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I. INTRODUCTION 

 

 
Plasmas are conductive assemblage of photons, electrons, positive and negative 

ions and neutrals in isolated states exhibiting bulk effect. Plasmas find application in a 

wide spectrum of fields ranging from electric propulsion for spacecraft thrusters; fusion 

related high energy confinement systems to industrial applications like thin film 

deposition, etching, surface sterilization and material processing. Recently, the use of 

plasma as actuators has found tremendous interest for both low and high-speed 

aerodynamic flow control applications. 

Plasma forms when electrical discharge is applied in a plasma source. Depending 

upon the frequency of the exciting field, discharges may be broadly classified as: 

• Direct current (dc) discharge 

• Pulsed dc discharge (Kilo Hertz) 

• Radio-frequency (rf) discharge (Mega Hertz) 

• Microwave discharge (Giga Hertz) 

• Laser plasma (Pico Hertz) 

This thesis is limited to dc and rf discharges. 

In understanding the dynamics of plasma, electrons and ions are two important 

species that are generally investigated. Plasma resulting from single ionization of neutral 

gas generally contains equal number of these positive and negative charge carriers. In this 

situation, the oppositely charged particles are strongly attracted, and tend to electrically 
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neutralize one another on macroscopic length-scales. Such plasmas are termed quasi-

neutral. 

The thermal speed of electrons is much higher than that of ions due to the large 

difference in masses (of the order of 10
3
 or higher). This is the reason why easy transfer 

of electrical energy from the power supply to the plasma electrons is plausible. The 

formation of sheath is a result of this simple property. The large mi/me ratio allows the 

electrons to travel with much higher velocity in the plasma than the ions. When an object 

is placed in contact with the plasma, the much higher electron current to the object will 

preferentially removes electrons from the plasma in the vicinity of the object. This 

depletion of electrons leaves a space-charge region of ions, which sets up an electric field 

to further repel most of the electrons from leaving the plasma. Sheath, may hence be 

understood as a charge separated electrical boundary layer formed near an electrode. 

Sheath is also the distance over which electric fields shield mobile charge carriers (e.g. 

electrons) in plasmas and other conductors. It is quantified using the Debye length, λD , 

(named after the Dutch chemist) which is given by the expression, 

24
D

kT

Ne
λ

π
=            (1) 

for a bulk density, N in m
-3

 and temperature, T in Kelvin. λD is the length scale over 

which significant charge separation can occur. In Equation 1, the inverse relation of 

Debye length (and hence sheath thickness) with number density may be observed. 
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Overview of Discharge Models 

In trying to understand the dynamics of the system of plasma, Roy Choudhuri 

(1998) identifies levels of treatment for fluids and plasma. When number of particles to 

be studied is large making quantum description of particle unrealistic, a distribution is 

usually employed to describe its characteristics. A distribution function describes 

properties in a six-dimensional phase-space in terms of position and velocity coordinates. 

The treatment of this distribution function gives rise to varying approaches to describe 

processes behind a discharge. A kinetic approach tries to solve some of velocity 

distribution functions directly.  For example, particle approaches like Particle In Cell 

(PIC) or Monte Carlo involves plasma characterization by following millions of 

computational particles for each species. The dynamics are followed using Newtonian 

equation. The disadvantage arises from using high-density systems when methods like 

PIC become prohibitively expensive. Fluid or hydrodynamic schemes are based on 

conservation laws derived from moments of Boltzmann equation. They are obtained by 

averaging over velocity coordinates of the distribution resulting in macroscopic quantities 

like number density, mean velocity etc. With proper choice of boundary conditions and 

accurate transport properties, they give reasonably accurate results in a much shorter 

time. Hybrid schemes combining fluid and kinetic approaches are also used, for example 

in stationary plasma (Hall) thruster modeling where ions are tracked using PIC while the 

electrons are simulated using fluid descriptions (Hagelaar et. al., 2002 and Fife, 1995). 

Literature Review 

There have been number of analytical and numerical attempts to understand 

discharge between parallel plates in one dimension under dc and rf conditions. Sternberg 
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and Godyak (1996) studied the plasma-sheath transition region of a bounded plasma 

discharge under dc conditions. The locations of the plasma and sheath boundaries are 

evaluated, as well as the ion velocity and the electric field at the boundary. A comparison 

of the separate plasma and the sheath solutions with the solution of the bounded plasma-

wall problem has shown good agreement. They have also evaluated the position of the 

sheath edge and the value of the electric field at the sheath edge using asymptotic 

matching techniques (Sternberg and Godyak, 2003). 

Roy et. al. (2003) developed a computationally efficient one-dimensional subgrid 

embedded finite element formulation for plasma-sheath dynamics. Kumar and Roy 

(2005) have elaborated this self-consistent finite element algorithm for two-fluid plasma 

and have investigated related numerical issues. The applications included dc and rf sheath 

inside a glow discharge tube with argon. Godyak and Sternberg (1990) have modeled the 

dynamics of a symmetric rf discharge sheath in the frequency range ωpi<<ωrf<< ωpe for 

varying degrees of collision and sheath voltages. Analytical expressions for sheath 

characteristics have been derived based on conditions employed at plasma boundary 

treating sheath and plasma separately. Slemrod (2003) models two fluid plasma using 

asymptotic expansions for bounded plasma driven by an rf current. The dynamics of 

plasma is determined separately in the bulk, transition and sheath regions. In the 

computational approach, Nitschke and Graves (1994)
 
have compared the PIC and fluid 

models for rf discharge of helium gas for a range of pressure (50mTorr-250mTorr) and 

electrode gap (40mm to 120mm).  Xiang and Waelbroeck (2003) investigated the ion 

dynamics in presheath and sheath region using numerical and analytical methods for 

collisionless plasma. Zhang et.al. (2004) also have simulated a collisionless sheath 
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behavior based on Boltzman approximation for electrons. Hammond, et. al. (2002) have 

obtained solution for low pressure helium discharge. Bose, et. al. (2000)  analyze non-

collisional sheath characteristics by applying boundary conditions at a pre-determined 

sheath-presheath edge. 

But for a few exceptions (Roy et. al., 2003 and Kumar and Roy, 2005), the 

number of attempts to model discharge in one-dimension for argon in particular is 

comparatively less. There have been some published reports on simulation of discharge 

in more realistic two-dimensional geometries. Boeuf (1988) developed a self-consistent 

model for dc glow discharges in cylindrical geometry less than two decades ago. 

Passchier and Goedheer (1993) present a fluid model for argon in a reactor geometry 

using drift-diffusion approximation and an effective electric field assumption. Boeuf and 

Pitchford (1995) also present an elaborate fluid model for argon rf plasma in a GEC 

reference cell. Kim and Economou (2003) investigated plasma formation over an 

inhomogeneous flat wall. More recently, Surzhikov and Shang (2004) have studied 

discharge modification in the presence of applied magnetic field for nitrogen in a 

symmetric two-dimensional chamber. 

Thesis Summary 

Despite these attempts, self-consistent approaches for simulation of rf induced 

plasma interactions with fluids remain in an early stage of development. The present 

effort aims to develop a numerical framework for modeling and understanding ionized 

gas dynamics in multi-dimensions. The approach is general and can be used to study 

discharge for varying pressure, gases and other discharge conditions. The model also 

forms the foundation of a versatile first-principles based methodology. First, the plasma 
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and sheath characteristics of a one-dimensional discharge configuration in argon are 

studied under dc and rf input conditions. The two-dimensional two-fluid plasma 

formation over a coated flat plate is then investigated for three different cases. The 

numerical algorithm is formulated using finite element method and first benchmarked for 

plasma formed between symmetric electrodes in nitrogen gas. Discharge characteristics 

of plasma for electrode-insulator configuration are then analyzed under steady and 

transient conditions using argon as a working gas. The effect of magnetic field on electric 

potential and charge difference is studied for a thin electrode. 

Chapters in Thesis 

Summary of the remaining thesis chapters is as follows: 

• Chapter II describes in detail the governing equations, the development of the finite 

element algorithm, FE basis functions. 

 

• Modeling of two-fluid fully ionized plasma in a direct current discharge in one 

dimension is presented in Chapter III. It includes the geometry details and boundary 

conditions. 

 

• Chapter IV covers formulation of two cases of radio frequency driven discharge for a 

one-dimensional bounded plasma in the collisionless and collisional regime. 

