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I INTRODUCTION

Plasmas are conductive assemblage of photons, electrons, positive and negative
ions and neutrals in isolated states exhibiting bulk effect. Plasmas find application in a
wide spectrum of fields ranging from electric propulsion for spacecraft thrusters; fusion
related high energy confinement systems to industrial applications like thin film
deposition, etching, surface sterilization and material processing. Recently, the use of
plasma as actuators has found tremendous interest for both low and high-speed
aerodynamic flow control applications.

Plasma forms when electrical discharge is applied in a plasma source. Depending
upon the frequency of the exciting field, discharges may be broadly classified as:
¢ Direct current (dc) discharge
e Pulsed dc discharge (Kilo Hertz)
e Radio-frequency (rf) discharge (Mega Hertz)
e Microwave discharge (Giga Hertz)
e Laser plasma (Pico Hertz)
This thesis is limited to dc and rf discharges.

In understanding the dynamics of plasma, electrons and ions are two important
species that are generally investigated. Plasma resulting from single ionization of neutral
gas generally contains equal number of these positive and negative charge carriers. In this

situation, the oppositely charged particles are strongly attracted, and tend to electrically



neutralize one another on macroscopic length-scales. Such plasmas are termed quasi-
neutral.

The thermal speed of electrons is much higher than that of ions due to the large
difference in masses (of the order of 10° or higher). This is the reason why easy transfer
of electrical energy from the power supply to the plasma electrons is plausible. The
formation of sheath is a result of this simple property. The large m;/m. ratio allows the
electrons to travel with much higher velocity in the plasma than the ions. When an object
is placed in contact with the plasma, the much higher electron current to the object will
preferentially removes electrons from the plasma in the vicinity of the object. This
depletion of electrons leaves a space-charge region of ions, which sets up an electric field
to further repel most of the electrons from leaving the plasma. Sheath, may hence be
understood as a charge separated electrical boundary layer formed near an electrode.
Sheath is also the distance over which electric fields shield mobile charge carriers (e.g.
electrons) in plasmas and other conductors. It is quantified using the Debye length, Ap ,

(named after the Dutch chemist) which is given by the expression,

[ kT
A, =
" NdzNe )

for a bulk density, N in m™ and temperature, T in Kelvin. Ap is the length scale over

which significant charge separation can occur. In Equation 1, the inverse relation of

Debye length (and hence sheath thickness) with number density may be observed.



Overview of Discharge Models

In trying to understand the dynamics of the system of plasma, Roy Choudhuri
(1998) identifies levels of treatment for fluids and plasma. When number of particles to
be studied is large making quantum description of particle unrealistic, a distribution is
usually employed to describe its characteristics. A distribution function describes
properties in a six-dimensional phase-space in terms of position and velocity coordinates.
The treatment of this distribution function gives rise to varying approaches to describe
processes behind a discharge. A kinetic approach tries to solve some of velocity
distribution functions directly. For example, particle approaches like Particle In Cell
(PIC) or Monte Carlo involves plasma characterization by following millions of
computational particles for each species. The dynamics are followed using Newtonian
equation. The disadvantage arises from using high-density systems when methods like
PIC become prohibitively expensive. Fluid or hydrodynamic schemes are based on
conservation laws derived from moments of Boltzmann equation. They are obtained by
averaging over velocity coordinates of the distribution resulting in macroscopic quantities
like number density, mean velocity etc. With proper choice of boundary conditions and
accurate transport properties, they give reasonably accurate results in a much shorter
time. Hybrid schemes combining fluid and kinetic approaches are also used, for example
in stationary plasma (Hall) thruster modeling where ions are tracked using PIC while the
electrons are simulated using fluid descriptions (Hagelaar et. al., 2002 and Fife, 1995).

Literature Review

There have been number of analytical and numerical attempts to understand

discharge between parallel plates in one dimension under dc and rf conditions. Sternberg



and Godyak (1996) studied the plasma-sheath transition region of a bounded plasma
discharge under dc conditions. The locations of the plasma and sheath boundaries are
evaluated, as well as the ion velocity and the electric field at the boundary. A comparison
of the separate plasma and the sheath solutions with the solution of the bounded plasma-
wall problem has shown good agreement. They have also evaluated the position of the
sheath edge and the value of the electric field at the sheath edge using asymptotic
matching techniques (Sternberg and Godyak, 2003).

Roy et. al. (2003) developed a computationally efficient one-dimensional subgrid
embedded finite element formulation for plasma-sheath dynamics. Kumar and Roy
(2005) have elaborated this self-consistent finite element algorithm for two-fluid plasma
and have investigated related numerical issues. The applications included dc and rf sheath
inside a glow discharge tube with argon. Godyak and Sternberg (1990) have modeled the
dynamics of a symmetric rf discharge sheath in the frequency range ®,<<;<< 0, for
varying degrees of collision and sheath voltages. Analytical expressions for sheath
characteristics have been derived based on conditions employed at plasma boundary
treating sheath and plasma separately. Slemrod (2003) models two fluid plasma using
asymptotic expansions for bounded plasma driven by an rf current. The dynamics of
plasma is determined separately in the bulk, transition and sheath regions. In the
computational approach, Nitschke and Graves (1994) have compared the PIC and fluid
models for rf discharge of helium gas for a range of pressure (50mTorr-250mTorr) and
electrode gap (40mm to 120mm). Xiang and Waelbroeck (2003) investigated the ion
dynamics in presheath and sheath region using numerical and analytical methods for

collisionless plasma. Zhang et.al. (2004) also have simulated a collisionless sheath



behavior based on Boltzman approximation for electrons. Hammond, et. al. (2002) have
obtained solution for low pressure helium discharge. Bose, et. al. (2000) analyze non-
collisional sheath characteristics by applying boundary conditions at a pre-determined
sheath-presheath edge.

But for a few exceptions (Roy et. al., 2003 and Kumar and Roy, 2005), the
number of attempts to model discharge in one-dimension for argon in particular is
comparatively less. There have been some published reports on simulation of discharge
in more realistic two-dimensional geometries. Boeuf (1988) developed a self-consistent
model for dc glow discharges in cylindrical geometry less than two decades ago.
Passchier and Goedheer (1993) present a fluid model for argon in a reactor geometry
using drift-diffusion approximation and an effective electric field assumption. Boeuf and
Pitchford (1995) also present an elaborate fluid model for argon rf plasma in a GEC
reference cell. Kim and Economou (2003) investigated plasma formation over an
inhomogeneous flat wall. More recently, Surzhikov and Shang (2004) have studied
discharge modification in the presence of applied magnetic field for nitrogen in a
symmetric two-dimensional chamber.

Thesis Summary

Despite these attempts, self-consistent approaches for simulation of rf induced
plasma interactions with fluids remain in an early stage of development. The present
effort aims to develop a numerical framework for modeling and understanding ionized
gas dynamics in multi-dimensions. The approach is general and can be used to study
discharge for varying pressure, gases and other discharge conditions. The model also

forms the foundation of a versatile first-principles based methodology. First, the plasma



and sheath characteristics of a one-dimensional discharge configuration in argon are
studied under dc and rf input conditions. The two-dimensional two-fluid plasma
formation over a coated flat plate is then investigated for three different cases. The
numerical algorithm is formulated using finite element method and first benchmarked for
plasma formed between symmetric electrodes in nitrogen gas. Discharge characteristics
of plasma for electrode-insulator configuration are then analyzed under steady and
transient conditions using argon as a working gas. The effect of magnetic field on electric
potential and charge difference is studied for a thin electrode.

Chapters in Thesis

Summary of the remaining thesis chapters is as follows:

e Chapter II describes in detail the governing equations, the development of the finite
element algorithm, FE basis functions.

® Modeling of two-fluid fully ionized plasma in a direct current discharge in one
dimension is presented in Chapter III. It includes the geometry details and boundary

conditions.

e Chapter IV covers formulation of two cases of radio frequency driven discharge for a
one-dimensional bounded plasma in the collisionless and collisional regime.

e Chapter V presents the two-dimensional discharge characteristics of plasma formed in
inhomogeneous geometries under steady and unsteady input voltages.

¢ Finally conclusions and recommendations for future work are given in Section VL.



II. HYDRODYNAMIC MODELING

A hydrodynamic model has been developed to simulate multifluid plasma in low-
pressure regime. The model uses an efficient finite element algorithm. The following
sections detail the governing equations, boundary conditions and the algorithm
implementation procedure. Nomenclature for all the variables, functions and constants
are given in Appendix A.

Governing Equations

The time-dependent, Navier-Stokes (NS) equation set in the form of mass and
momentum conservation law for ionized gases are given in Equations 2-4. It represents a
basic framework and is suitably altered for different cases under consideration in the
subsequent chapters.

Conservation of number density N:

on
—+V.(nV)=S
Ey (nV) 2)
Conservation of momentum:
M(a—V+V.VVJ=—lV.P+qE—MVV (3)
ot n

Here v is the momentum transfer frequency and P is the species pressure defined by
equation of state (P=NkT). Under the drift-diffusion approximation, this equation may be

simplified by ignoring the inertial and temporal derivative terms as:



1
VW =——V.P+gE )
n

These equations are combined with an equation for electrostatic field in the form of
Poisson equation to solve for species density, velocity and electric potential for different
applications. The Poisson equation is a second order partial differential equation similar
to the Laplacian equation with non-zero coefficient, V’¢ =—p/ e, where ¢is the potential,
p is the net charge and £is permittivity.

The system of Equations 2-4 is normalized using the following expressions:
T =2xft, z=x/d, N.=n./ny, N=ni/ny, u;=V;/Vy and u.=V./Vy and ¢g=e@/T,, fis the

applied frequency, d is a reference length which is usually a domain length in the

geometry, ng is a reference density and the Bohm velocity V; =+/T,/m, .

Note on Ionization and Recombination

The source and sink term appearing in the continuity Equation 2 of species
density is in the form of ionization and recombination.

