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Abstract
We present a three-dimensional simulation of dielectric barrier discharge (DBD) using the
finite element based multiscale ionized gas (MIG) flow code. The two-species hydrodynamic
plasma model coupled Poisson equation and Navier–Stokes equation are solved using MIG
flow code to predict complicated flow structure inside a plasma induced micropump. The
advantage of such a micropump is rapid on/off switching without any moving parts. Results
show a reasonable distribution for ion and electron densities as well as an electric field. The
key factors of microplasma pump design are the location of actuators and input voltage. The
flow rate of the microplasma pump is on the order of ml min−1. Such a flow rate may be
beneficial for micropropulsion in space.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Mircopump is made by fabrication on the order of micrometres
to draw or drain the working fluid in the microfluidic
system, such as lab-on-a-chip (LOC) or a micro total analysis
system (µTAS). Since its introduction in the mid-1970s [1],
micropumps are becoming widely popular in a variety of
applications ranging from biological analysis and chemical
detection to space exploration and microelectronics cooling.
A variety of micropumps have been developed based on
the operational mechanism. These may be categorized as
mechanical and non-mechanical devices. The mechanical
micropumps drive the working fluid through a membrane
or diaphragm, while the non-mechanical micropumps inject
momentum or energy into a local region to produce
pumping operation. Based on the motion of mechanical
micropumps, it can be divided into reciprocating, rotary
and aperiodic pumps. Mechanical micropumps include
electrostatic, pneumatic, thermopneumatic, piezoelectric and
electromagnetic diaphragm pumps. Diaphragm pumps can be
used for any gas or liquid and generate flow rates in the range
of ml min−1. However, the drawbacks are the relatively high
cost and the short lifetime of the moving diaphragm due to their
frequently on/off switching. In contrast, the primary advantage
of non-mechanical micropumps is the absence of moving parts.

Furthermore, the simple design of such pumps may reduce
the cost and increase miniaturization, so that it improves the
integration into the microfluidic system. Non-mechanical
micropumps include electrohydrodynamic (EHD), electro-
osmotic and magnetohydrodynamic pumps. A thorough
review of the actuation mechanism and the applications of
micropumps have been described by Laser and Santiago [2]
and Oh and Ahn [3].

Roy [4] presented a concept of EHD micropump using
dielectric barrier discharge (DBD) actuators shown in figure 1.
Such design leverages several advantages of non-mechanical
micropumps. Over the last decade, many experiments
and numerical simulation show that DBD actuators produce
effects on drag reduction inside the boundary layer [5–9].
However, these traditional macroscale DBD actuators suffer
from relatively small actuation at high speed flow (>30 m s−1).
As a remedy, microscale plasma actuators may induce orders
of magnitude higher force density [10].

Microscale plasma discharge has been studied both
experimentally and numerically for more than a decade
[10–20]. However, there is still room for understanding
of the fundamental physics in reduced length scale, the
unsteady phenomena and the interaction between plasma
and gas in a microgap. In experiment, Wilson et al [13]
showed that nitrogen microdischarge can be generated within
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Figure 1. Schematic of the asymmetric single dielectric barrier
plasma actuator.

4 mm at 1.5 Torr and 0.4 mm at 10 Torr. The electric
fields in this glow region are 100 kv m−1 at 1.2 Torr and
500 kv m−1 at 6 Torr. Such low pressure microplasma has
evolved into plasma-enhanced chemical vapour deposition
for microelectromechanical system and integrated circuit
processing. Several numerical investigations of microscale
discharge generally fall into three major categories. (1)
The hydrodynamic model, which is based on conservation
of mass and momentum [14–17]. It is the most popular
model due to its effective capturing of the overall physics at
a low computational cost. (2) The kinetic model, which is
the particle-in-cell/Monte Carlo collision (PIC/MCC) model
[18, 19]. (3) The hybrid kinetic–fluid simulation model, which
solves the reaction rates from the Monte Carlo collision model
and then brings the solutions into the hydrodynamic model
to get the plasma physics [20]. In the hydrodynamic model,
Kushner [14] found a microscale discharge obeying Paschen’s
curve for breakdown. Sakiyama and Graves [15] presented a
two-dimensional (2D) finite element based neutral gas and RF
plasma model for solving needle discharge under atmospheric
pressure. They found that the ion wind and gas heating have
minor effects on the discharge.