 

• Chapter V presents the two-dimensional discharge characteristics of plasma formed in 

inhomogeneous geometries under steady and unsteady input voltages. 

 

• Finally conclusions and recommendations for future work are given in Section VI. 
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II. HYDRODYNAMIC MODELING 

 

 
A hydrodynamic model has been developed to simulate multifluid plasma in low-

pressure regime. The model uses an efficient finite element algorithm. The following 

sections detail the governing equations, boundary conditions and the algorithm 

implementation procedure. Nomenclature for all the variables, functions and constants 

are given in Appendix A. 

Governing Equations 

 

The time-dependent, Navier-Stokes (NS) equation set in the form of mass and 

momentum conservation law for ionized gases are given in Equations 2-4. It represents a 

basic framework and is suitably altered for different cases under consideration in the 

subsequent chapters. 

Conservation of number density N: 
 

.( )
n

nV S
t

∂
+ ∇ =

∂
                         (2) 

Conservation of momentum: 
 

1
. .

V
M V V P qE M V

t n
ν

∂ 
+ ∇ = − ∇ + − 

∂ 
                                    (3) 

Here v is the momentum transfer frequency and P is the species pressure defined by 

equation of state (P=NkT). Under the drift-diffusion approximation, this equation may be 

simplified by ignoring the inertial and temporal derivative terms as:
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1
.V P qE

n
ν = − ∇ +      (4) 

These equations are combined with an equation for electrostatic field in the form of 

Poisson equation to solve for species density, velocity and electric potential for different 

applications. The Poisson equation is a second order partial differential equation similar 

to the Laplacian equation with non-zero coefficient, 2 /φ ρ ε∇ = − , where φ is the potential, 

ρ is the net charge and ε is permittivity. 

The system of Equations 2-4 is normalized using the following expressions: 

2 ftτ π= , z=x/d, Ne=ne/n0, Ni=ni/n0,  ui=Vi/VB and ue=Ve/VB and φ=eϕ/Te,  f is the 

applied frequency, d is a reference length which is usually a domain length in the 

geometry, n0 is a reference density and the Bohm velocity /
B e i

V T m= . 

Note on Ionization and Recombination 

The source and sink term appearing in the continuity Equation 2 of species 

density is in the form of ionization and recombination. 

e e i
S n n nα β= −      (5) 

where α is ionization rate in /s and β is the recombination coefficient in m
3
/s. Different 

ways of estimating the ionization rate have been used in discharge modeling. In some of 

the models, like those by Nitschke and Graves (1994), the rate takes a simple Arrhenius 

form in terms of ionization threshold and electron temperature. Expressing ionization rate 

as a function of reduced effective field (obtained based on a solution from electron 

energy equation) is yet another approach. So far, there have not been systematic 

comparisons between these methods and its impact on discharge computations. Here, the 

rate constants for ionization are functions of electron energy. These coefficients have 
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been measured under steady state condition from a dc discharge in Argon Townsend and 

time of flight experiments as a function of E/p. The ionization rate is calculated by 

multiplying drift velocity and Townsend ionization coefficient. The following diagrams 

in Figure 1 quantitatively show variation of recombination and ionization coefficients in 

an argon discharge from literature. 

The three body electron-ion recombination rate coefficient for argon has been 

calculated within the range of electron number densities l0
10

 -10
16 

cm
-3 

and electron 

temperatures of 2000 K−16,000 K by Wanless (1971) as plotted in Figure 1(i). It can be 

observed that for temperature of 1eV and beyond, the recombination coefficient is of the 

order of 10
-13

. On the other hand, the ionization rate increases with electron temperature 

as given by Figure 1(b) (Boeuf and Pitchford, 1995). The rate of production is higher for 

6 eV or more. The time-averaged ionization rate between two electrodes calculated based 

on Townsend ionization for low-pressure argon is given by (Paranjpe et. al., 1990) and 

has been plotted in Figure 1(b). 
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          (a)  

 

    

(b)  

 

Figure 1. (a) Recombination coefficient (Wanless, 1971) and (b) variation of ionization 

rate with electron temperature (Boeuf and Pitchford, 1995) and with space (Paranjpe et. 

al., 1990). 

 

 
Finite Element Algorithm 

 

The finite element method (FEM) is used here for solving partial differential 

equations (PDE) approximately. FEM has been used since 1950 for analyzing structural 

systems. Beginning in the early 70’s it has also been utilized for analyzing fluid thermal 

systems. In FEM, solutions are approximated by rendering the partial differential 



 11 

equation (PDE) into an equivalent ordinary differential equation (ODE), which is then, 

solved using standard techniques. In the finite-element method, a distributed physical 

system to be analyzed is divided into a number of discrete elements. With the 

development of weighted-residual criteria it has also found significant usage in fluid 

mechanics and heat transfer applications. Weighted Residual Method (WRM) assumes 

that the solution to the parent PDE/ODE can be approximated with a continuous or 

piecewise continuous analytic function. Depending on the WRM maximization, 

numerical techniques like finite volume, finite element and spectral volume methods may 

be used. The numerical development of this thesis is anchored in an existing finite 

element based multi-scale ionized gas (MIG) flow solution platform that has been utilized 

for a range of applications including electric propulsion, design optimization and 

micro/nano-scale flow analysis (Roy and Pandey, 2002, Balagangadhar and Roy, 2001, & 

Cooper et. al., 2004). 

The Equation System 2-4 can be written as a general and more concise 

convection-diffusion type equation: 

      
( )

( ) 0

v

j

j

L s
t x

∂ −∂
= + − =

∂ ∂

f fq
q                                    (6)  

where q is the state variable, f is the kinetic flux vector, f
v
 the dissipative flux vector and 

s is the source term. 

Galerkin Weak Statement 

The fundamental principle underlying the finite element method is the 

construction of a solution approximation as a series of assumed spatial (test) function 

multiplied by a set of unknown expansion coefficients such as the Galerkin Weak 

Statement, acronym GWS (Baker and Pepper, 1991), which is followed in this numerical 
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work. Other categories of approximation functions, which are applied in WRMs, are sub-

domain method, collocation and least square method. 

Any real world smooth problem distributed over a domain xj can be approximated 

as a Taylor or power series of known coefficients ai and functions φi(xj): 

( ) ( )i i j

i

L q a xφ=∑      (7) 

where ai are unknown coefficients and φi(xj) are known functions of xj. The GWS 

approach requires that the measure of the approximation error should vanish in an overall 

integrated sense. This gives a mathematical expression for minimization of the weighted 

residual over the domain for Equation 6 as, 

( ) 0WS wL q d
Ω

= Ω ≡∫     (8) 

Here, Ω  defines the domain for the problem statement and w is the weight function set. 

For the Galerkin condition to hold true, the weight function is made identical to the 

corresponding trial function set φ for the approximation of state variables. Equation 8 

guarantees that the associated approximation error is a minimum since it is orthogonal to 

the trial function set φ. The term “weak statement” signifies that the differentiability 

requirement for the approximation function is weakened by one order. 

Finite Element Basis Functions 

The finite element basis is a set of polynomials generally distributed uniformly on 

every subdivision (finite element) of the solution domain, Ω  created by placing nodes for 

better resolution and hence constructing the domain discretization Ωh (Baker and Pepper, 

1991). Discretization for the domain is a fundamental concept of finite element analysis 

since it simplifies the construction of a wide range of suitable trial functions, φ. The set of 
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functions associated with the trial function, φ, that spans over a single generic element Ωel 

are defined as the finite element basis. The finite element basis, Nk maybe Chebyshev, 

Lagrange or Hermite interpolation polynomials complete to degree k based on the 

problem statement (one, two or three- dimensional). 

The discrete approximation of the spatially discretized domain Ωh
 yields a union 

of elements Ωel as shown: 

h

el

el

Ω = Ω∪       (9) 

Similarly the integrated variables can be represented as the  union of spatially and 

temporally discretized elements: 

             ( , ) ( , ) ( , ) ( ) ( , )h

j j el j k j el j

el el

q t x q t x q t x N x Q t x≈ = =∪ ∪    (10) 

The spatially discretized finite element basis definition yields: 

{ }{ }el k elQ N Q=      (11) 

The finite element basis functions, Nk for k=1,2 and their corresponding shapes 

based on Lagrange interpolation polynomials in local and global coordinates for one and 

two dimensions are given in Figures 2-5. Note that higher degree k of the basis will 

generally involve higher number of supporting nodes in the element.  
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Figure 2. One dimensional linear element Ωel for linear basis. 
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Figure 3. One dimensional quadratic element Ωel for quadratic basis. 
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Figure 4. Bilinear basis quadrilateral element Ωel. 
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Figure 5. Full biquadratic quadrilateral element Ωel. 