§=an, - pn,n, )
where «is ionization rate in /s and S is the recombination coefficient in m’/s. Different
ways of estimating the ionization rate have been used in discharge modeling. In some of
the models, like those by Nitschke and Graves (1994), the rate takes a simple Arrhenius
form in terms of ionization threshold and electron temperature. Expressing ionization rate
as a function of reduced effective field (obtained based on a solution from electron
energy equation) is yet another approach. So far, there have not been systematic
comparisons between these methods and its impact on discharge computations. Here, the

rate constants for ionization are functions of electron energy. These coefficients have



been measured under steady state condition from a dc discharge in Argon Townsend and
time of flight experiments as a function of E/p. The ionization rate is calculated by
multiplying drift velocity and Townsend ionization coefficient. The following diagrams
in Figure 1 quantitatively show variation of recombination and ionization coefficients in
an argon discharge from literature.

The three body electron-ion recombination rate coefficient for argon has been
calculated within the range of electron number densities 10" -10"® cm™ and electron
temperatures of 2000 K—16,000 K by Wanless (1971) as plotted in Figure 1(i). It can be
observed that for temperature of 1eV and beyond, the recombination coefficient is of the
order of 107'%. On the other hand, the ionization rate increases with electron temperature
as given by Figure 1(b) (Boeuf and Pitchford, 1995). The rate of production is higher for
6 eV or more. The time-averaged ionization rate between two electrodes calculated based
on Townsend ionization for low-pressure argon is given by (Paranjpe et. al., 1990) and

has been plotted in Figure 1(b).
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Figure 1. (a) Recombination coefficient (Wanless, 1971) and (b) variation of ionization

rate with electron temperature (Boeuf and Pitchford, 1995) and with space (Paranjpe et.
al., 1990).

Finite Element Algorithm

The finite element method (FEM) is used here for solving partial differential
equations (PDE) approximately. FEM has been used since 1950 for analyzing structural
systems. Beginning in the early 70’s it has also been utilized for analyzing fluid thermal

systems. In FEM, solutions are approximated by rendering the partial differential
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equation (PDE) into an equivalent ordinary differential equation (ODE), which is then,
solved using standard techniques. In the finite-element method, a distributed physical
system to be analyzed is divided into a number of discrete elements. With the
development of weighted-residual criteria it has also found significant usage in fluid
mechanics and heat transfer applications. Weighted Residual Method (WRM) assumes
that the solution to the parent PDE/ODE can be approximated with a continuous or
piecewise continuous analytic function. Depending on the WRM maximization,
numerical techniques like finite volume, finite element and spectral volume methods may
be used. The numerical development of this thesis is anchored in an existing finite
element based multi-scale ionized gas (MIG) flow solution platform that has been utilized
for a range of applications including electric propulsion, design optimization and
micro/nano-scale flow analysis (Roy and Pandey, 2002, Balagangadhar and Roy, 2001, &
Cooper et. al., 2004).

The Equation System 2-4 can be written as a general and more concise

convection-diffusion type equation:

_a_q a(f_fjv)_ _
L(g) = o +—axj s=0 (6)

where g is the state variable, f is the kinetic flux vector, f* the dissipative flux vector and
s is the source term.

Galerkin Weak Statement

The fundamental principle underlying the finite element method is the
construction of a solution approximation as a series of assumed spatial (test) function
multiplied by a set of unknown expansion coefficients such as the Galerkin Weak

Statement, acronym GWS (Baker and Pepper, 1991), which is followed in this numerical
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work. Other categories of approximation functions, which are applied in WRMs, are sub-
domain method, collocation and least square method.
Any real world smooth problem distributed over a domain x; can be approximated

as a Taylor or power series of known coefficients a; and functions @(x;):
L(g) =D af(x;) @)

where a; are unknown coefficients and @ (x;) are known functions of x;. The GWS
approach requires that the measure of the approximation error should vanish in an overall
integrated sense. This gives a mathematical expression for minimization of the weighted

residual over the domain for Equation 6 as,

WS = iwL(q)dQ =0 ®

Here, Q defines the domain for the problem statement and w is the weight function set.
For the Galerkin condition to hold true, the weight function is made identical to the
corresponding trial function set ¢ for the approximation of state variables. Equation 8
guarantees that the associated approximation error is a minimum since it is orthogonal to
the trial function set @. The term “weak statement” signifies that the differentiability
requirement for the approximation function is weakened by one order.

Finite Element Basis Functions

The finite element basis is a set of polynomials generally distributed uniformly on
every subdivision (finite element) of the solution domain, € created by placing nodes for
better resolution and hence constructing the domain discretization €, (Baker and Pepper,
1991). Discretization for the domain is a fundamental concept of finite element analysis

since it simplifies the construction of a wide range of suitable trial functions, @. The set of
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functions associated with the trial function, ¢, that spans over a single generic element €2,
are defined as the finite element basis. The finite element basis, Ny maybe Chebyshev,
Lagrange or Hermite interpolation polynomials complete to degree k based on the
problem statement (one, two or three- dimensional).

The discrete approximation of the spatially discretized domain Q" yields a union

of elements Q,, as shown:
o' = o, ©)
el

Similarly the integrated variables can be represented as the union of spatially and

temporally discretized elements:

q(t,x) = ¢" (t,x) = J 4. (0, x)) =[N, (x)Q, (1,x)) (10)

The spatially discretized finite element basis definition yields:

Q. ={N, 10}, (1D
The finite element basis functions, Ny for k=1,2 and their corresponding shapes
based on Lagrange interpolation polynomials in local and global coordinates for one and
two dimensions are given in Figures 2-5. Note that higher degree k of the basis will

generally involve higher number of supporting nodes in the element.
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Figure 3. One dimensional quadratic element Qe for quadratic basis.
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Figure 5. Full biquadratic quadrilateral element Qet.

Solution Methodology

Independent of the physical dimension of €, and for general forms of the flux
vectors, the semi-discretized weak statement of Equation 6 always yields an ordinary

differential equation (ODE) system of the following form:
dU
ws” :ME+R(Q) ={0} (12)

Here, Q is the time-dependent finite element nodal vector, M = S.(M,;) is the “mass”

16



matrix associated with element level interpolation, while R carries the element convection
information and the diffusion matrix resulting from genuine (non-Eulerean) or elemental
viscosity (natural or artificial) effects, and all known data. The time derivative dU/dt, is
generally replaced by using a ©-implicit time integration procedure and the terminal ODE
is usually solved using the following Newton-Raphson (NR) scheme:
0 =0, +A0' =0 +Y.0"
p=0

(13)
[M +6At(OR/0Q)|AQ' = —R(Q)

where i is the iteration, and t is the timestep. The choice of time step is dictated by the
Courant-Fredrich-Levy condition (Richtmyer and Morton, 1967).

The solution is declared convergent when the maximum residual for each of the
state variables becomes smaller than a chosen convergence criterion. Here, the

convergence of a solution vector U on node j is defined as the norm:

Here, an implicit (8=1) time stepping procedure is employed. There are obvious
numerical issues associated with calculation of the “jacobian”, dR/0Q within sufficient
accuracy.

For steady state problems, a procedure analogous to relaxation methods utilized
for finite difference scheme, is employed. Equation 6 can be modified in the following

form:

. T8 T (15)
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where £1s a diffusion perturbation parameter that can be varied separately for each state
variable. As £ — 0, Equation 15 reverts back to steady state form of Equation 6. Initially
£1s set to a sufficiently high value so as to generate a diffused but stable convergence to
steady state solution. Progressive reduction of £1is carried out until the final steady state

solution with € — 0 is achieved.

The ionized gas is numerically modeled using the finite-element based Multiscale
Ionized Gas (MIG) flow code. The code is modular and separate subroutines can be
written to model different physics. The sequence of procedure to update solution variable
¢ in a given iteration is presented in the form of a flowchart in Figure 6. For the one-
dimensional formulation, the code generates element matrix for each of the elements into
which the domain is discretized and adds elemental information appropriately into a
global stiffness matrix by mapping indices between local to global matrix. The Newton-
Rhapson scheme for non-linear system is used and resulting matrix may be solved using
non-iterative decomposition (LU) or iterative pre-conditioning (GMRES or BICGSTAB)
schemes.

Figure 6 depicts the flow of sequence for a single iteration of the solution process
as implemented in the code. The element stiffness matrix is created within a sub-loop and
is successively assembled into a global stiffness matrix which is solved using a Newton-
Rhapson nonlinear scheme to increment the solution variable. One main disadvantage of
formation of this full global matrix is the limitation in memory allocation depending on
the computational capacity of the system used. Consider a problem with a mesh
consisting 41x41 nodes and 3 dependent variables. The non-linear N-R for this problem

requires a matrix with 5043 columns, to be formed for every iteration and whose number
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of rows depends on the bandwidth of the problem, Figure 6(a). This number becomes
unmanageable as problem degrees-of-freedom (size) increases. The maximum allowed
bandwidth is machine dependent which limits the computational capability. Also, due to
the nature of finite element algorithm and elemental and nodal numbering scheme
followed, the resulting matrix becomes sparse in nature for higher dimensional
formulations. As a viable remedy, an iterative sparse matrix solver called Generalized
Minimal RESidual (GMRES) has been implemented. The assembly procedure involves
storing only the non-zero elements of the matrix (dR/dq) in the form of a linear array and
the corresponding row and column locations using an incremental flag as represented by
the block as shown in Figure 6(b). The program progresses through each element; the
information is added appropriately to the particular location in this array thus eliminating

the formation of a large global matrix.
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Figure 6. Flow charts for (a) global matrix assembly formation and (b) alternative
element assembly procedure used for GMRES.

A comparison between the two sequences, shown in Figure 6, is done for varying
mesh size keeping all other parameters and looping schemes as same. Figure 7 plots the
computational time for assembly and solver separately. It is found that the algorithm

which does not involve global matrix formation works better for larger number of nodes.
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The comparison of the solver time is also shown in Figure 7(b) for varying mesh
measure. The scheme involving formation of global matrix and decomposition solver is

comparable only for mesh with 501 or fewer nodes.
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Figure 7. Comparison of assembly and solver time for the assembly methods in Figure 6.

