirement associated with a & = 1 Lagrange-basis algorithm.
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Figure 11, Comparison velocity vectors for 2D backward-facing step, Re = 800, nonuniform 7 X 18 +
48 X 35 node mesh.
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Figure 14. SGM" sclution perspective details for 2D backward-facing step, Re = 800.
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The presented results confirm the theory for both compressible and incom-
pressible Navier-Stokes applications. In comparison to other theories for gen-
erating higher-order-accurate and/or monotone solutions, the SGM element
advantages include guaranteed (nonlinear) monotone solution, excellent condition-
ing of the minimum-band system matrix, and improved stability via retained
diagonal dominance. Further, the SGM methodology permits retention of lexico-
graphic ordering for any embedding degree, hence exhibits the efficiency of strictly
linear basis (or centered FD) algorithms. The SGM finite-element Galerkin weak
statement algorithm thus exhibits the potential for fundamental impact on CFD
methodology, via its intrinsic nonlinearity and guarantee of minimum computer
memory and CPU requirements for high-accuracy monotone solutions on relatively
coarse meshes on 3.
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