 

 
Solution Methodology 

 

Independent of the physical dimension of Ω, and for general forms of the flux 

 

vectors, the semi-discretized weak statement of Equation 6 always yields an ordinary 

differential equation (ODE) system of the following form: 

{ }( ) 0
h dU

WS M R Q
dt

= + =     (12) 

Here, Q is the time-dependent finite element nodal vector, M = Sel(Mel) is the “mass” 

Ωel 

(x1,y1) (x2,y2) 

(x3,y3) 

(x4,y4) 

X 

Y 
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matrix associated with element level interpolation, while R carries the element convection 

information and the diffusion matrix resulting from genuine (non-Eulerean) or elemental 

viscosity (natural or artificial) effects, and all known data. The time derivative dU/dt, is 

generally replaced by using a θ-implicit time integration procedure and the terminal ODE 

is usually solved using the following Newton-Raphson (NR) scheme: 

     

[ ]

1 1

1 1

0

( / ) ( )

i
i i i p

t t t

p

i

Q Q Q Q Q

M t R Q Q R Qθ

+ +

+ +

=

= + ∆ = +

+ ∆ ∂ ∂ ∆ = −

∑
               (13) 

where i is the iteration, and t is the timestep. The choice of time step is dictated by the 

Courant-Fredrich-Levy condition (Richtmyer and Morton, 1967). 

The solution is declared convergent when the maximum residual for each of the 

state variables becomes smaller than a chosen convergence criterion. Here, the 

convergence of a solution vector U on node j is defined as the norm: 

1j j

j

Q Q

Q
ε

−
−

≤      (14) 

Here, an implicit (θ =1) time stepping procedure is employed. There are obvious 

numerical issues associated with calculation of the “jacobian”, ∂R/∂Q within sufficient 

accuracy. 

For steady state problems, a procedure analogous to relaxation methods utilized 

for finite difference scheme, is employed. Equation 6 can be modified in the following 

form: 

2

2
0

j j

f q
s

x x
ε

∂ ∂
− − =

∂ ∂
     (15) 
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where ε is a diffusion perturbation parameter that can be varied separately for each state 

variable. As ε → 0, Equation 15 reverts back to steady state form of Equation 6. Initially 

ε is set to a sufficiently high value so as to generate a diffused but stable convergence to 

steady state solution. Progressive reduction of ε is carried out until the final steady state 

solution with ε → 0 is achieved. 

The ionized gas is numerically modeled using the finite-element based Multiscale 

Ionized Gas (MIG) flow code. The code is modular and separate subroutines can be 

written to model different physics. The sequence of procedure to update solution variable 

q in a given iteration is presented in the form of a flowchart in Figure 6. For the one-

dimensional formulation, the code generates element matrix for each of the elements into 

which the domain is discretized and adds elemental information appropriately into a 

global stiffness matrix by mapping indices between local to global matrix. The Newton-

Rhapson scheme for non-linear system is used and resulting matrix may be solved using 

non-iterative decomposition (LU) or iterative pre-conditioning (GMRES or BiCGSTAB) 

schemes. 

Figure 6 depicts the flow of sequence for a single iteration of the solution process 

as implemented in the code. The element stiffness matrix is created within a sub-loop and 

is successively assembled into a global stiffness matrix which is solved using a Newton-

Rhapson nonlinear scheme to increment the solution variable. One main disadvantage of 

formation of this full global matrix is the limitation in memory allocation depending on 

the computational capacity of the system used. Consider a problem with a mesh 

consisting 41×41 nodes and 3 dependent variables. The non-linear N-R for this problem 

requires a matrix with 5043 columns, to be formed for every iteration and whose number 
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of rows depends on the bandwidth of the problem, Figure 6(a). This number becomes 

unmanageable as problem degrees-of-freedom (size) increases. The maximum allowed 

bandwidth is machine dependent which limits the computational capability. Also, due to 

the nature of finite element algorithm and elemental and nodal numbering scheme 

followed, the resulting matrix becomes sparse in nature for higher dimensional 

formulations. As a viable remedy, an iterative sparse matrix solver called Generalized 

Minimal RESidual (GMRES) has been implemented. The assembly procedure involves 

storing only the non-zero elements of the matrix (∂R/∂q) in the form of a linear array and 

the corresponding row and column locations using an incremental flag as represented by 

the block as shown in Figure 6(b). The program progresses through each element; the 

information is added appropriately to the particular location in this array thus eliminating 

the formation of a large global matrix. 
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                  (a) 

 
                                   (b) 

 

Figure 6. Flow charts for (a) global matrix assembly formation and (b) alternative 

element assembly procedure used for GMRES. 

 

 
A comparison between the two sequences, shown in Figure 6, is done for varying 

mesh size keeping all other parameters and looping schemes as same. Figure 7 plots the 

computational time for assembly and solver separately. It is found that the algorithm 

which does not involve global matrix formation works better for larger number of nodes. 
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The comparison of the solver time is also shown in Figure 7(b) for varying mesh 

measure. The scheme involving formation of global matrix and decomposition solver is 

comparable only for mesh with 501 or fewer nodes. 
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Figure 7. Comparison of assembly and solver time for the assembly methods in Figure 6. 

 

 
Algorithm Stability 

 

The stability of an algorithm can be investigated from its amplification factor G
h 

and the relative phase velocity Φ
h
. Though the dynamics of the charge species have not 

yet been introduced elaborately until this point, for exploratory purposes, the drift-

diffusion approximation for electrons and ions is used. Based on the finite element stencil 

and using Fourier representation (=e
iw(j∆x-Un∆t)

), one may derive the following 

amplification factor for ions: 

                         ( )i

i i i e

n
n E D n S

x x
µ

∂∂
− =

∂ ∂
 

                   [ ]
1

1 3 ( ) (cos sin )h
G iCf m z S t iθ θ

−

= − ∆ − ∆ +                                          (16) 

with the magnitude ( )
0.5

2 2(1 cos ) (3 ( ) sin )hG S t Cf m z S tθ θ
−

= − ∆ + ∆ + ∆  



 22 

and the phase velocity 
1 (3 ( ) sin )

tan
(1 cos )

h Cf m z S t
Cm z

S t

θ

θ

−  ∆ + ∆
Φ = − ∆ 

− ∆ 
 ,                 (17)               

while those for electrons are: 

                       ( )e

e e e e

n
n E D n S

x x
µ

∂∂
− − =

∂ ∂
 

[ ]
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1 3 ( )
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G iCf m z S t
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−
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 = − ∆ + ∆ 

                                            (18) 

         and 
1 3 ( )

tan
(1 )

h Cf m z
Cm z

S t

−  ∆
Φ = − ∆ 

− ∆ 
                                  (19) 

In Equations 16-19, m is the wave number, ∆z is the length of an element, C is the 

Courant number, ( )( ) sin 2 cosf m z m z m z∆ = ∆ + ∆  and ( ) ( 1)h h

e i
u u m n tθ = − − + ∆  is 

the relative velocity phase angle. Here, the case of θ = 0 has been analyzed, which 

includes both ions and electrons. The algorithm is stable if the algorithm amplification 

factor |G
h
|≤1 (Roy, 1994). One prefers ~ 1h

Φ  to minimize the loss of information during 

solution process. Figure 8 plots |G
h
| as a function of m z∆ for two values of S and C. 

Obviously for a higher value, S2 = 500, the solution becomes unstable. The numerical 

difficulty may be handled by appropriate selection of Courant number and introduction of 

artificial diffusion. The result however gives an insight to the increasing instability of the 

standard solution procedure about the bulk-sheath transition region. 
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Figure 8: Algorithm amplification factor (|G
h
|)and relative phase velocity (Φ

h
) for 

varying Courant numbers (C=0.5 and 1) and ionization rates S1 = 5 and S2 = 500. 

 

Note on Scales 

  

 Due to a vast difference in mass between electrons and ions, the response of each 

of the species to any external force is drastically different. The electron and ion plasma 

frequencies are given: 

2

e

pe

e

N e

m
ω

ε
=  and 

2

i

pi

i

N e

m
ω

ε
=     (20) 

Clearly, the frequency of electrons is much higher in a quasi-neutral ( )i e
N N≈  plasma. 