Algorithm Stability

The stability of an algorithm can be investigated from its amplification factor G"
and the relative phase velocity ®". Though the dynamics of the charge species have not

yet been introduced elaborately until this point, for exploratory purposes, the drift-

diffusion approximation for electrons and ions is used. Based on the finite element stencil
and using Fourier representation (=e""/**""%) one may derive the following

amplification factor for ions:

d

on.
—nuE-D —)=nS
ox ( " ox )=n,

G" =[1-3iCf (mAz) — SAt(cos O +isin 6)]" (16)

with the magnitude ‘Gh‘ = ((1 ~SArcos 0) +(3Cf (mAz) + SAt sin )’ )_0‘5
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and the phase velocity ®" = tan™ (3Cf (mAz) + SAtsin 0) —-CmAz , (17)
(1-SAtcos8)
while those for electrons are:
0 on
— (= E-D, —)=nS
ox (net, ¢ ox )=n.
G" =[1-3iCf (mAz) - SAt]"
05 (18)
G| =[(A=SA1 +(BCf (mA2))’ |
and ®" =tan™ {W}/—CmAz (19)
(1-SAr)

In Equations 16-19, m is the wave number, Az is the length of an element, C is the
Courant number, f(mAz) =sinmAz/(2+cosmAz) and 6 =—(u, —u Ym(n+1)Ar is

the relative velocity phase angle. Here, the case of 0 = 0 has been analyzed, which
includes both ions and electrons. The algorithm is stable if the algorithm amplification
factor IG"I<1 (Roy, 1994). One prefers ®" ~ 1 to minimize the loss of information during
solution process. Figure 8 plots IG"| as a function of mAz for two values of S and C.
Obviously for a higher value, S, = 500, the solution becomes unstable. The numerical
difficulty may be handled by appropriate selection of Courant number and introduction of
artificial diffusion. The result however gives an insight to the increasing instability of the

standard solution procedure about the bulk-sheath transition region.
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Figure 8: Algorithm amplification factor (IGhI)and relative phase velocity (CIDh) for
varying Courant numbers (C=0.5 and 1) and ionization rates S1 =5 and S2 = 500.

Note on Scales

Due to a vast difference in mass between electrons and ions, the response of each
of the species to any external force is drastically different. The electron and ion plasma

frequencies are given:

(20)

Clearly, the frequency of electrons is much higher in a quasi-neutral (N, =N,) plasma.

Hence, they almost respond immediately in the time frame of the more massive ions. As
a consequence, two different timescales arise in the problem with several orders of
magnitude difference between them. The present algorithm involves a self-consistent
solution procedure where both electron and ion dynamics are captured simultaneously.
Due to inherent coupling of variables in the plasma, the non-linearity may affect
convergence of the solution. Another method may be to employ a conventional multi-
scaling scheme. In such a scheme, the ion dynamics are solved once in every tens or

hundred timesteps of solution for electrons.
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The presence of varying timescales within the model, as can be understood from
this section poses a significant numerical complexity. Another challenging aspect is the
resolution of spatial scales. The sheath which is a region of large property gradients
extends only few Debye lengths into the plasma as compared to the physical domain of
the plasma. Hence resolving the spatial nature of this sub-millimeter scale sheath needs

separate attention.
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III. MODELING OF ONE DIMENSIONAL DISCHARGES

Direct Current Glow Discharge

A direct current (dc) discharge forms plasma, sustained by a direct current
through an ionized medium. A high potential difference applied between electrodes

immersed in a gaseous environment results in the electrical breakdown of the gas.

These discharges are characterized by continuous steady currents and are mostly

sustained by secondary emissions. The theoretical prediction of dc discharges based on

experimental data was reported as early as 1962 (Ward, 1962).

Problem specification

To understand the dynamics of the sheath, we hydro-dynamically model two-fluid

bounded plasma under direct ionization when ionization rate is considered constant. Only

a symmetric half of the plasma is considered and all the boundary conditions are imposed

based on quasi-neutral properties at the plasma center.

For steady state conditions, the governing system of equations is obtained from

Equations 2-4 for cold ion case.

Continuity equation:

Momentum equation:

NV,)=N,
dx
Vi%—E+£NE =
dx N
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Poisson equation:

dE
= _&*(N.-N)=0
T (N;,—N,) (23)

where € = 4.036 x 10~ . The system of equations is completed using a Boltzmanian
approximation for electrons:
N,=e" (24)
The geometry consists of domain that extends up to ~0.7. x=0 is the center of the plasma
where the following boundary conditions are employed.
N;(0)=1.0, V; (0)=0.0, E(0)=0, ¢ (0)=0

This system of equation cannot be solved analytically due to the singularity in
center of plasma where ion velocity is assumed zero (Sternberg and Godyak, 1996). The
System 21-24 is solved using finite element algorithm explained in Part 1.
The weak statement formulation for the equation system is as follows

Continuity equation:

dy” dy’ _
Se LJ“/;W ;/./X dx{Ni }e +J‘ Nzwd—l/-/xdx{‘/l }e __[We ¢de = FN (25)
Q Q Q

e

Momentum Equation:

dy’ dy’ e’ B
S, [j V= —dxV), —i y= —ddg) + j N Wt | =F, 26)
Poisson equation:
dy”" _ T ~
S, [jy/ Zc dA(E,}, € [yy' dx(N,), + ¢ ZJ.I//y/de{Ne}ej =F, 7
Q Q Q e
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and equation showing the derivative relation between ¢ and E is

S, (—IVI d;” dx{¢;}, +IWde{E,»}ej =F, (28)

X

The mesh consists of 900 linear elements. The elements are refined towards the wall to
capture the larger gradient changes thus approximating the curve in a better way.

Results and discussion

The first order system of Equations 25-28 is solved using linear interpolation
polynomials. As described in the previous chapter an artificial diffusion parameter (&) is
introduced to get a diffused initial condition. Final steady state solution is achieved when
= 0.

In the process of obtaining the numerical solution, due to the singularity near the
center of plasma, unrealistic local numerical oscillation near x=0 may be observed. This
is more prominent in the ion number density profile within range of 0.01 spatially. A
simple algebraic calculation was performed on the mesh. The Equation System 21-24 at

second node (at distance of the mesh measure, h) reduces to:

NV, =he™? (29)
VZ+h(V.IN)e? =¢ (30)
¢=ah’(N,—e™) 31)

If V; >h, from Equations 29-31, N; can be evaluated as sum of e® and a function of h,
which may give a value greater than one. This dependence on mesh measure can also be
related to the refinement of mesh near the wall increasing the nodal distance near center.

Proper choice of initial condition is also necessary.

27



The progress of solution is represented in terms of the residual and solution norm
as plotted in Figure 9(a) and (b) respectively. The solution converges to steady state in
about 80 iterations. The simulation (assembly and solver) takes just few minutes in actual
time. Though artificial schemes were employed to get a better initial condition before the
actual simulation was performed, the method proves as a simple, fast and cost-effective

tool to predict the discharge characteristics.
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Figure 9. L, norm of (a) solution increment and (b) solution residual.
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The results of the solution are presented in Figure 10(a) to 10(c).
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Figure 10. Plasma solution using finite element methods (a) normalized species density
(b) normalized electric field and net space charge (c) normalized electric potential.

Two distinct regions may be observed from Figure 10(a), the quasi-neutral plasma

where Ni=N. and the layer of sheath attached to the wall where N; >> N.. Based on the

Bohm velocity of ions, the sheath edge is identified at 0.58. Here, a case of direct

ionization is assumed where the ionization rate is assumed constant and is of the order
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~10*. We see the tail of electron density close to the wall reaching values close to zero.
The Boltzmanian distribution assumed for electrons explains this behavior. Note that this
assumption is true for isothermal, collision less and unmagnetized plasma. The electric
field arising out of this charge separation is plotted in Figure 10 (b). The field rises to a
normalized value close to 700 in the sheath. As can be seen, there is two orders of
difference in magnitude between field in the sheath and that in the bulk. Hence from the
ion momentum equation, it can be concluded immediately, that the motion of ions inside
the sheath is mostly electro-dynamic. The net charge distribution or the space charge
separation is plotted in Figure 10(b). As one approaches the sheath edge, there is an
abrupt drop in the charge difference within a small spatial extent. This is the region of
pre-sheath where separation in ion and electron density curves begins and where electron
density is just less than ion density. The applied potential reaches a value of 50
(normalized) at the wall.

Radio Frequency Discharges

The load factor (ratio of electric field to Lorentz force) for dc sheath application is
of the order 1, far from the Stoletow point, thus unsuitable for ionization purposes. A
popular alternative method is through the application of unsteady rf fields with
frequencies in range of 1 to 100 MHz. Understanding rf induced sheath dynamics near
the surface of an electrode has a strong effect on both volume ionization efficiency and
on energy interactions with the neutral gas flow. Specifically, with the recent progress in
rf plasma-based boundary layer flow control (Enloe et. al., 2004), where the fundamental
mechanisms remain unclear, the understanding of rf plasma and its bounding sheath has

become crucial. This requires a theoretical modeling technique that is geometry versatile
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and time accurate. Here, we attempt to model bounded plasma up to and including the
sheath near the electrodes at 0.1 torr pressure.

At low discharge pressures (~millitorr) applicable to the semiconductor and
material processing industries, the dynamics of rf sheath has been studied by early
researchers, Zhang et. al. (2004), Roy et. al. (2003) and Hammond et. al. (2002), to name
a few. There are a few methods for modeling plasma-wall under applied potential. These
include the bulk plasma model, the step-front-electron sheath model and the asymptotic
expansion method. These theoretical advances notwithstanding, a self-consistent
simulation for rf driven plasma-wall interactions remains a quest. In a self-consistent
plasma-wall model followed in some earlier works (Roy et. al., 2003 & Hammond et. al.,
2002), the space charge effect is incorporated for the entire discharge. The sheath
structure is investigated in the post-processing phase unlike the patching/matching
techniques where bulk plasma forms a boundary condition to sheath solution.

Recently, two such plasma-wall models have been reported for two-component
fully ionized plasma (Roy et. al., 2003) and three component partially ionized gas (Roy
and Gaitonde, 2004). The two-fluid model was applied to predict the rf discharge inside a
tube filled with argon gas. The three-fluid model characterized the effect of volume
ionization on the neutral helium gas flow between two dielectric coated electrodes at
atmospheric pressure. The intention is to complement experimental efforts by providing a
suitable tool to explore flow control concepts in future design and development.