Our recent 2D hydrodynamic model of microscale direct
current (dc) volume discharge [10] shows very good agreement
with published experimental data. The results mimic the
trend at both macro and microscale discharges, but the sheath
structure dominated the plasma region at certain values of the
microgap. The force density is also found to be three orders
of magnitude higher than the macroplasma actuator. However,
the net flow inducement remains similar to that of a standard
actuator due to orders of magnitude smaller plasma region than
the traditional counterparts. A 2D microplasma pump model
was simulated for the plasma–gas interactions predicting a
reasonable 28.5 ml min−1 average flow rate of nitrogen gas.
However, such 2D models are limited especially for a three-
dimensional (3D) geometry. Thus, for a better design of the
microplasma pump, it is important to identify 3D effects on
plasma and gas flow fields. To our knowledge, the reported
numerical results of plasma simulation are either one or two

dimensional. So far, very little work has been done on 3D
simulation of microscale plasma based devices.

In this paper, we extend our 2D hydrodynamic model
[8, 10, 21] into the 3D dc plasma simulation. The charge
density q (= ni − ne) and electric field E will be solved based
on the first principles. The obtained electric force density
(F = eqE) from plasma simulation will be employed as a
local body force term in the Navier–Stokes equation. Section 2
provides the governing equations for plasma and fluid flow.
Section 3 gives two different designs of microplasma pumps.
Section 4 shows the results of microplasma pumps for two
cases. Conclusions are summarized in section 5.

2. Numerical model

We extend the 2D two-species hydrodynamic plasma
formulation of Kumar and Roy [21] into a 3D model for
microplasma pump simulation. The unsteady transport for
ions and electrons is derived from first principles in the form of
conservation of species continuity and the species momentum
flux embedded in them using the drift-diffusion approximation
under isothermal condition. Such an approximation can
predict the general characteristics of plasma discharges in the
pressure range from 1 to 50 Torr [22]. The continuity equations
for concentration of positive ion ni and electron ne together
with the Poisson equation for electric field vector E (Ex , Ey ,
Ez) are

∂ni

∂t
+ ∇ · (niVi) = α |�e| − rnine,

∂ne

∂t
+ ∇ · (neVe) = α |�e| − rnine,

|�e| =
√

(neVe)
2
x + (neVe)

2
y + (neVe)

2
z,

∇ · (εE) = −e (ne − ni) ,

(1)

where ne and ni are number densities of electron and ion,
respectively, V (Vx, Vy, Vz) is the species hydrodynamic
velocity, r ∼ 2 × 10−7 cm3 s−1 is the electron–ion
recombination rate, ε is the dielectric constant, the elementary
charge e is 1.6022 × 10−19 C and subscripts i and e are
positive ion and electron, respectively. The working gas
is nitrogen at 5 Torr. The discharge is maintained using a
Townsend ionization scheme. The production from ionization
is expressed as a function of electron flux |�e| and the
Townsend coefficient α:

α = A p exp (−B/ (|E| /p)) , (2)

where A = 12 cm−1 Torr−1 and B = 342 V cm−1 Torr−1 are
pre-exponential and exponential constants, respectively, p is
the gas pressure and E is the electric field. The ionic and
electronic fluxes without magnetic field effect in equation (1)
are written as

niVi = niµiE − Di∇ni,

neVe = −neµeE − De∇ne.

(3)
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Finally, we end up with the following equations:
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(4)

where µi = 1.45 × 103/p (cm2 s−1 V−1) is the ion mobility,
µe = 4.4 × 105/p (cm2 s−1 V−1) is the electron mobility, Di

and De are the ion and electron diffusion coefficients calculated
from the Einstein relation which is a function of ion and
electron mobility as well as ion and electron temperature, i.e.
Di = µiTi and De = µeTe. The electric field is given by
E = −∇ϕ, i.e. the gradient of electric potential ϕ. The system
of equation (1) is normalized using the following normalization
scheme: τ = t/t0, zi = xi/d , Ne = ne/n0, Ni = ni/n0,
ue = Ve/VB, ui = Vi/VB and φ = eϕ/kBTe, where kB is
Boltzmann’s constant, VB = √

kBTe/mi is the Bohm velocity,
reference length d which is usually a domain characteristic
length in the geometry, the reference time t0 = 10−8 s and
reference density n0 = 1015 m−3.