Hence, they almost respond immediately in the time frame of the more massive ions. As 

a consequence, two different timescales arise in the problem with several orders of 

magnitude difference between them. The present algorithm involves a self-consistent 

solution procedure where both electron and ion dynamics are captured simultaneously. 

Due to inherent coupling of variables in the plasma, the non-linearity may affect 

convergence of the solution. Another method may be to employ a conventional multi-

scaling scheme. In such a scheme, the ion dynamics are solved once in every tens or 

hundred timesteps of solution for electrons.  
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The presence of varying timescales within the model, as can be understood from 

this section poses a significant numerical complexity. Another challenging aspect is the 

resolution of spatial scales. The sheath which is a region of large property gradients 

extends only few Debye lengths into the plasma as compared to the physical domain of 

the plasma. Hence resolving the spatial nature of this sub-millimeter scale sheath needs 

separate attention. 
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III. MODELING OF ONE DIMENSIONAL DISCHARGES 

 

 
Direct Current Glow Discharge 

 

A direct current (dc) discharge forms plasma, sustained by a direct current 

through an ionized medium. A high potential difference applied between electrodes 

immersed in a gaseous environment results in the electrical breakdown of the gas. 

These discharges are characterized by continuous steady currents and are mostly 

sustained by secondary emissions. The theoretical prediction of dc discharges based on 

experimental data was reported as early as 1962 (Ward, 1962). 

Problem specification 

 To understand the dynamics of the sheath, we hydro-dynamically model two-fluid 

bounded plasma under direct ionization when ionization rate is considered constant. Only 

a symmetric half of the plasma is considered and all the boundary conditions are imposed 

based on quasi-neutral properties at the plasma center. 

For steady state conditions, the governing system of equations is obtained from 

Equations 2-4 for cold ion case. 

Continuity equation:  

( )i i e

d
N V N

dx
=       (21) 

Momentum equation: 

          0i i

i e

i

dV V
V E N

dx N
− + =      (22) 
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Poisson equation:  

2 ( ) 0i e

dE
N N

dx
ε

−
− − =      (23) 

where ε = 4.036 × 10
-3

 . The system of equations is completed using a Boltzmanian 

approximation for electrons: 

eN e
φ−

=       (24) 

The geometry consists of domain that extends up to ~0.7. x=0 is the center of the plasma 

where the following boundary conditions are employed. 

Ni(0)=1.0, Vi (0)=0.0, E(0)=0, φ (0)=0 

 This system of equation cannot be solved analytically due to the singularity in 

center of plasma where ion velocity is assumed zero (Sternberg and Godyak, 1996). The 

System 21-24 is solved using finite element algorithm explained in Part I. 

The weak statement formulation for the equation system is as follows 

Continuity equation: 

{ } { }
T T

e i i e i i e N

e

d d
S V dx N N dx V e dx F

dx dx

φψ ψ
ψ ψ ψ

−

Ω Ω Ω

 
+ − = 

 
∫ ∫ ∫               (25) 

Momentum Equation: 

{ } { } { }
T T

e i i e i e T i e V

i e

d d e
S V dx V dx dx V F

dx dx N

φ
ψ ψ

ψ ψ φ ψψ

−

Ω Ω Ω

 
− + = 

 
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Poisson equation: 

2 2{ } { } { }
T

T T

e i e i e e e E

e

d
S dx E dx N dx N F

dx

ψ
ψ ε ψψ ε ψψ

− −

Ω Ω Ω

 
− + = 

 
∫ ∫ ∫    (27) 
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and equation showing the derivative relation between φ and E is 

{ } { }
T

T

e i e i e

e

d
S dx dx E F

dx
φ

ψ
ψ φ ψψ

Ω Ω

 
− + = 
 
∫ ∫      (28) 

The mesh consists of 900 linear elements. The elements are refined towards the wall to 

capture the larger gradient changes thus approximating the curve in a better way. 

Results and discussion 

The first order system of Equations 25-28 is solved using linear interpolation 

polynomials. As described in the previous chapter an artificial diffusion parameter (ε) is 

introduced to get a diffused initial condition. Final steady state solution is achieved when 

ε → 0.  

In the process of obtaining the numerical solution, due to the singularity near the 

center of plasma, unrealistic local numerical oscillation near x=0 may be observed. This 

is more prominent in the ion number density profile within range of 0.01 spatially. A 

simple algebraic calculation was performed on the mesh. The Equation System 21-24 at 

second node (at distance of the mesh measure, h) reduces to: 

i iN V he
φ−

=                      (29) 

2 ( / )i i iV h V N e
φ

φ
−

+ =          (30) 

2 ( )iah N e
φ

φ
−

= −      (31) 

If Vi >h, from Equations 29-31, Ni can be evaluated as sum of e
-φ

  and a function of h, 

which may give a value greater than one. This dependence on mesh measure can also be 

related to the refinement of mesh near the wall increasing the nodal distance near center. 

Proper choice of initial condition is also necessary. 
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 The progress of solution is represented in terms of the residual and solution norm 

as plotted in Figure 9(a) and (b) respectively. The solution converges to steady state in 

about 80 iterations. The simulation (assembly and solver) takes just few minutes in actual 

time. Though artificial schemes were employed to get a better initial condition before the 

actual simulation was performed, the method proves as a simple, fast and cost-effective 

tool to predict the discharge characteristics. 

 

Iteration

||
δ
q

||
2

20 40 60 80
0

100

200

300

400

500

600

700

Iteration

||
R

||
2

20 40 60 80
0

0.025

0.05

0.075

0.1

 

                                     (a)                                                                     (b) 

 

Figure 9. L2 norm of (a) solution increment and (b) solution residual. 
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The results of the solution are presented in Figure 10(a) to 10(c). 
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Figure 10. Plasma solution using finite element methods (a) normalized species density 

(b) normalized electric field and net space charge (c) normalized electric potential. 

 

 
 Two distinct regions may be observed from Figure 10(a), the quasi-neutral plasma 

where Ni≈Ne and the layer of sheath attached to the wall where Ni >> Ne. Based on the 

Bohm velocity of ions, the sheath edge is identified at 0.58. Here, a case of direct 

ionization is assumed where the ionization rate is assumed constant and is of the order 
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~10
4
. We see the tail of electron density close to the wall reaching values close to zero. 

The Boltzmanian distribution assumed for electrons explains this behavior. Note that this 

assumption is true for isothermal, collision less and unmagnetized plasma. The electric 

field arising out of this charge separation is plotted in Figure 10 (b). The field rises to a 

normalized value close to 700 in the sheath. As can be seen, there is two orders of 

difference in magnitude between field in the sheath and that in the bulk. Hence from the 

ion momentum equation, it can be concluded immediately, that the motion of ions inside 

the sheath is mostly electro-dynamic. The net charge distribution or the space charge 

separation is plotted in Figure 10(b). As one approaches the sheath edge, there is an 

abrupt drop in the charge difference within a small spatial extent. This is the region of 

pre-sheath where separation in ion and electron density curves begins and where electron 

density is just less than ion density. The applied potential reaches a value of 50 

(normalized) at the wall. 

Radio Frequency Discharges 

The load factor (ratio of electric field to Lorentz force) for dc sheath application is 

of the order 1, far from the Stoletow point, thus unsuitable for ionization purposes. A 

popular alternative method is through the application of unsteady rf fields with 

frequencies in range of 1 to 100 MHz. Understanding rf induced sheath dynamics near 

the surface of an electrode has a strong effect on both volume ionization efficiency and 

on energy interactions with the neutral gas flow. Specifically, with the recent progress in 

rf plasma-based boundary layer flow control (Enloe et. al., 2004), where the fundamental 

mechanisms remain unclear, the understanding of rf plasma and its bounding sheath has 

become crucial. This requires a theoretical modeling technique that is geometry versatile 
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and time accurate. Here, we attempt to model bounded plasma up to and including the 

sheath near the electrodes at 0.1 torr pressure. 