Following an earlier work, (Roy et. al., 2003) a detailed study of the space charge
effect in a two-fluid capacitive rf plasma-wall system in the presence and absence of

collisional impact ionization is presented here.
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Problem specification

Figure 11 shows the circuit for a typical capacitive rf discharge. A time varying
potential is applied at the right electrode through a blocking capacitor C. The left
electrode is grounded. Two-fluid plasma consisting of electrons and ions is considered.
The unsteady continuity and momentum (drift-diffusion) equations are solved
simultaneously with the Poisson equation. The transverse extent of the discharge is
assumed to be much larger than the inter-electrode distance and hence a one-dimensional
model is considered sufficient. When the ion mfp is comparable or less than maximum
sheath width, ions involve in more than one ionizing collisions. It has been found that for
pressure less than 0.003 torr for argon, collisionless approximation is valid. For
conditions above 3mtorr upto 0.15 torr, argon falls in the lower end of collisional regime.
Hence, the argon plasma at 0.1 torr is collisional. However, to identify the effects of
collision in the space-charge separated sheath region, the problem is first considered
without the collision and then with the collisional effects. Hereafter, Case A will be

referred for the collisionless model, while Case B represents the collisional problem.

S5HEATH

Figure 11. Schematic of the capacitive rf discharge.
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The following fluid equations are used. The continuity equation for electron (e)

and ion (i) number densities is given:

on, I,
—+—=n,5
ot ox
on o where flux, I'=nV (32)
e + e — ne
ot Oox

Here, n is the species density and V is the species hydrodynamic velocity. A collisionless
condition (zero ionization) is ensured in case A. For case B, the ionization frequency is

governed by the Townsend equation:
S=A —BIE/ p)** R
= Ae P (33)

where A and B are known for the gas'’. R= M1, E (which has a dimension of velocity,

cm/s) may be viewed as the speed of ionization that models the spatially and temporally
varying ionization.
The electrons flux is governed by:

on,
TL=—mMﬁ>IL5;\mmeqkn@ (34)

The electron mobility , is given by (Ward, 1962) pu, =3%x10°cm®V ~"'s™'Torr , at p=0.1

Torr. The electron temperature (7,) is 1 eV. For ions, in case A, the inertial term is

included in the formulation of its momentum:

V. V. e
T Lilp gy
a Vo omo T (35)

While for case B, the flux can be derived from the drift velocity and hence:

on.
' =nuE-D —
l nl l l ax (36)
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Here electric field E=—0¢@/0x. For cold ions at T; = 0.025 eV, D, =200 cm?/s. The ion

mobility £; is based on the degree of ionization, electric field and pressure (Ward, 1962).
While one may include the inertia terms to get a slightly improved solution, at 0.1 torr
pressure argon plasma sheath is collisional (Liebermann and Lichtenberg, 1994) and the
drift-diffusion approximation is reasonable and computationally efficient. Under the
effect of collisions, the extent of charge separation is greater and the species velocity is
greatly driven by electric body force (gE) as represented by this approximation The

following Poisson equation is used to calculate the potential drop.

= —g(nf -n,) (37)

Equation 37 is rather interesting as it possesses no time derivatives, yet temporal
behavior is nontrivial. Inserting Equation 32 into 37 and integrating on x gives the

following current balance:

2

Eyg; =enV.—enV, +1(t) (38)

where the constant of integration, /(¢), is the total current density. It may be noted that the
effect of varying speed of ionization on the rate of species production is indirectly
reflected on the net current density. Equation 38 completes the dynamic system of
equation and serves as a means to calculate electrode potential from conservation
principle. A simple discretization for the boundary element (assuming that the mesh is

fine enough to validate the linear approximation) yields the following:
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e-e7)-(g.-)
AxAt

ze(nl.Vl.) —e(nV) +1(2)

(39)

where n and (n-1) are the two boundary nodes and ¢ is the time. Hence the solution can be

iterated on the boundary condition (within a given timestep) to update the electrode

potential.

The finite element weak statement for Equations 34 and 36 in conjunction with Equation

32 is written as

I,uE;u dwdx{N}

> dy d dN, =
ay V/ _

+_[D T ——dx{N,}, J'Dy/{ I }dx ISW dx{N,},

e

—jy E:// dx{N - (pdx{N )
S - F,
deV’zjd{N}—ij{ }zx [Syyaxn,),

e

Y

(40)

(41)

The sheath edge is identified as the ion attains the modified Bohm velocity based

on G-S relation (Godyak and Sternberg, 1990) as V/, [1 + C]_O'S where the collision
parameter ¢ =0.574,,, / A, and Ai(cm) ~1/330p.

Boundary conditions

The left electrode is grounded, ¢(0)= 0, and a sinusoidal rf potential ¢,

=@ mssin2 7aft with @n=100V and f=13.56 MHz is applied to the right electrode through

the capacitor (C = 0.1) where d¢(2)/dt =1(t)/C, and @ may be related to total current

through Equation 38 thereby completing the circuit in Figure 11.
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The electron flux at both electrodes is based on the electron thermal velocity
(Ve.n) whose magnitude is given by /¢ = n.V. w4 and is directed towards the wall. For
case A, we utilize the collisionless model and employ Boltzmanian electron distribution

at the wall. Hence the flux becomes:

T T
r =n e _pasd | Lo -ao
© N2mm, ¢ 27m, “2)

Homogeneous Neumann boundary condition (dn/dx=0) is imposed for ions at both
electrodes. The domain is discretized into 400 elements and /s interpolated using a

linear basis function. We used the convergence criterion for all variables at any iteration
as 107,

Results and discussion

Case I: Collisionless Discharge

Figure 12 shows the computed rf discharge characteristics for a collisionless
sheath at applied frequency @<< a),.. The discharge gets established due to external
power supply in form of a sinusoidal wave at the right electrode. The inherent difference
between ion and electron inertia is one fundamental concept, governing the discharge.
The direction and magnitude of the electric field is based on the space charge separation.
The spatio-temporal evolution of ¢ and E in Figure 12(a) and Figure 12(b) match well
with those published in literature (Lieberman and Lichtenberg, 1994 & Raizer et. al.,
1995). It is interesting to note that the slope of E is always positive for most of the
simulation domain and near the powered electrode the magnitude always remains

positive. This indicates the dc bias of the potential. Figure 12(c) gives an approximate
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indication of sheath edge location at which space charge separation become prominent as

the ion and electron density curves bifurcate.
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Figure 12. Variation of (a) potential (b) electric field and (c) charge separation at various

instants of the rf cycle.
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Case II: Collisional Discharge

Figures 13-15 illustrate the computed rf discharge characteristics for the
collisional model. The time-averaged values of potential and electric field for one rf cycle
are shown in Figure 13. The average potential of one cycle has been compared to the
potential in Figure 13(a) when it reaches its maximum value at /2. The average
discharge potential is ~40% of the peak potential. Also notice that plasma potential (in
the bulk) is always positive and vanishes to zero potential at the electrodes. Hence this
also explains the positive nature of the space charge sheath formed. The time-averaged
electric field in the domain for one rf cycle is shown in Figure 13(b). In the bulk plasma,
the field cancels out in opposing half of applied potential and hence there is not net force
on the charged particles. The direction of the field, as mentioned before is always pointed

towards the electrode.

100 \
2000
80
1000
60
o
. LF O
40
-1000
20
2000
% 0.25 05 075 1 0 025 05 075 1
z 4
(a) (b)

Figure 13. (a) Time averaged (thin line) and peak potential at 7/2 (thick line) and (b) time
averaged electric field.
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The flooding and receding of the electron gas, exposing the immobile ions to the
electrode (periodically) at every k7 radians is shown in Figure 14(a). There is an increase
of electron density at the electrode momentarily collapsing the electron sheath, which is
otherwise inevitable. This energy is imparted to the electrons through accelerating fields.
The electrons thus oscillate about the center of the domain driven by the potential
difference across the electrodes.

Figure 14(b) shows the extent of deviation of plasma from quasi-neutrality in the
presence of electrodes. In case A, ions are collisionless inside the sheath; and to preserve
the flux, they gradually decay to a non-zero value. In case B, ions experience more than
one ionizing collisions inside sheath. Unlike case A, there is no clear sheath edge
boundary due to the presence of collisions. The magnitude of charge separation is greater
in case B than in case A also attributed to the ionization in the sheath. The spatial
evolution of net charge in the domain differs between cases A and B, particularly in the
plasma-sheath edge. For example, as we move from the bulk plasma to sheath, there is a
sharp drop in electron density (due to high cathode potential) and the sheath is almost
devoid of electrons near grounded electrode at /2.

The profiles of potential and electric fields for collisional discharge are similar to
case A except for higher magnitudes of E induced in the sheath for case B. The electric
field in the bulk plasma is observed to be a periodic function in the timescale of the
applied frequency as E (t) = 3cos (n+7). The phenomenon is noticeable near an electrode
in the positive half of applied potential (at 7t/2) and occurs at relatively weak electric
fields. Ions, due to their high inertia, hardly respond to the weak fields in the bulk plasma.

This is not true inside sheath. The highly oscillating fields exert high electrostatic force
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on the ions and they enter the sheath with high velocities. The timescales of ions and
applied frequency are comparable for this plasma density and plasma frequency.
Figure 14(d) shows the electron heating (I'(t).EE(7)) profile. It is evident that
electrons are periodically heated and cooled corresponding to the sheath oscillation and
hence the electron energy increases or decreases accordingly. The effect of electrical
double layer amplifying the electron heating near sheath edge is also noticed. Sheath

heating is a dominant phenomenon in radio frequency driven discharges.
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Figure 14. Variation of (a) electron number density (b) charge separation (c) electric field

and (d) electron heating at various time stations of the rf cycle.

The electron flux in the bulk is estimated to vary as Neue = 28 cost. Electrons,

being lighter get transported across the domain in response to the applied potential. Due

to their high mobility, the effect of double layer is amplified causing a local fluctuation

near the sheath edge (e. g at m/2) which gets reflected in N.u, causing a local fluctuation
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as seen in Figure 15(a). The variation of total current at the powered electrode for three
cycles of applied potential is reported in Figure 15(b). The total current is conserved in
space at any particular moment. It should be noted that the displacement current and
conduction (electron and ion) current magnitudes are comparable at the subject pressure
of 0.1 torr. The peak of the total current is observed at every (4k+1)m/2. A minor
secondary peak is also observed in Figure 15(b) at the instant when the applied potential
switches direction on the electrode. It is also noted that this secondary current peak is less

significant for lower ionization rates.
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Figure 15. (a) Spatio-temporal variation of electron flux and (b) temporal evolution of
wall potential (thin solid line) and total current (dark solid line).