Nitrogen gas is governed by the conservation of mass as

∂ρ

∂t
+ ∇ · (ρVn) = 0, (5)

where ρ is the fluid density and subscript n denotes the working
nitrogen gas. The second term can be further decomposed via
the chain rule:

∂ρ

∂t
+ Vn · ∇ρ + ρ∇ · Vn = Dρ

Dt
+ ρ∇ · Vn = 0. (6)

For incompressible flow, the characteristic velocity Vn must
be much smaller than the speed of sound c, i.e. Mach
numbers Ma = Vn/c below approximately 0.3, and the
compressible effect can be neglected. For the incompressible
fluid (ρ =constant, Dρ/Dt = 0) is ∇ · Vn = 0.

The conservation of momentum may be derived from
Newton’s second law as follows:

ρ
DVn

Dt
= F + ∇ · σ, (7)

where F = eqE is the body force and σ = −∇p + ∇ ·
[− 2

3µ(∇ · Vn)] + ∇ · (2µς) is the stress tensor, where p is the
pressure, µ is the viscosity of fluid and ς is the strain rate
tensor. For an incompressible Newtonian fluid, the Navier–
Stokes equation is

ρ
DVn

Dt
= eqE − ∇p + µ∇2Vn. (8)

In the microscale regime, the continuum approach with the
no-slip boundary condition may not hold when the Knudsen

Table 1. Different regimes of fluid flow depending on the Knudsen
number [23].

Range, Kn Flows Equations

0–10−2 Continuum flow No-slip Navier–Stokes
10−2–10−1 Slip flow Slip Navier–Stokes
10−1–101 Transition flow Burnett equations
101–∞ Free-molecule flow Boltzmann equations

number is greater than 0.1 as shown in table 1 [23]. The non-
dimensional Knudsen number is defined as the ratio of the fluid
mean free path λ and the macroscopic characteristic length
�, i.e. Kn = λ/�. As Kn increases, the rarefaction effects
become more dominant between the bulk of the fluid and the
wall surface. For conditions stated in this paper, the Kn is less
than 0.024 validating the use of the no-slip condition.

The numerical model for solving the DBD plasma and
the Navier–Stokes equations uses an efficient finite element
algorithm for solving partial differential equations (PDE)
approximately. The solution methodology anchored in the
modular multiscale ionized gas (MIG) flow code is based on
the Galerkin weak statement (GWS) of the PDE [24] which
is derived from variational principles. An iterative sparse
matrix solver called generalized minimal residual (GMRES)
is utilized to solve the resultant stiff matrix. The fully implicit
time stepping procedure along with the Newton–Raphson
scheme is used for dealing with this non-linear problem. The
solution is assumed to have converged when the L2 norms of
all the normalized solution variables and residuals are below a
chosen convergence criterion of 10−3.

3. Problem description

Figure 2 shows a schematic of the microplasma pump: (a)
cross-section and (b) the isometric view. We can see that
this tri-directional plasma pump draws the fluid into the
microchannel at both the inlets due to the attraction of parallel
plasma actuators and drains the fluid upwards to the outlet by
means of horseshoe plasma actuators. Two cases described
in table 2 were simulated. The inlet openings of the pump
for both cases are 0.1296 mm2, while the outlet openings are
0.24 mm2 for case 1 and 0.39 mm2 for case 2. The volume of
the microplasma pump is 2 mm3. The length and the width of
the electrodes are 200 µm and 12.5 µm for the parallel actuator.
The horseshoe actuator consists of two semi-circle electrodes
with an inner arc radius of 0.25 µm. We neglect the thickness of
the electrodes in the vertical z-direction. The gap between the
electrodes is 50 µm in the streamwise x-direction and 24 µm
in the vertical z-direction which is also the dielectric thickness.
We simulate the symmetric half of these microplasma pumps
to reduce computational cost.