At low discharge pressures (~millitorr) applicable to the semiconductor and 

material processing industries, the dynamics of rf sheath has been studied by early 

researchers, Zhang et. al. (2004), Roy et. al. (2003) and Hammond et. al. (2002), to name 

a few. There are a few methods for modeling plasma-wall under applied potential. These 

include the bulk plasma model, the step-front-electron sheath model and the asymptotic 

expansion method. These theoretical advances notwithstanding, a self-consistent 

simulation for rf driven plasma-wall interactions remains a quest. In a self-consistent 

plasma-wall model followed in some earlier works (Roy et. al., 2003 & Hammond et. al., 

2002), the space charge effect is incorporated for the entire discharge. The sheath 

structure is investigated in the post-processing phase unlike the patching/matching 

techniques where bulk plasma forms a boundary condition to sheath solution. 

Recently, two such plasma-wall models have been reported for two-component 

fully ionized plasma (Roy et. al., 2003) and three component partially ionized gas (Roy 

and Gaitonde, 2004). The two-fluid model was applied to predict the rf discharge inside a 

tube filled with argon gas. The three-fluid model characterized the effect of volume 

ionization on the neutral helium gas flow between two dielectric coated electrodes at 

atmospheric pressure. The intention is to complement experimental efforts by providing a 

suitable tool to explore flow control concepts in future design and development. 

Following an earlier work, (Roy et. al., 2003) a detailed study of the space charge 

effect in a two-fluid capacitive rf plasma-wall system in the presence and absence of 

collisional impact ionization is presented here. 
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Problem specification 

 Figure 11 shows the circuit for a typical capacitive rf discharge. A time varying 

potential is applied at the right electrode through a blocking capacitor C. The left 

electrode is grounded. Two-fluid plasma consisting of electrons and ions is considered. 

The unsteady continuity and momentum (drift-diffusion) equations are solved 

simultaneously with the Poisson equation. The transverse extent of the discharge is 

assumed to be much larger than the inter-electrode distance and hence a one-dimensional 

model is considered sufficient. When the ion mfp is comparable or less than maximum 

sheath width, ions involve in more than one ionizing collisions. It has been found that for 

pressure less than 0.003 torr for argon, collisionless approximation is valid. For 

conditions above 3mtorr upto 0.15 torr, argon falls in the lower end of collisional regime. 

Hence, the argon plasma at 0.1 torr is collisional. However, to identify the effects of 

collision in the space-charge separated sheath region, the problem is first considered  

without the collision and then with the collisional effects. Hereafter, Case A will be 

referred for the collisionless model, while Case B represents the collisional problem. 

 

 

Figure 11. Schematic of the capacitive rf discharge. 
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The following fluid equations are used. The continuity equation for electron (e) 

and ion (i) number densities is given: 

                 

i i

e

e e

e

n
n S

t x

n
n S

t x

∂ ∂Γ
+ =

∂ ∂

∂ ∂Γ
+ =

∂ ∂

 where flux, nVΓ =                                           (32) 

Here, n is the species density and V is the species hydrodynamic velocity. A collisionless 

condition (zero ionization) is ensured in case A. For case B, the ionization frequency is 

governed by the Townsend equation: 

   
0.4/( / )B E p

S Ae p
−

= ℜ                              (33) 

where A and B are known for the gas
15

. eEµℜ =  (which has a dimension of velocity, 

cm/s) may be viewed as the speed of ionization that models the spatially and temporally 

varying ionization. 

The electrons flux is governed by: 

e

e e e e
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n E D

x
µ

∂
Γ = − −

∂
 with De = µe Te/e                              (34) 

The electron mobility µe is given by (Ward, 1962)
5 2 1 13 10

e
p cm V s Torrµ

− −
= × , at p=0.1 

Torr. The electron temperature (Te) is 1 eV. For ions, in case A, the inertial term is 

included in the formulation of its momentum: 

i i
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                 (35) 

While for case B, the flux can be derived from the drift velocity and hence: 
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Here electric field E=−∂ϕ/∂x. For cold ions at Ti = 0.025 eV, 200iD = cm
2
/s. The ion 

mobility µi is based on the degree of ionization, electric field and pressure (Ward, 1962). 

While one may include the inertia terms to get a slightly improved solution, at 0.1 torr 

pressure argon plasma sheath is collisional (Liebermann and Lichtenberg, 1994) and the 

drift-diffusion approximation is reasonable and computationally efficient. Under the 

effect of collisions, the extent of charge separation is greater and the species velocity is 

greatly driven by electric body force (qE) as represented by this approximation The 

following Poisson equation is used to calculate the potential drop. 

2

2
( )

i e

e
n n

x

ϕ

ε

∂
= − −

∂
                           (37) 

Equation 37 is rather interesting as it possesses no time derivatives, yet temporal 

behavior is nontrivial. Inserting Equation 32 into 37 and integrating on x gives the 

following current balance: 

                                             

2

( )
i i e e

enV en V I t
x t

ϕ
ε

∂
= − +
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                 (38) 

 

where the constant of integration, I(t), is the total current density. It may be noted that the 

effect of varying speed of ionization on the rate of species production is indirectly 

reflected on the net current density. Equation 38 completes the dynamic system of 

equation and serves as a means to calculate electrode potential from conservation 

principle. A simple discretization for the boundary element (assuming that the mesh is 

fine enough to validate the linear approximation) yields the following: 
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  (39) 

where n and (n-1) are the two boundary nodes and t is the time. Hence the solution can be 

iterated on the boundary condition (within a given timestep) to update the electrode 

potential. 

The finite element weak statement for Equations 34 and 36 in conjunction with Equation 

32 is written as 
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The sheath edge is identified as the ion attains the modified Bohm velocity based 

on G-S relation (Godyak and Sternberg, 1990) as [ ]
5.0

1
−

+ cVB  where the collision 

parameter 0.5 /De ic πλ λ=  and
 
λi(cm) ∼1/330p. 

Boundary conditions 

The left electrode is grounded, ϕ(0)= 0, and a sinusoidal rf potential ϕrf 

=ϕrmssin2πft with ϕrms=100V and f=13.56 MHz is applied to the right electrode through 

the capacitor (C = 0.1) where (2) ( ) / Ct I tϕ∂ ∂ = , and ϕ may be related to total current 

through Equation 38 thereby completing the circuit in Figure 11. 
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The electron flux at both electrodes is based on the electron thermal velocity 

(Ve,th) whose magnitude is given by Γe = neVe,th/4 and is directed towards the wall. For 

case A, we utilize the collisionless model and employ Boltzmanian electron distribution 

at the wall. Hence the flux becomes: 

| |

2 2
wz ze e

e e e

e e

T T
n n e

m m

φ

π π

−∆ −∆
Γ = =                                  (42) 

Homogeneous Neumann boundary condition (∂ni/∂x=0) is imposed for ions at both 

electrodes. The domain is discretized into 400 elements and ψ is interpolated using a 

linear basis function. We used the convergence criterion for all variables at any iteration 

as 10
-3

. 

Results and discussion 

Case I: Collisionless Discharge 

 Figure 12 shows the computed rf discharge characteristics for a collisionless 

sheath at applied frequency ω<<ωpe. The discharge gets established due to external 

power supply in form of a sinusoidal wave at the right electrode. The inherent difference 

between ion and electron inertia is one fundamental concept, governing the discharge. 

The direction and magnitude of the electric field is based on the space charge separation. 

The spatio-temporal evolution of φ and E in Figure 12(a) and Figure 12(b) match well 

with those published in literature (Lieberman and Lichtenberg, 1994 & Raizer et. al., 

1995). It is interesting to note that the slope of E is always positive for most of the 

simulation domain and near the powered electrode the magnitude always remains 

positive. This indicates the dc bias of the potential. Figure 12(c) gives an approximate 
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indication of sheath edge location at which space charge separation become prominent as 

the ion and electron density curves bifurcate. 
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Figure 12. Variation of (a) potential (b) electric field and (c) charge separation at various 

instants of the rf cycle.  
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Case II:  Collisional Discharge 

 

Figures 13-15 illustrate the computed rf discharge characteristics for the 

collisional model. The time-averaged values of potential and electric field for one rf cycle 

are shown in Figure 13. The average potential of one cycle has been compared to the 

potential in Figure 13(a) when it reaches its maximum value at π/2. The average 

discharge potential is ~40% of the peak potential. Also notice that plasma potential (in 

the bulk) is always positive and vanishes to zero potential at the electrodes. Hence this 

also explains the positive nature of the space charge sheath formed. The time-averaged 

electric field in the domain for one rf cycle is shown in Figure 13(b). In the bulk plasma, 

the field cancels out in opposing half of applied potential and hence there is not net force 

on the charged particles. The direction of the field, as mentioned before is always pointed 

towards the electrode. 
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Figure 13. (a) Time averaged (thin line) and peak potential at π/2 (thick line) and (b) time 

averaged electric field. 
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 The flooding and receding of the electron gas, exposing the immobile ions to the 

electrode (periodically) at every kπ  radians is shown in Figure 14(a). There is an increase 

of electron density at the electrode momentarily collapsing the electron sheath, which is 

otherwise inevitable. This energy is imparted to the electrons through accelerating fields. 