The difference in normalized sheath thickness at the grounded left electrode (z;)
and the powered right electrode (1-zg) shows an expected 27 periodicity between the

points of extremum sheath locations with a phase lag of 7 radians. The oscillation of
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sheath width z,, is plotted in Figure 16 using the G-S relation stated in Sec. II. Based on
curve fitting with an estimation error of ~4%, we correlate the sheath thickness as z,, =
0.04%0.03sin 7. For the discharge at 0.1 torr, the simulation results predict the maximum
sheath width z,,_,qx~20 Ap., Which agrees with the available literature (Lieberman and
Lichtenberg, 1994). The sheath accounts for nearly 80 % potential drop for one rf cycle.
The average sheath thickness was numerically found to be higher for a collisionless

sheath under similar conditions than a collisional one.
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Figure 16. Temporal evolution of left (Sy=z) and right (S,,=1-zr) sheath width.
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IV.  MODELING OF TWO DIMENSIONAL DISCHARGES

The increasing application of plasma in aerospace community demands
supporting theories to quantify and explain experimental observations. Particularly, with
growing interest in plasma based flow control techniques, there is a necessity to estimate
the plasma discharge characteristics effectively. A time accurate and geometry versatile
numerical tool would prove useful in accurately calculating the discharge characteristics
and predicting its electrodynamic structure. This chapter is focused towards modeling and
simulation of a two-dimensional plasma discharge formed in the high frequency, low-
pressure regime.

When the lateral extent of a discharge becomes comparable to the transverse
stretch in presence of geometric or electrical inhomogeneities, the sheath becomes multi-
dimensional and a one-dimensional model is not sufficient to capture the required
features. Specifically, the interest to model the effect of magnetic field necessitates a
higher dimensional consideration.

The dynamics of sheath in one dimension in the low and intermediate pressure
regime have been studied in literature from numerical simulations. Boeuf and Pitchford
(1995), Dalvie (1993) et. al and Passchier and Godheer (1993) simulated argon discharge
for cylindrical geometry in two-dimension. Most of these cylindrical configurations are

related to Gaseous Electronics Conference Reference cell which serves as a common
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platform for experimental and modeling studies and a well-characterized system in which
fundamental studies of plasma behavior can be conducted. Kim and Economou (2003)
investigated plasma formation over an inhomogeneous flat wall. In these simulations,
fluid and/or PIC treatments were used to model the system.

Recent efforts have considered effect of external electromagnetic force on plasma
wall interaction (Kim and Economou, 2003 & Hou et. al., 2004). Inspite of these earlier
attempts, the capability to simulate characteristics of a discharge in the presence of
electric and magnetic fields remain limited.

We present a hydrodynamic plasma model in two-dimension configurations under
applied electric and magnetic fields. The axial and transverse nature of resulting
electrostatic field, forces and potential are investigated. The MIG code employs a self-
consistent approach to model the rf induced plasma interactions.

Problem Specification

The unsteady transport for electrons and ions are derived from fluid dynamics in
the form of mass and momentum conservation equations. The species momentum is
modeled by the drift-diffusion equation under isothermal conditions. Here, the flux is
written in terms of species transport coefficients by neglecting inertial acceleration in the
collisional regime. Electron temperature (7,) is of the order of 1 eV (~11,600K) and ions
are assumed cold at 0.026 eV (~300 K). The continuity equation for ion and electron

number densities is given by:
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where 7 is the number density and V is the species hydrodynamic velocity. As the sheath
is collision dominated, electrons are not assumed to follow Boltzmannian distribution.
For a pressure of 0.1 Torr, electron-ion recombination ~2x10™'> cm?/s and has negligible
effect on the mass balance (Boeuf and Pitchford, 1995). The discharge is maintained
using a Townsend ionization scheme resulting in production of charge through impact
ionization. The ionization rate is usually expressed as function of electron drift velocity
and Townsend coefficient (Boeuf and Pitchford, 1995). The Townsend coefficient, o
appearing in Equation 43 is given by:

o= Ape ™I (44)

where A=34 cm™ . Torr™" and B =16 [V/(cm.Torr)|** are pre-exponential and exponential

constants, respectively. II.| is the effective electron flux which varies spatially and
mainly depends on the electric field. The electronic and ionic flux in Equation 43 is
written as:

nV,=-nu,(E+V,xB_ )-D,Vn, (45)

nV. =nu,(E+V,xXB, )=D,Vn, (46)

where E is electrostatic field given by E=—Vg is the electric field. VxB is the Lorentz
force term due to presence of magnetic field. The magnetic field is acting only along the
z-direction; B={0,0,B,}.

Since Equations 45 and 46 are of o® order, the bandwidth of the problem can be
considerably reduced by substituting into Equation 43. The substitution gives rise to
convection-diffusion type equation, which apart from being more stable increase

computational efficiency. Hence:
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After some algebraic manipulation, we end up in the following equations,

on,

Rk V-1V, =B, ()] | =T, (49)
aar;e +b,[V.(nV,), - 12B.|J ,(n,.0)| ] =T, 0

Here bi(=1/ 1+Biz) and b.(=1/ 1+[362) are functions of hall parameter (3; and ) and J is the
Jacobian determinant involving partial derivatives of n and ¢.

The effect of magnetic field on the discharge is theoretically brought into the
system through introduction of an additional expression involving mobility, as seen from
Equations 49 and 50. The convective term (V.nuE) gets altered accordingly in the x and y
directions. This affects the electric field-number density coupling resulting in transfer of
momentum between axes. An appropriate choice of B magnitude and direction can
accordingly increase or decrease the stream wise momentum through electrostatic forces.
Modification in discharge characteristics is expected in a direction perpendicular to the

significant axis of the problem.
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The electron mobility #, in Equation 48 is given by u, =3x10°cm’V~"'s™", at pd =
0.2 Torr.cm. The electron diffusion coefficient, D, is calculated from the Einstein relation

D, = kT /eyt,. The ion diffusion coefficient is D, =200 cm® /s at 300K. The ion mobility g

is expressed as a function of reduced field (E/p) as before.
The relation between electrostatic field and charge separation is given by the Poisson
equation:

EV.E =—e(n,—n,) (51)

The electrodes are assumed to be fully absorbing. Secondary Electron Emission
(SEE) can be neglected for pressure of 0.1 Torr in Argon; as low as <<1% of secondary
electrons are emitted back at the electrode. For all the cases considered, d=2 cm,
®/21=13.56 MHz and the reference density np=2x10" m™.

The finite element weak statement for Equation 47 is given in Equation 52. The
introduction of magnetic field makes the formulation look complicated and cumbersome.
Thought the underlying weak formulation is the same and simple to use once a
framework has been developed. For example, the weak statement for Equation 47 is as

follows:

d d
iﬂi (Ex+/>7Ey)V/EWde{M ) +£ u(E, —ﬁiEx)wg"’Tdy{N,. )

,. ) dy dy" dy dy" _
Pt +£ﬂ,,v (al//V/de{N;}e+£QEEC[)€{M}€+£QEECIY{ML =F,

o V,{%} de- | l/j[%}dy— Jswacin),

B .
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The weak statement for electrons and potential may be written in the same way.
The system utilizes a Sub-Grid eMbedded algorithm (SGM) (Roy and Baker, 1998)
which ensures a node-wise monotone solution. The SGM is incorporated to the
dissipative flux terms that are altered suitably based on local cell velocity and thus is
expected to ensure a minimum dispersion error.

Results and Discussion

Case I: Benchmark Case

The two-dimensional formulation was tested to plasma formed between two
symmetric electrodes for a Direct current glow discharge using nitrogen. The geometry
and discharge conditions correspond to Surzhikov and Shang (2004). The computational
grid consists of 25 x 30 bi-quadratic (9 nodes) finite elements. An electrode potential of
533 V is applied through an external circuit with resistance 300k€ driven by an
electromotive force of 2000 V. The model does not neglect diffusion in x and y directions
for the entire domain including plasma and sheath.

The cathode is at y=0 while y=2 cm is the anode. Vanishing ion density is
imposed at anode while the electrons at cathode are calculated using flux balance using a
secondary emission coefficient (=0.1). The left and right boundaries of the computational
domain are maintained at symmetric conditions. Electrons and ions are localized to center
of the geometry along x-axis based on initial condition and was calculated based on a pre-
estimated cathode layer thickness and current column length (Surzhikov and Shang,
2004).

The results of the simulation at pressure of 5 torr in the absence of magnetic field

are presented. Figures 17(a) and 17(b) show the lines of constant electric potential and

49



ion density. The potential in previous simulation by Surzhikov and Shang (2004) are also
shown for comparison. The potential lines bend towards the cathode. This gives rise to
high electric field (directed towards electrode) driving electrons away forming ~7.5 %
thick cathode layer. The ion density near cathode rises to an order of magnitude higher
than that near center of discharge and indicates a qualitative similarity. When a magnetic
field of 0.01 Tesla is applied, the ion density gets shifted in the axial direction along the
electrode surface (Figure 17(c)). A widening of discharge near cathode is also observed.
The direction of drift depends on direction of magnetic filed lines while the magnitude of

shift of iso-lines depends on value of determinant of Equations 49 and 50.
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Figure 17. (a) Electric potential contour comparison between present simulation and
reported simulation (Surzhikov and Shang, 2004) and (b) ion density contours for B=0
and (c) ion density contours for B=0.01 T. All results shown here are for Nitrogen gas at

5 Torr.
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The calibrated formulation is applied to model plasma of a pure argon gas
discharge. The schematic model and the computational domain are shown in Figure 18.
The electrode is ~2 cm long and is located ~1 cm from left boundary. The top surface is
considered quasi neutral. This assumption is valid as the height of domain chosen is
much greater than Debye length. A height of ~200Ap. is chosen for present case. The
electrodes are assumed to have a negligible thickness compared to significant dimensions
of the model and are presently ignored for simplicity.