Figure 3 shows the computational mesh in 2D cross-
section and 3D domain for case 1 (figure 3(a)) and case 2
(figure 3(b)). The domain size consists of 96 × 48 × 60 tri-
linear elements with 289 933 nodes. The mesh density is of the
order of Debye length which is sufficient to capture the physics
of plasma dynamics. Figure 3(a) shows the locations of all
the actuators in a 2D cross-section for case 1. The powered
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Figure 2. Schematic of microplasma pump: (a) cross-section and
(b) isometric view. (Colour online.)

Table 2. Geometric parameter for two simulated cases.

Unit: mm l1 l2 l3 h1 h2 W

Case 1 1 0.4 1 0.216 0.144 0.6
Case 2 0.875 0.65 0.875 0.216 0.144 0.6

electrodes (red colour) are from x = 0.25 to 0.2625 mm,
from x = 0.6 to 0.6125 mm and from x = 1.375 to 1.5 mm.
The dielectric surface is Teflon film between electrodes from
z = 0 to 0.024 mm and from z = 0.216 to 0.24 mm. The
grounded electrodes (black colour) are from x = 0.3125 to
0.325 mm, from x = 0.6625 to 0.675 mm and from x = 0.975
to 0.9875 mm. The mesh densities of case 2 and case 1 are the
same as shown in figure 3(b), but the location of the actuators
and the size of the outlet opening are different. For the plasma
boundary conditions, dc potential is applied to the powered
electrode of φ = 50 V for case 1 and φ = 80 V for case 2. For
the fluid flow boundary conditions, we assume zero pressure
(p = 0) at the inlet and the outlet and no-slip condition on the
dielectric surface for all three velocity components Vx , Vy and
Vz for both cases. We assume symmetric boundary condition
at x = 1.2 mm which is the centre of the microplasma pump.

4. Results and discussion

Two different outlet openings and applied potential of
microplasma pumps are simulated. The results of case 1

Figure 3. Computational mesh density for (a) cross-section of
case 1, (b) cross-section of case 2. (Colour online.)

Figure 4. Case 1: (a) charge separation q = ni − ne at x–z plane
(y = 0.3 mm) and (b) potential distribution at x–y plane
(z = 0.03 mm) with force vectors. (Colour online.)

are shown in figures 4 and 5, while the results of case 2
are shown in figures 6 and 7. For plasma simulation,
ion and electron densities are solved using the two-species
hydrodynamic model coupled with the Poisson equation
described in equation (1). The ions and electrons are formed
through the impact ionization process. The recombination
is also considered for the time averaged ion and electron
densities. Due to the large time scale difference between
plasma and fluid flow, we assume flow dynamics does not
affect plasma dynamics and only consider plasma actuation
of the fluid.
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Figure 5. Case 1: (a) Vz-velocity contour at x–z plane
(y = 0.3 mm) and (b) Vx-velocity contour at x–y plane
(z = 0.12 mm) with stream traces. (Colour online.)

Figure 6. Case 2: (a) charge separation q = ni − ne at x–z plane
(y = 0.3 mm) and (b) potential distribution at x–y plane
(z = 0.03 mm) with force vectors. (Colour online.)

4.1. Case 1: small opening with 50 V

Figure 4 shows the charge separation at y = 0.3 mm and
potential contour plot at z = 0.03 mm with force vectors.
The charge separation is given by q = ni − ne as shown in
figure 4(a). The peak of charge separation is close to the
powered electrode. The strongest force vectors are also close to
the powered electrode because the time average of electrostatic
force per volume (F = eqE) is a function of charge separation
and electric field. We can also see that the force vectors are
acting from the powered electrode to the grounded electrode
which matches the electric field lines shown. The potential

Figure 7. Case 2: (a) Vz-velocity contour at x–z plane
(y = 0.3 mm) and (b) Vx-velocity contour at x–y plane
(z = 0.12 mm) with stream traces. (Colour online.)

distribution is solved by the Poisson equation and matches the
boundary condition from 50 to 0 V as shown in figure 4(b).