The electrons thus oscillate about the center of the domain driven by the potential 

difference across the electrodes. 

 Figure 14(b) shows the extent of deviation of plasma from quasi-neutrality in the 

presence of electrodes. In case A, ions are collisionless inside the sheath; and to preserve 

the flux, they gradually decay to a non-zero value. In case B, ions experience more than 

one ionizing collisions inside sheath. Unlike case A, there is no clear sheath edge 

boundary due to the presence of collisions. The magnitude of charge separation is greater 

in case B than in case A also attributed to the ionization in the sheath. The spatial 

evolution of net charge in the domain differs between cases A and B, particularly in the 

plasma-sheath edge. For example, as we move from the bulk plasma to sheath, there is a 

sharp drop in electron density (due to high cathode potential) and the sheath is almost 

devoid of electrons near grounded electrode at π/2.  

 The profiles of potential and electric fields for collisional discharge are similar to 

case A except for higher magnitudes of E induced in the sheath for case B. The electric 

field in the bulk plasma is observed to be a periodic function in the timescale of the 

applied frequency as E (τ) ≈ 3cos (π+τ). The phenomenon is noticeable near an electrode 

in the positive half of applied potential (at π/2) and occurs at relatively weak electric 

fields. Ions, due to their high inertia, hardly respond to the weak fields in the bulk plasma. 

This is not true inside sheath. The highly oscillating fields exert high electrostatic force 
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on the ions and they enter the sheath with high velocities. The timescales of ions and 

applied frequency are comparable for this plasma density and plasma frequency. 

 Figure 14(d) shows the electron heating (ΓΓΓΓ(τ).E(τ)) profile. It is evident that 

electrons are periodically heated and cooled corresponding to the sheath oscillation and 

hence the electron energy increases or decreases accordingly. The effect of electrical 

double layer amplifying the electron heating near sheath edge is also noticed. Sheath 

heating is a dominant phenomenon in radio frequency driven discharges. 
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Figure 14. Variation of (a) electron number density (b) charge separation (c) electric field 

and (d) electron heating at various time stations of the rf cycle. 

 

 
The electron flux in the bulk is estimated to vary as Neue ≈ 28 cosτ. Electrons, 

being lighter get transported across the domain in response to the applied potential. Due 

to their high mobility, the effect of double layer is amplified causing a local fluctuation 

near the sheath edge (e. g at π/2) which gets reflected in Neue causing a local fluctuation 
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as seen in Figure 15(a). Τhe variation of total current at the powered electrode for three 

cycles of applied potential is reported in Figure 15(b). The total current is conserved in 

space at any particular moment. It should be noted that the displacement current and 

conduction (electron and ion) current magnitudes are comparable at the subject pressure 

of 0.1 torr. The peak of the total current is observed at every (4k+1)π/2. A minor 

secondary peak is also observed in Figure 15(b) at the instant when the applied potential 

switches direction on the electrode. It is also noted that this secondary current peak is less 

significant for lower ionization rates. 
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Figure 15. (a) Spatio-temporal variation of electron flux and (b) temporal evolution of 

wall potential (thin solid line) and total current (dark solid line).  

 

 
The difference in normalized sheath thickness at the grounded left electrode (zL) 

and the powered right electrode (1-zR) shows an expected 2π periodicity between the 

points of extremum sheath locations with a phase lag of π radians. The oscillation of 
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sheath width zw is plotted in Figure 16 using the G-S relation stated in Sec. II. Based on 

curve fitting with an estimation error of ∼4%, we correlate the sheath thickness as zw ≈ 

0.04±0.03sinτ. For the discharge at 0.1 torr, the simulation results predict the maximum 

sheath width zw-max∼20 λDe, which agrees with the available literature (Lieberman and 

Lichtenberg, 1994). The sheath accounts for nearly 80 % potential drop for one rf cycle. 

The average sheath thickness was numerically found to be higher for a collisionless 

sheath under similar conditions than a collisional one. 

 

 

 

Figure 16. Temporal evolution of left (Sw=zL) and right (Sw=1-zR) sheath width. 
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IV. MODELING OF TWO DIMENSIONAL DISCHARGES 

 

The increasing application of plasma in aerospace community demands 

supporting theories to quantify and explain experimental observations. Particularly, with 

growing interest in plasma based flow control techniques, there is a necessity to estimate 

the plasma discharge characteristics effectively. A time accurate and geometry versatile 

numerical tool would prove useful in accurately calculating the discharge characteristics 

and predicting its electrodynamic structure. This chapter is focused towards modeling and 

simulation of a two-dimensional plasma discharge formed in the high frequency, low-

pressure regime. 

When the lateral extent of a discharge becomes comparable to the transverse 

stretch in presence of geometric or electrical inhomogeneities, the sheath becomes multi-

dimensional and a one-dimensional model is not sufficient to capture the required 

features. Specifically, the interest to model the effect of magnetic field necessitates a 

higher dimensional consideration. 

The dynamics of sheath in one dimension in the low and intermediate pressure 

regime have been studied in literature from numerical simulations. Boeuf and Pitchford 

(1995), Dalvie (1993) et. al and Passchier and Godheer (1993) simulated argon discharge 

for cylindrical geometry in two-dimension. Most of these cylindrical configurations are 

related to Gaseous Electronics Conference Reference cell which serves as a common 
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platform for experimental and modeling studies and a well-characterized system in which 

fundamental studies of plasma behavior can be conducted. Kim and Economou (2003) 

investigated plasma formation over an inhomogeneous flat wall. In these simulations, 

fluid and/or PIC treatments were used to model the system. 

Recent efforts have considered effect of external electromagnetic force on plasma 

wall interaction (Kim and Economou, 2003 & Hou et. al., 2004). Inspite of these earlier 

attempts, the capability to simulate characteristics of a discharge in the presence of 

electric and magnetic fields remain limited. 

We present a hydrodynamic plasma model in two-dimension configurations under 

applied electric and magnetic fields. The axial and transverse nature of resulting 

electrostatic field, forces and potential are investigated. The MIG code employs a self-

consistent approach to model the rf induced plasma interactions.  

Problem Specification 

The unsteady transport for electrons and ions are derived from fluid dynamics in 

the form of mass and momentum conservation equations. The species momentum is 

modeled by the drift-diffusion equation under isothermal conditions. Here, the flux is 

written in terms of species transport coefficients by neglecting inertial acceleration in the 

collisional regime. Electron temperature (Te) is of the order of 1 eV (~11,600K) and ions 

are assumed cold at 0.026 eV (~300 K). The continuity equation for ion and electron 

number densities is given by: 

.( )

.( )

i

i i e

e

e i e

n
n

t

n
n

t

α

α

∂
+ ∇ = Γ

∂

∂
+ ∇ = Γ

∂

V

V
  ( ) ( )

2 2

e e e e ex y
n V n VΓ = +    (43) 



 46 

where n is the number density and V is the species hydrodynamic velocity. As the sheath 

is collision dominated, electrons are not assumed to follow Boltzmannian distribution. 

For a pressure of 0.1 Torr, electron-ion recombination ∼2x10
-12

 cm
3
/s and has negligible 

effect on the mass balance (Boeuf and Pitchford, 1995). The discharge is maintained 

using a Townsend ionization scheme resulting in production of charge through impact 

ionization. The ionization rate is usually expressed as function of electron drift velocity 

and Townsend coefficient (Boeuf and Pitchford, 1995). The Townsend coefficient, α 

appearing in Equation 43 is given by: 

/( / )B p
Apeα

−

=
E

     (44) 

where 
1 1 0.434 cm .Torr 16 [V/(cm.Torr)]A and B

− −
= =    are pre-exponential and exponential 

constants, respectively. |Γe| is the effective electron flux which varies spatially and 

mainly depends on the electric field. The electronic and ionic flux in Equation 43 is 

written as: 

         e e e e e en n D nµ= − × − ∇e zV (E+V B )                                           (45) 

i i i i i in n D nµ= × − ∇i zV (E+V B )                                   (46) 

 

where E is electrostatic field given by E=−∇∇∇∇ϕ  is the electric field. VxB is the Lorentz 

force term due to presence of magnetic field. The magnetic field is acting only along the 

z-direction; B={0,0,Bz}. 