The computational grid (Figure 18) consists of 25 x 20 biased bi-quadratic finite
elements with the first node ~0.01 cm from wall. The maximum aspect ratio is about 6
for elements near the wall and is close to one far away from electrode. This is a trade-off
between computational time and near-wall mesh resolution. The presence of mm scale
sheath necessitates mesh refinement close to wall. This increases the aspect ratio of
elements near the wall which has to be compensated by increasing stream-wise elements
at the cost of computational time. In the absence of magnetic field, the discharge may be
treated as symmetric about x=1. Similar geometry has been treated recently in literature
(Kim and Economou, 2003) for quiescent and fluctuating argon plasmas in the
collisionless low-pressure regime. Apart from being a more realistic configuration that
brings edge effects into consideration, the importance of understanding this discharge
configuration proves useful in plasma based flow control application that is being widely
investigated as a means to alter near wall boundary layer profile. A recent investigation
studied the effect of plasma on neutral gas flow in an asymmetric configuration for a

Dielectric Barrier Discharge (DBD) (Roy, 2005). Hence this formulation provides a

52



framework, which can be built upon to study high-pressure discharges and effect of
magnetic field interaction in collision-dominated sheath.

As can be observed from Figure 18, there is a net flow of current into the metallic
wall, while the current path is almost parallel at dielectric surface. This gives rise to a
near wall inhomogeneity in the model, which might be compared to a mathematical
discontinuity. This inherent feature introduces considerable numerical difficulty at the
electrode-insulator edge. Maximum plasma generation is limited to this region which
when not properly handled may affect numerical stability. As mentioned earlier, artificial
stabilization techniques like SGM have been implemented to minimize dispersion error

and ensure a node wise monotone solution.
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Figure 18. Schematic of a perfectly flat electrode-insulator configuration and
computational grid.

The system of Equation 47-48 and 51 are solved using the following boundary
conditions. The electron flux imposed at electrode is based on the electron thermal
velocity and directed towards the electrode. (N.V.)y to electrode is O if drift velocity is
away from electrode. Boundary condition (at electrodes) for ions is imposed

homogeneous Neumann (dN;/on=0). The normal current of charge carriers is nullified at
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insulator boundary. In the left and right boundary, the slopes dN/0x=0, ON,/dx=0 and
d@dx=0 are ensured.

Case I1: Steady State Discharge in Presence and Absence of Magnetic Field

A steady state discharge is first studied for an applied voltage of -50V on the

exposed electrode. Figure 19(a) shows iso-lines of electric potential for a cathode
potential of —50V at steady state. The symmetric nature of the contour in the absence of
magnetic field about x=1 may be noted. Figures 19(b), 19(c) and 19(d) compare the axial
distribution of potential, electron number density and charge difference at two different y
locations, close to and away from the bottom plate. Due to large difference of potential
between top boundary and electrode, the variation of characteristic is felt in y-axis.
Hence the magnetic field strongly affects the stream-wise distribution because of heavy
y-momentum transfer into x-direction (as seen from Equation 47 and 48). The solid line
shows the variation in absence of magnetic field while the dotted line is for a low
magnetic field intensity of five Gauss. The sharp change of characteristics (for example,
spike like pattern for electron number density) near the electrode-insulator edge is
expected. Most of the plasma formation is limited to this region. As shown in Figure
19(b), the insulator is less cathodic (~25V difference than cathode potential) and behaves
like a pseudo-anode collecting electrons. Corresponding to this pseudo-electrode, a sharp
increase in electron density is observed near the highly depleted cathode sheath layer. In
the presence of magnetic field, the potential lines (for example, near right electrode-
insulator edge) are modified along the electrode surface. They are shifted from its initial

position towards the right. This change is reflected in the charged species (theoretically
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through the Poisson equation) causing a variation in charge separation. Hence, the

analysis qualitatively shows effect of magnetic field on discharge characteristics.
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Figure 19. Steady state discharge (a) electric potential contour for B=0 (b) variation of
potential (c) variation of electron number density and (d) variation of axial electric field
at two y locations in the presence and absence of magnetic field. All results shown here
are for Argon at 0.1 Torr.

Case III: rf Discharge in the Presence and Absence of Magnetic Field

The steady state discharge in case Il was analyzed for fairly low magnetic field
intensity. With the gained theoretical understanding of electromagnetic interactions, a
transient plasma discharge is simulated for a higher magnetic field of 20 Gauss in the

presence of an oscillating potential with a peak-to-peak of 100 volts. In order to
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understand the variation of plasma characteristics in the presence of magnetic field, the
solution is compared with a simulation without magnetic field, all other conditions being
the same.

Figure 20(a) and 20(b) show the progress of solution in terms of the residual and
solution norm, respectively evolving with time expressed in radians. As can be seen, the
solution norm has reached a steady state or a harmonic periodicity as can be seen from
peaks of the second and third cycle. A typical solution takes about 2.43 sec (CPU time)
for assembly and 2.5 sec for solver per iteration and a normal timestep takes four to six

iterations to converge.
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Figure 20. L, norm of (a) residual and (b) increment in solution

The stream-wise and transverse variations at different locations are shown in

Figures 21(a) to 21(c). It was observed in the simulation that except for localized regions
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near the electrode-insulator edge, the magnetic field had less pronounced effect on the
transverse solution characteristic relative to stream-wise components.

The potential lines are symmetric at all four times of the cycle plotted. At 7/2, the
electrode is highly cathodic and a sheath starts forming with a large change of potential
across a few millimeters away from the electrode. Near the electrode-insulator edge, the
lines wrap around the corners resulting in semi-circular patterns. Due to axial and
transverse extent of discharge, there are instantaneous pseudo-anodes that are formed and
most of electron accumulation (not shown) is limited to the edge. When the applied
potential shifts direction, the electrons start responding first to the rise in potential. The
net potential is affected by space charge accumulated in pseudo-anodes from the negative
cycle. During positive peak of the cycle, the potential lines do not wrap around the edge
as was observed during the negative stroke. The formation of instantaneous electrodes

near real anode and cathode causes this delay.
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Figure 21. Electric potential at four different times of rf cycle without magnetic field.

Figure 22 shows the potential variation under the effect of external applied
magnetic field of 20 gauss. The symmetry of the discharge about x=1 is affected and
profile is shifted to the right as can be seen at /2 radians. This brings about a change in
near wall charge distribution and electrostatic fields. The VxB component force visibly
pushes the field line to the right reducing the near curving of the constant potential lines

near the left edge. At 7 radians, plasma distortion due to applied magnetic field is less

intense. Interestingly at 37/2, the potential closely resembles a zero magnetic field case.
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Figure 22. Electric potential at four different times of rf cycle with magnetic field.

Figure 23 plots variation of electric field close to the electrode at four times of the
rf cycle. This spatio-temporal evolution may be of much value in flow control
applications where electrostatic force is considered as one possible mechanism of
momentum transfer from plasma to background neutral gas. Due to the nature of the
geometry, the potential across the right and left edge changes sign. This is obvious from
the peaks of field near 0.5 and 1.5. For example, the stream-wise field varies between

normalized values of 175 and —175 in the absence of magnetic field at /2. On the other
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hand, the observed field in nearly ~42.8% higher in the presence of an additional

magnetic force on the species.
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Figure 23. (a) Axial electric field in the absence of magnetic field (b) axial electric field
in the presence of 20 Gauss (c) transverse electric field in the absence of magnetic field
and (d) transverse electric field in the presence of 20 Gauss at four different times of rf
cycle.

The VxB coupling also affects the transverse electric field as shown in Figure 23.

The effect is more pronounced at /2 when the net downward field is predominant in the
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near the left insulator-electrode edge. The effect of magnetic field in affecting near wall
electrodynamics has been demonstrated here. The local increase or decrease in near wall
space charge effect can be related to magnitude and direction of input magnetic field.

Case IV: Edge Effect of Electrodes

(a) Sharp Edge
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Figure 24. Types of electrode-insulator edge.

It has been demonstrated that the presence of an insulator-conductor interface
alters the nature of discharge and plays a significant role in altering electric forces due to
plasma generation. The conductor in the previous case was assumed thin for simplicity in
modeling. It has been shown recently that the nature of edge between insulator and
electrode play a significant role in altering the nature of field lines and hence the “qE”
forces near the wall (Enloe, et. al., 2004). To have an insight into this edge effect, two
configurations, shown in Figure 24(a) and 24(b) are investigated in the present study. The
case of rounded edge (Figure 24(c)) may be visualized as an intermediate case between
90° and 45° shoulder configurations.

The present case under consideration is limited to steady state in the absence of
magnetic field for simplicity. An electrode of 0.2 mm thickness is coated on a flat plate
and located at ~1.5 cm from the left boundary. Figure 24(a) considers a sharp edge of

electrode with a 90° shoulder while Figure 24(b) considers an edge with 45° chamfer.
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The computational grid consists of 45 x 45 bi-quadratic finite elements in both cases. The
discharge conditions are same as before, namely, 0.1 torr argon plasma with an electrode
potential of —50V.

Figures 23(a) to 23(f) compare the computed profiles for the two electrode edge
models under consideration. The region near the edge has been zoomed for clarity. From
common understanding, the 90° edge creates a sharp geometrical discontinuity resulting
in abrupt change in radius of curvature across the edge as compared to the bevel. Hence,
the spatial variation of electric field gets considerably modified altering the electro-
dynamic properties of the discharge between the two edge shapes. The electric field lines
for a given change in potential are shown in Figure 23(a) to 23(d) and edge effects are
felt within several Debye lengths (~0.1 cm) in the plasma.

Figure 23(e) to 23(f) plots the force vector for the two shapes expressed as a
product of space charge difference (N;-N.) and electrostatic field, E, or Ey). In both cases,
a strong electrostatic force in the positive x and negative y direction is noted close to the
wall. The presence of cathode gives rise to strong transverse field (with electric field
lines ending at cathode perpendicular to it) downstream of the edge. The direction of
electric field force vector (given by tan'l(Fy/Fx)) near the wall was predicted between
225° to 260° oriented mostly in the third quadrant. This is indicative of an effective

forward-downward force created by the plasma across the edge.
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V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

An argon gas discharge under applied rf potential between two electrodes has
been modeled from first principles using a self-consistent coupled system of two fluid
and a single Poisson equation. The model is based on a robust finite element algorithm
utilized to overcome the stiffness of the plasma-wall equations. FE techniques are
especially suitable for their adaptability to arbitrary multidimensional geometries and
boundary conditions. The high-fidelity finite-element procedure is anchored in a
Multiscale Ionized Gas (MIG) flow code. The code allows introduction of element-wise
constant and local velocity based artificial diffusion which guarantees a monotone
solution and is expected to ensure minimum dispersion error. The details of the algorithm
flow of sequence in the code and alterations made to improve computational speed when
handling of sparse matrices have been presented. Numerical limitations are highlighted
for a simple 1d two fluid formulation from the theoretical derivation of algorithm
amplification factor and phase velocity. The intention is to complement experimental
efforts by providing a suitable tool to explore flow control concepts in future design and
development.