The reasonable time averaged electric force density is
solved by plasma simulation. This force density is the source
term in the Navier–Stokes equation to actuate the fluid flow
shown in figure 5. Figure 5(a) shows that the electric force
draws the fluid from the inlet on the left and drains the fluid
upwards to the outlet at the top. The contour is coloured by the
Vz-velocity component and shows the highest upward velocity
close to the corner of the microplasma pump. We can see a
vortex at the right boundary (symmetric plane) because the
horseshoe actuator entrains the fluid from the top and pushes it
from the right to the left and creates a plasma pinch. Figure 5(b)
shows that the streamwise flow hits this plasma barrier at
x = 0.8 mm. Figure 5(a) depicts two vortical structures near
the inlet not found in our reported 2D simulation [10]. This is
because in this 3D study, we consider the end effect along the
y-direction shown in figure 5(b) which was missing in the 2D
simulation.

4.2. Case 2: large opening with 80 V

Figure 6 shows the charge separation and the potential
distribution with force vectors for case 2. We can see that
the highest value of the charge separation increases due to the
increase in the potential. The force vectors are still acting
towards the grounded electrode due to the distribution of the
electric field and the charge separation. For case 2, the highest
applied voltage is 80 V, which matches the given boundary
conditions as shown in figure 6(b).

Figure 7 shows the fluid stream traces at (a) y = 0.3 mm
and (b) z = 0.12 mm. Figure 7(a) shows that the inlet vortices
shown in figure 5(a) have been reduced due to the higher
electric force than case 1. Also, the location of the actuators
may be another factor. However, we can see a bigger vortical
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Figure 8. Fluid particles and top wall coloured with velocity
magnitude (m s−1); bottom wall coloured with potential φ (V) for
(a) case 1 and (b) case 2. (Colour online.)

structure at the outlet because the horseshoe plasma actuator
sucks more fluid from the outlet and pushes it back to the
outlet and creates a clockwise vortical structure. Figure 7(b)
shows that the fluid moves right along the x-direction and hits
this clockwise plasma barrier at x = 0.85 mm. So the fluid
momentum changes its direction upwards. It is obvious that
the flow of case 2 is better than case 1 due to the fewer vortices
inside the microplasma pump.

Figure 8 shows the comparison of fluid particles coloured
by the velocity magnitude for (a) case 1 and (b) case 2 in
the isometric view. The top wall is coloured by the velocity
magnitude, while the bottom wall is coloured by the potential.
So we can easily see the outlet and the location of the actuators.
The average velocity magnitude at the outlet is 6.5 cm s−1

for case 2 which is faster than 4.4 cm s−1 in case 1. Also,
the stream traces of fluid flow in case 2 are smoother than
case 1. For the calculation of average flow rate Q, we find
Q1 = 0.63 ml min−1 (in case 1) and Q2 = 1.5 ml min−1 (in
case 2). Importantly, the predicted flow rate Q for the designs

of case 2 produces the same level of flow rate in the literature [2]
which may be useful for micropropulsion in space.

5. Conclusions

We have studied two cases of microplasma pumps using two-
species 3D hydrodynamic plasma model coupled with the
Possion equation. Both plasma governing equations and the
Navier–Stokes equations are solved using a 3D finite element
based MIG flow code. The results show the highest charge
separation and force close to the powered electrodes. We
find three vortical structures inside the pump which cannot
be found in our 2D simulation. To reduce the vortices
inside the microplasma pump, the location of the actuators
and the input voltage may be key factors. The 3D flow
simulation at 5 Torr predicts two orders of magnitude lower
flow rate than those earlier predicted [10] for atmospheric
condition. The predicted flow rate in case 2 (Q2 =
1.5 ml min−1) is about three times higher than that in case 1
(Q1 = 0.63 ml min−1). Such flow rates may be useful for
micropropulsion in space. For the real case of micropump
operating in air, the electron loss will be higher than the
case in nitrogen [25]. This may produce much higher force
resulting in a higher flow rate in air. Such a micropump will be
quite useful for a range of practical applications from biology
and medicine to microsatellite propulsion and microelectronics
cooling [2, 3].
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