Since Equations 45 and 46 are of 0
th

 order, the bandwidth of the problem can be 

considerably reduced by substituting into Equation 43. The substitution gives rise to 

convection-diffusion type equation, which apart from being more stable increase 

computational efficiency. Hence: 



 47 

          

( )

( )

i i

i i i x i y i

i

i i i y i x i e

n n
b n E E D

t x x

n
b n E E D

y y

µ β

µ β α

∂  ∂ ∂  
+ + −  

∂ ∂ ∂  

 ∂ ∂  
+ − − = Γ  

∂ ∂   

    (47) 

               

( )

( )

e e

e e e x e y e

e

e e e y e x e e

n n
b n E E D

t x x

n
b n E E D

y y

µ β

µ β α

∂  ∂ ∂  
+ + −  

∂ ∂ ∂  

 ∂ ∂  
+ − − = Γ  

∂ ∂   

        (48) 

After some algebraic manipulation, we end up in the following equations, 
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Here bi(=1/1+βi
2
) and be(=1/1+βe

2
) are functions of hall parameter (βi and βe) and J is the 

Jacobian determinant involving partial derivatives of n and ϕ. 

The effect of magnetic field on the discharge is theoretically brought into the 

system through introduction of an additional expression involving mobility, as seen from 

Equations 49 and 50. The convective term (∇.nµE) gets altered accordingly in the x and y 

directions. This affects the electric field-number density coupling resulting in transfer of 

momentum between axes. An appropriate choice of B magnitude and direction can 

accordingly increase or decrease the stream wise momentum through electrostatic forces. 

Modification in discharge characteristics is expected in a direction perpendicular to the 

significant axis of the problem. 
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The electron mobility µe in Equation 48 is given by 6 2 1 13 10e cm V sµ
− −

= × , at pd = 

0.2 Torr.cm. The electron diffusion coefficient, De is calculated from the Einstein relation 

De = kTe/eµe. The ion diffusion coefficient is 2200 /
i

D cm s=   at 300K. The ion mobility µi 

is expressed as a function of reduced field (E/p) as before. 

The relation between electrostatic field and charge separation is given by the Poisson 

equation: 

. ( )e ie n nε∇ = − −E      (51) 

The electrodes are assumed to be fully absorbing. Secondary Electron Emission 

(SEE) can be neglected for pressure of 0.1 Torr in Argon; as low as <<1% of secondary 

electrons are emitted back at the electrode. For all the cases considered, d=2 cm, 

ω/2π=13.56 MHz and the reference density n0=2×10
15

 m
-3

. 

The finite element weak statement for Equation 47 is given in Equation 52. The 

introduction of magnetic field makes the formulation look complicated and cumbersome. 

Thought the underlying weak formulation is the same and simple to use once a 

framework has been developed. For example, the weak statement for Equation 47 is as 

follows: 
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The weak statement for electrons and potential may be written in the same way. 

The system utilizes a Sub-Grid eMbedded algorithm (SGM) (Roy and Baker, 1998) 

which ensures a node-wise monotone solution. The SGM is incorporated to the 

dissipative flux terms that are altered suitably based on local cell velocity and thus is 

expected to ensure a minimum dispersion error. 

Results and Discussion 

Case I: Benchmark Case 

The two-dimensional formulation was tested to plasma formed between two 

symmetric electrodes for a Direct current glow discharge using nitrogen. The geometry 

and discharge conditions correspond to Surzhikov and Shang (2004). The computational 

grid consists of 25 × 30 bi-quadratic (9 nodes) finite elements. An electrode potential of 

533 V is applied through an external circuit with resistance 300kΩ driven by an 

electromotive force of 2000 V. The model does not neglect diffusion in x and y directions 

for the entire domain including plasma and sheath. 

The cathode is at y=0 while y=2 cm is the anode. Vanishing ion density is 

imposed at anode while the electrons at cathode are calculated using flux balance using a 

secondary emission coefficient (=0.1). The left and right boundaries of the computational 

domain are maintained at symmetric conditions. Electrons and ions are localized to center 

of the geometry along x-axis based on initial condition and was calculated based on a pre-

estimated cathode layer thickness and current column length (Surzhikov and Shang, 

2004). 

The results of the simulation at pressure of 5 torr in the absence of magnetic field 

are presented. Figures 17(a) and 17(b) show the lines of constant electric potential and 
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ion density. The potential in previous simulation by Surzhikov and Shang (2004) are also 

shown for comparison. The potential lines bend towards the cathode. This gives rise to 

high electric field (directed towards electrode) driving electrons away forming ∼7.5 % 

thick cathode layer. The ion density near cathode rises to an order of magnitude higher 

than that near center of discharge and indicates a qualitative similarity. When a magnetic 

field of 0.01 Tesla is applied, the ion density gets shifted in the axial direction along the 

electrode surface (Figure 17(c)). A widening of discharge near cathode is also observed. 

The direction of drift depends on direction of magnetic filed lines while the magnitude of 

shift of iso-lines depends on value of determinant of Equations 49 and 50. 
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Figure 17. (a) Electric potential contour comparison between present simulation and 

reported simulation (Surzhikov and Shang, 2004) and (b) ion density contours for B=0 

and (c) ion density contours for B=0.01 T. All results shown here are for Nitrogen gas at 

5 Torr. 
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The calibrated formulation is applied to model plasma of a pure argon gas 

discharge. The schematic model and the computational domain are shown in Figure 18. 

The electrode is ∼2 cm long and is located ∼1 cm from left boundary. The top surface is 

considered quasi neutral. This assumption is valid as the height of domain chosen is 

much greater than Debye length. A height of ∼200λDe is chosen for present case. The 

electrodes are assumed to have a negligible thickness compared to significant dimensions 

of the model and are presently ignored for simplicity. 

The computational grid (Figure 18) consists of 25 × 20 biased bi-quadratic finite 

elements with the first node ∼0.01 cm from wall. The maximum aspect ratio is about 6 

for elements near the wall and is close to one far away from electrode. This is a trade-off 

between computational time and near-wall mesh resolution. The presence of mm scale 

sheath necessitates mesh refinement close to wall. This increases the aspect ratio of 

elements near the wall which has to be compensated by increasing stream-wise elements 

at the cost of computational time. In the absence of magnetic field, the discharge may be 

treated as symmetric about x=1. Similar geometry has been treated recently in literature 

(Kim and Economou, 2003) for quiescent and fluctuating argon plasmas in the 

collisionless low-pressure regime. Apart from being a more realistic configuration that 

brings edge effects into consideration, the importance of understanding this discharge 

configuration proves useful in plasma based flow control application that is being widely 

investigated as a means to alter near wall boundary layer profile. A recent investigation 

studied the effect of plasma on neutral gas flow in an asymmetric configuration for a 

Dielectric Barrier Discharge (DBD) (Roy, 2005). Hence this formulation provides a 
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framework, which can be built upon to study high-pressure discharges and effect of 

magnetic field interaction in collision-dominated sheath. 

As can be observed from Figure 18, there is a net flow of current into the metallic 

wall, while the current path is almost parallel at dielectric surface. This gives rise to a 

near wall inhomogeneity in the model, which might be compared to a mathematical 

discontinuity. This inherent feature introduces considerable numerical difficulty at the 

electrode-insulator edge. Maximum plasma generation is limited to this region which 

when not properly handled may affect numerical stability. As mentioned earlier, artificial 

stabilization techniques like SGM have been implemented to minimize dispersion error 

and ensure a node wise monotone solution. 
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Figure 18. Schematic of a perfectly flat electrode-insulator configuration and 

computational grid. 

 

 
The system of Equation 47-48 and 51 are solved using the following boundary 

conditions. The electron flux imposed at electrode is based on the electron thermal 

velocity and directed towards the electrode. (NeVe)Y to electrode is 0 if drift velocity is 

away from electrode. Boundary condition (at electrodes) for ions is imposed 

homogeneous Neumann (∂Ni/∂n=0). The normal current of charge carriers is nullified at 
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insulator boundary. In the left and right boundary, the slopes ∂Ni/∂x=0, ∂Ne/∂x=0 and 

∂φ/∂x=0 are ensured. 