The dynamics of ions and electrons have been reported in one dimensional model
for an applied rf frequency ® < ®,. and 0.1 torr pressure. The collisional nature of the

problem, varying timescales for charged species in the bulk plasma and sheath, and the
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use of an interpolation polynomial to simulate the plasma-sheath transition that has
abrupt changes in gradients add to the complexity of the problem. The oscillation of the
sheath edge has been correlated as a sinusoidal wave. The sheath thickness is of a few
Debye lengths and accounts for nearly 80% potential drop for one rf cycle.

The formulation was tested in two-dimension for plasma formed between two
symmetric electrodes for a direct current glow discharge using nitrogen. The results
match well with published literature. A steady state discharge is simulated for argon in an
electrode-insulator configuration. The magnetic field has been shown to strongly affect
the stream-wise distribution caused by the VXB coupling between x and y axes.
Simulation results for a transient discharge evolution in the presence of time varying rf
potential have been investigated. The present analyses have served to highlight the
importance of understanding two-dimensional gas discharge nature and the effect of time
varying potential and an external magnetic field on it. Finally, the shape effect in
insulator-conductor configuration on near wall dynamics is compared using a 90°
shoulder and 45° chamfer. The maximum axial force is about ~22% higher for 90°
shoulder while the force vector across the edge indicates a net downward and forward
force generated.

The potential of combined electric and magnetic fields as a productive means in
altering near wall plasma forces has been realized here. The results presented are
expected to help interpret the plasma formation in the presence electromagnetic

interaction on the discharge structure for higher pressures.
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Recommendations

The intent for development of the MIG code for discharge modeling at various
pressures is to complement experimental efforts by providing a suitable numerical tool to
explore flow control concepts in future design and development. Given the robustness of
the algorithm and capability of the code, measures to further improve the computational
speed like parallelization are required, particularly for solving unsteady problems. This
will possibly cut down simulation time from days to hours. With finite element algorithm
(e.g. Galerkin) being increasingly seen as a highly efficient tool for complex flow
problems, the code proves as a powerful numerical tool in analysis, design and
development.

The simulation of plasma in one-dimension has been done extensively in
literature. But exhaustive two-dimensional simulations in the presence of rf interactions
and magnetic field are in rudimentary stages. The present formulation is expected to
serve as a framework for the following suggested investigations - correlate plasma V-I
characteristics for varying magnetic field intensities, rf interactions in presence of
magnetic field at high pressures, inclusion of electron temperature equation to study
electron heating mechanisms and modeling plasma chemistry for multiple levels of

ionization.
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NOMENCLATURE

Time co-ordinate, s

Spatial co-ordinates, cm
Debye length, cm
Temperature, K

Boltzman constant, J/K
Elementary charge, coulomb
Number density, cm™
Species hydrodynamic velocity, cm/s
Mass of charged species, Kg
Pressure

Frequency, s

Electric field, V/cm
Potential, V

Permittivity, C*/N.m’
Applied frequency, Hertz
Applied frequency, s
Characteristic length, cm
Tonization coefficient, cm™!
Recombination coefficient
Linear operator

State variable

Weight function

Flux vector

Computational domain

Artificial diffusion parameter
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G Amplification parameter
o Phase velocity

A Increment

C Courant number

Y Test function

F,R Residual

T Flux, cm?/s

1) Mobility, cm*V's™

D Diffusion coefficient, cm?/s
I Current

A, B Constants

B, Magnetic field, Tesla

J Jacobian

\% Gradient

Subscripts:

e Electron

i Ion

n Neutral

B Bohm

0 Reference value
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APPENDIX A

FORTRAN 77 SUBROUTINE FOR ALTERNATE FINITE ELEMENT
ASSEMBLY METHOD
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¢ This subroutine assembles the element matrix contributions to global matrix

Subroutine assemgm (elemk, ndim, maxdim, elemdof, iwant, iel, mtemp, ktemp)

c elemk - element stiffness matrix

¢ ktemp,mtemp - local element and mass matrices

¢ maxdim - leading dimension of elemk

¢ ndim - order of elemk

¢ elemdof - element d-o-f array

c dof_node - number of degree of freedom in a node

c ielx - number of elements in x direction in the model
c irow - row index

cicol - column index

implicit none

include 'common_include'

integer iwant

integer ndim, maxdim,ndof,iel,ielx, dof_node, domain
parameter (ielx = 20)

parameter(dof_node=3)

parameter(domain = 4*dof_node)

real*8 elemk(maxdim, *), ktemp(maxdim, *), mtemp(maxdim, *)
integer elemdof(*)

integer irow, icol, i, j, k, count, itest, ii, jj

integer locate(domain+1,domain+1,2*ielx+1), iel_num, iel_store
integer bottom, left, m, n, set

c Initialize location flags
left=0
bottom = 0

c Store location flags
if(iel.gt.ielx.and.mod(iel-1,ielx).eq.0) left = 1
if(iel.le.ielx) bottom = 1

c Initialize to O for every new iteration
itest=0
if(iel.eq.1.and.count.ne.1) then
nelt=0
do i=1,domain+1
do j=1,domain+1
do k=1,2*ielx+1
locate(i,j,k)=0
enddo
enddo
enddo
count =1
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endif
if(iel.ge.2) count =0

iF (.not. steady) then
if(iwant.eq.2) itest = 1
Else
if(iwant.eq.3) itest = 1
Endif
c Alter element number suitably
iel_num = mod(iel,2*ielx)

if(iel_num.eq.0) iel_num = 2*ielx

if(iel_num.gt.ielx) iel_store = iel_num - ielx
if(iel_num.le.ielx) iel_store = iel_num + ielx

if(iel.le.ielx) iel_store = iel

¢ Outer element information scanning loop begins
do10i=1, ndim

irow = elemdof(i)
do 20j =1, ndim
icol = elemdof(j)

c Skip negative index
if(irow.lIt.0.or.icol.1t.0) goto 130

¢ Depending on row and column number, add to appropriate matrix
IF (iwant.eq.0.or.iwant.eq.3) THEN
if(.not.steady) then
ktemp(i,j)= elemk(i,j)*delta_time*wilson_theta
else
ktemp(i,j) = elemk(i,j)
endif
ENDIF
IF(itest.eq.1) THEN

ktemp(i,j) = mtemp(i,j) + ktemp(i,j)
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if(iel.eq.1) then
if(ktemp(i,j).ne.0.d0) then
nelt = nelt + 1
a(nelt) = ktemp(i,j)
ipos(nelt) = irow
jpos(nelt) = icol
locate(i,j,1) = nelt
else
locate(i,j,1) =0
endif
endif

IF(iel.gt.1) THEN

¢ Retrieving information from locate for shared nodes

c For node 1-1 contribution of present element to appropriate location
if(i.ge.1.and.i.le.dof_node) then
if(j.ge.1.and.j.le.dof_node) then

if(left.eq.1) ii = locate(i+3*dof_node,j+3*dof_node,iel_store)

if(bottom.eq.1)
& ii = locate (i+dof_node,j+dof_node,iel_store-1)

if(left.ne.1.and.bottom.ne.1)
& ii = locate (i+2*dof_node,j+2*dof_node,iel_store-1)

if(ii.gt.0) a(ii) = a(ii) + ktemp(i,j)
goto 120

endif

endif

IF(left.ne.1) THEN
c Add node 4-1 contribution of current element

if(i.ge.14+3*dof_node.and.i.le.4*dof_node) then

if(j.ge.1.and.j.le.dof_node) then
ii = locate(i-dof_node,j+dof_node,iel_num-1)
if(ii.gt.0) a(ii) = a(ii) + ktemp(i,j)
goto 120

endif

endif

¢ Similar loop for node 1-4

¢ Add node 4-4 contribution of current element
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if(i.ge.14+3*dof_node.and.i.le.4*dof_node) then
if(j.ge.14+3*dof_node.and.j.le.4*dof_node) then
ii = locate(i-dof_node,j-dof_node,iel_num-1)

if(ii.gt.0) then
a(ii) = a(ii) + ktemp(i,j)
else

if(ktemp(i,j).ne.0.d0) then
nelt = nelt + 1
a(nelt) = ktemp(i,))
ipos(nelt) = irow
jpos(nelt) = icol
m=i-dof_node
n=j-dof_node
locate(m,n,iel_num-1) = nelt
endif
endif
goto 120
endif
endif

ENDIF
IF(bottom.ne.1) THEN

c Add node 2-1 contribution of current element
if(i.ge.1+dof_node.and.i.le.2*dof_node) then
if(j.ge.1.and.j.le.dof_node) then

ii = locate(i+dof_node,j+3*dof_node,iel_store)
if(ii.gt.0)
& a(ii) = a(ii) + ktemp(i,j)
goto 120
endif
endif

c Similar loop for node 1-2

¢ Node 2-2
if(i.ge.1+dof_node.and.i.le.2*dof_node) then
if(j.ge.1+dof_node.and.j.le.2*dof_node) then
ii = locate(i+dof_node, j+dof_node, iel_store)

if(ii.gt.0) then
a(ii) = a(ii) + ktemp(i,j)
else

if(ktemp(i,j).ne.0.d0) then
nelt = nelt + 1
a(nelt) = ktemp(i,j)
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ipos(nelt) = irow
jpos(nelt) = icol
m=i+dof_node
n=j+dof_node
locate(m,n,iel_store) = nelt
endif
endif
goto 120
endif
endif

ENDIF
c Storage of new entry into locate matrix

if(ktemp(i,j).ne.0.d0) then
nelt = nelt + 1
a(nelt) = ktemp(i,j)
ipos(nelt) = irow
jpos(nelt) = icol
locate(i,j,iel_num) = nelt
else
locate(i,j,iel_num) =0
endif

ENDIF
120 continue_flag =1
endif
130 continue_flag =1

20 continue
10  continue

return
end
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APPENDIX B

FORTRAN 77 SUBROUTINE FOR ELEMENT MATRIX FORMATION
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subroutine FEelement (elemk, elemf, elemutminus, elemutplus, elemx, elemmatprop,
max_elem_dim, max_dim, eltype, iwant, nelems, iel)

¢ “FEelement” is an element subroutine for a bi-quadratic element containing all
information required to form a element matrix

c elemdim - Dimension of the element matrix (degrees of freedom of an element)
c loc_<var> - Location of variable name <var> in the element matrix

¢ Nmat,DNmat - Basis function and derivative

c elemx - x and y location of a node in an element of the domain

c elemk - Element stiffness matrix

¢ Algorithm-specific variable and constant-declaration

implicit none

integer max_elem_dim, max_dim, eltype, iwant, elemdim, nelems, iel
real*8 elemk(max_elem_dim,*), elemf(*), elemutminus(*), elemutplus(*)
real*8 elemx(max_dim,*), elemmatprop(*)

parameter (elemdim = 27)

integer nint, iint, 1, j, ii, jj

integer loc_Ni(9), loc_Ne(9), loc_phi(9),

real*8 rint(9), wint(9), sint(9), jac, rr, wt, ss

real*8 Nmat33(9), DNmat33Dx(9), DNmat33Dy(9)

real*8 elemk_lin(elemdim,elemdim), elemk_non_lin(elemdim,elemdim)
real*8 term, constant

¢ Problem-specific variables and constants - declaration

real*8 Ne, DNeDx, DNeDy, Ni, DNiDx, DNiDy, phi, DphiDx, DphiDy
real*8 nevex, nevey, neve, Ex, Ey, E

real*8 mewi, mewe, t_0, kb, p_I, pi, omega, new

real*8 epsilon, N_O, eps, mi, vb, me

real*8 mag, omi, ome, alpha, e_charge, p, Te, Di, De, A, B

c Control variables

loc_Ni(1)=1
loc_Ni(2) =4
loc_Ni(3) =7

loc_Ni(4) =10
loc_Ni(5) =13
loc_Ni(6) =16
loc_Ni(7) =19
loc_Ni(8) =22
loc_Ni(9) =25
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doi=19
loc_Ne(i) = loc_Ni() + 1
loc_phi(i) = loc_Ni(i) + 2
enddo

c Electron , ion parameters and ionization rate

c e_charge is charge of electron

c p is pressure in torr

c Te is temperature of electron

c Ti is temperature of ion

c Di is ion diffusion coefficient

¢ De is electron diffusion coefficient
c p_l is characteristic plasma length
c omega is applied rf biased frequency
c kb is boltzman constant
c mi is mass of ion
c mag is the magnetic field

kb = 1.3807* 1.e-23

p=0.1

epsilon = 8.8532 * 1.e-12

e_charge = 1.6022 * 1.e-19
pi=3.14159

Te = 11600.d0

omega = 13.56* 1.6 * 2.d0 * 3.14159
mi =40.d0 * 1.6726 * 1.e-27

me =9.1038 * 1.e-31

vb =dsqrt(Te * kb / mi)

¢ Non-dimensional variables

p_1=0.02
t_0=1.0/omega
n_0=2.el5

alpha = p_l/(vb*t_0)
eps = epsilon*kb*Te/(e_charge**2 * n_0 * p_I**2)

mewe = 3.0%1.e5/p * 1.e-4
mag = 0.002

omi = 1.d0
ome = 1.d0 + mewe**2 * mag**2

call zero (elemk_lin,elemdim,elemdim,elemdim)
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call zero (elemk_non_lin,elemdim,elemdim,elemdim)
call zero (elemk,elemdim,elemdim,max_elem_dim)
call zero (elemf,elemdim,1,max_elem_dim)

call setup_integration (rint,wint,nint,3)
call integ_pt_1t2d (rint,sint,wint,nint)

do iint = 1, nint
rr = rint(iint)
ss = sint(iint)

call shape_fn_2d_3x3(Nmat33, DNmat33Dx, DNmat33Dy, jac, rr, ss, elemx,
max_dim)

Ni = 0.d0
DNiDx = 0.d0
DNiDy = 0.d0

Ne =0.d0
DNeDx = 0.d0
DNeDy = 0.d0

phi = 0.d0
DphiDx = 0.d0
DphiDy = 0.d0

c Cell averaged values

doi=19
i1 = loc_Ni(1)
Ni = Ni + Nmat33(i) * elemutplus(ii)
DNiDx = DNiDx + DNmat33Dx(i) * elemutplus(ii)
DNiDy = DNiDy + DNmat33Dy(i) * elemutplus(ii)

ii = loc_Ne(i)

Ne = Ne + Nmat33(i) * dabs(elemutplus(ii)

DNeDx = DNeDx + DNmat33Dx(i) * elemutplus(ii)
DNeDy = DNeDy + DNmat33Dy(i) * elemutplus(ii)

ii = loc_phi(i)

phi = phi + Nmat33(i) * elemutplus(ii)

DphiDx = DphiDx + DNmat33Dx(i) * elemutplus(ii)

DphiDy = DphiDy + DNmat33Dy(i) * elemutplus(ii)
enddo

Ex = -DphiDx
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Ey = -DphiDy

E = (Ex**2 + Ey**2)**0.5

nevex = (-Ne*mewe*1.e4* Ex - mewe*1.e4 * DNeDx )/(p_1*100.0)
nevey = (-Ne*mewe*1.e4* Ey - mewe*1.e4 * DNeDy )/(p_1*100.0)
neve = (nevex**2 + nevey**2)**0.5

c lonization rate
A =340
B=16.0
new = [A *p *dexp(-B/(E/p)) * neve | * p_1/vb

c lon mobility calculation

Ex = -(elemutminus(loc_phi(2))-elemutminus(loc_phi(1)))/

& (elemx(1,2)-elemx(1,1)) / (p_1*100.0)
Ey = -(elemutminus(loc_phi(4))-elemutminus(loc_phi(1)))/
& (elemx(2,4)-elemx(2,1)) / (p_1*100.0)
E = (Ex**2 + Ey**2)**(.5
if( (E/p).1e.60.d0 ) then
mewi = 1.e3 * (1.d0 - 2.22e-3 * E/p) * 1.e-4 /p
else
mewi = 8.25e3/dsqrt(E/p) * 1.e-4 / p
endif

¢ Non-dimensional local electric field in an element

Ex = -(elemutminus(loc_phi(2))-elemutminus(loc_phi(1)))/

& (elemx(1,2)-elemx(1,1)) / p_l
Ey = -(elemutminus(loc_phi(4))-elemutminus(loc_phi(1)))/
& (elemx(2,4)-elemx(2,1)) / p_1

wt = wint(iint) * jac
IF (iwant.eq.0) then
c Integration of spatial terms
doi=19

11 = loc_Ni(1)
elemf(ii) = elemf(ii) -wt * new * Nmat33(i)

i = loc_Ne(i)
elemf(ii) = elemf(ii) - wt * new * Nmat33(i)
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doj=19

cHHtHA#HARHARAA Equation for Ni ## I
1i = loc_Ni(1)

c for dphi/dx Ni
jj = loc_Ni(j)
term= wt * mewi/(p_l*vb) * Nmat33(i) *DNmat33Dx(j)*
& ( (-DphiDx) + mewi*mag*(-DphiDy) )
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term

c for -d*Ni/dx*
jj = loc_Ni(j)
term= wt * Di * DNmat33Dx(i) * DNmat33Dx(j)
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term

¢ for - &’ Ni/dy*
jj = loc_Ni(j)
term= wt * Di ¥ DNmat33Dy(i) * DNmat33Dy(j)
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term

c for dphi/dy Ni
jj = loc_Ni(j)
term= wt * mewi/(p_l*vb)
& * Nmat33(i) *DNmat33Dy(j)*
& ( (-DphiDy) - mewi*mag*(-DphiDx) )
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term

c for +Ni*(Ni-Ne)/eps
jj = loc_Ni(j)
term= wt * mewi/(p_l*vb)
& * Nmat33(i) *Nmat33(j) * (Ni-Ne)/eps
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term

c Similar formulation for Ne

cHtHA#HARHAAA Equation for Phi ###H## A A A
i1 = loc_phi(i)

c (eps) & ¢de2
jj = loc_phi(j)
term = -wt * eps*
& ( DNmat33Dx(i) * DNmat33Dx(j)
& + DNmat33Dy(i) * DNmat33Dy(j) )
elemk_lin(ii,jj) = elemk_lin(ii,jj) + term
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c -Ne

jj = loc_Ne(j)

elemk_lin(ii,jj) = elemk_lin(ii,jj) -wt * Nmat33(i) * Nmat33(j)
c +Ni

jj =loc_Ni(j)

elemk_lin(ii,jj) = elemk_lin(ii,jj) + wt * Nmat33(i) * Nmat33(j)

¢ End of loop for elemk formation from spatial terms

enddo
enddo

ENDIF
¢ Integration of time terms
IF (iwant.eq.1) then

doi=19
doj=19
¢ +alpha * dNi/dt
i1 = loc_Ni(1)
Jj = loc_Ni(j)
elemk(ii,jj) = elemk(ii,jj) + wt * alpha * Nmat33(i) * Nmat33(j)
¢ +alpha * dNe/dt
ii = loc_Ne(i)
jj = loc_Ne(j)
elemk(ii,jj) = elemk(ii,jj) + wt * alpha * Nmat33(i) * Nmat33(j)

enddo
enddo

ENDIF

¢ End of integration loop
enddo

¢ Global matrix formation
IF (iwant.eq.0) then

doi=1,elemdim
do j = 1,elemdim
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elemk(i,j) = elemk_lin(i,j) + elemk_non_lin(i,j)
elemf(i) = elemf(i) + elemk(i,j) * elemutplus(j)
enddo
enddo

ENDIF
c Negative force for the N.R. Scheme
doi=1, elemdim
elemf(i) = - elemf(i)
enddo

return
end
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