Case II: Steady State Discharge in Presence and Absence of Magnetic Field 

A steady state discharge is first studied for an applied voltage of -50V on the 

exposed electrode. Figure 19(a) shows iso-lines of electric potential for a cathode 

potential of –50V at steady state. The symmetric nature of the contour in the absence of 

magnetic field about x=1 may be noted. Figures 19(b), 19(c) and 19(d) compare the axial 

distribution of potential, electron number density and charge difference at two different y 

locations, close to and away from the bottom plate. Due to large difference of potential 

between top boundary and electrode, the variation of characteristic is felt in y-axis. 

Hence the magnetic field strongly affects the stream-wise distribution because of heavy 

y-momentum transfer into x-direction (as seen from Equation 47 and 48). The solid line 

shows the variation in absence of magnetic field while the dotted line is for a low 

magnetic field intensity of five Gauss. The sharp change of characteristics (for example, 

spike like pattern for electron number density) near the electrode-insulator edge is 

expected. Most of the plasma formation is limited to this region. As shown in Figure 

19(b), the insulator is less cathodic (∼25V difference than cathode potential) and behaves 

like a pseudo-anode collecting electrons. Corresponding to this pseudo-electrode, a sharp 

increase in electron density is observed near the highly depleted cathode sheath layer. In 

the presence of magnetic field, the potential lines (for example, near right electrode-

insulator edge) are modified along the electrode surface. They are shifted from its initial 

position towards the right. This change is reflected in the charged species (theoretically 
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through the Poisson equation) causing a variation in charge separation. Hence, the 

analysis qualitatively shows effect of magnetic field on discharge characteristics. 

 

-3.125

-9.84758

-12.5

-18.75 -21.875

-25

-2
8
.1

2
5

-28.125

x

y

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

Φ

0.5 1 1.5 2

-45

-40

-35

-30

-25

y = 0.005 : B=0
y = 0.005 : B=5 G

 

(a) (b) 

 

   x

E
x

0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

y = 0.005 : B=0

y = 0.005 : B=5 G

 

                                     (c)                                                                     (d) 

 

Figure 19. Steady state discharge (a) electric potential contour for B=0 (b) variation of 

potential (c) variation of electron number density and (d) variation of axial electric field 

at two y locations in the presence and absence of magnetic field.  All results shown here 

are for Argon at 0.1 Torr. 

 

 
Case III: rf Discharge in the Presence and Absence of Magnetic Field 

The steady state discharge in case II was analyzed for fairly low magnetic field 

intensity. With the gained theoretical understanding of electromagnetic interactions, a 

transient plasma discharge is simulated for a higher magnetic field of 20 Gauss in the 

presence of an oscillating potential with a peak-to-peak of 100 volts. In order to 
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understand the variation of plasma characteristics in the presence of magnetic field, the 

solution is compared with a simulation without magnetic field, all other conditions being 

the same. 

Figure 20(a) and 20(b) show the progress of solution in terms of the residual and 

solution norm, respectively evolving with time expressed in radians. As can be seen, the 

solution norm has reached a steady state or a harmonic periodicity as can be seen from 

peaks of the second and third cycle.  A typical solution takes about 2.43 sec (CPU time) 

for assembly and 2.5 sec for solver per iteration and a normal timestep takes four to six 

iterations to converge. 
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Figure 20. L2 norm of (a) residual and (b) increment in solution 

 

The stream-wise and transverse variations at different locations are shown in 

Figures 21(a) to 21(c). It was observed in the simulation that except for localized regions 
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near the electrode-insulator edge, the magnetic field had less pronounced effect on the 

transverse solution characteristic relative to stream-wise components. 

The potential lines are symmetric at all four times of the cycle plotted. At π/2, the 

electrode is highly cathodic and a sheath starts forming with a large change of potential 

across a few millimeters away from the electrode. Near the electrode-insulator edge, the 

lines wrap around the corners resulting in semi-circular patterns. Due to axial and 

transverse extent of discharge, there are instantaneous pseudo-anodes that are formed and 

most of electron accumulation (not shown) is limited to the edge. When the applied 

potential shifts direction, the electrons start responding first to the rise in potential. The 

net potential is affected by space charge accumulated in pseudo-anodes from the negative 

cycle. During positive peak of the cycle, the potential lines do not wrap around the edge 

as was observed during the negative stroke. The formation of instantaneous electrodes 

near real anode and cathode causes this delay. 
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Figure 21. Electric potential at four different times of rf cycle without magnetic field. 
 
 

 

Figure 22 shows the potential variation under the effect of external applied 

magnetic field of 20 gauss. The symmetry of the discharge about x=1 is affected and 

profile is shifted to the right as can be seen at π/2 radians. This brings about a change in 

near wall charge distribution and electrostatic fields. The V×B component force visibly 

pushes the field line to the right reducing the near curving of the constant potential lines 

near the left edge. At π radians, plasma distortion due to applied magnetic field is less 

intense. Interestingly at 3π/2, the potential closely resembles a zero magnetic field case.  
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Figure 22. Electric potential at four different times of rf cycle with magnetic field. 

 

 

Figure 23 plots variation of electric field close to the electrode at four times of the 

rf cycle. This spatio-temporal evolution may be of much value in flow control 

applications where electrostatic force is considered as one possible mechanism of 

momentum transfer from plasma to background neutral gas. Due to the nature of the 

geometry, the potential across the right and left edge changes sign. This is obvious from 

the peaks of field near 0.5 and 1.5. For example, the stream-wise field varies between 

normalized values of 175 and –175 in the absence of magnetic field at π/2. On the other 
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hand, the observed field in nearly ∼42.8% higher in the presence of an additional 

magnetic force on the species. 
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Figure 23. (a) Axial electric field in the absence of magnetic field (b) axial electric field 

in the presence of 20 Gauss (c) transverse electric field in the absence of magnetic field 

and (d) transverse electric field in the presence of 20 Gauss at four different times of rf 

cycle. 

 

 
The V×B coupling also affects the transverse electric field as shown in Figure 23. 

The effect is more pronounced at π/2 when the net downward field is predominant in the 
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near the left insulator-electrode edge. The effect of magnetic field in affecting near wall 

electrodynamics has been demonstrated here. The local increase or decrease in near wall 

space charge effect can be related to magnitude and direction of input magnetic field. 

Case IV: Edge Effect of Electrodes 

 

 

Figure 24. Types of electrode-insulator edge. 

 

 
It has been demonstrated that the presence of an insulator-conductor interface 

alters the nature of discharge and plays a significant role in altering electric forces due to 

plasma generation. The conductor in the previous case was assumed thin for simplicity in 

modeling. It has been shown recently that the nature of edge between insulator and 

electrode play a significant role in altering the nature of field lines and hence the “qE” 

forces near the wall (Enloe, et. al., 2004). To have an insight into this edge effect, two 

configurations, shown in Figure 24(a) and 24(b) are investigated in the present study. The 

case of rounded edge (Figure 24(c)) may be visualized as an intermediate case between 

90
o
 and 45

o
 shoulder configurations. 

The present case under consideration is limited to steady state in the absence of 

magnetic field for simplicity. An electrode of 0.2 mm thickness is coated on a flat plate 

and located at ∼1.5 cm from the left boundary. Figure 24(a) considers a sharp edge of 

electrode with a 90
o
 shoulder while Figure 24(b) considers an edge with 45

o
 chamfer. 
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The computational grid consists of 45 × 45 bi-quadratic finite elements in both cases. The 

discharge conditions are same as before, namely, 0.1 torr argon plasma with an electrode 

potential of –50V. 

Figures 23(a) to 23(f) compare the computed profiles for the two electrode edge 

models under consideration. The region near the edge has been zoomed for clarity. From 

common understanding, the 90
o
 edge creates a sharp geometrical discontinuity resulting 

in abrupt change in radius of curvature across the edge as compared to the bevel. Hence, 

the spatial variation of electric field gets considerably modified altering the electro-

dynamic properties of the discharge between the two edge shapes. The electric field lines 

for a given change in potential are shown in Figure 23(a) to 23(d) and edge effects are 

felt within several Debye lengths (∼0.1 cm) in the plasma. 

Figure 23(e) to 23(f) plots the force vector for the two shapes expressed as a 

product of space charge difference (Ni-Ne) and electrostatic field, Ex or Ey). In both cases, 

a strong electrostatic force in the positive x and negative y direction is noted close to the 

wall. The presence of cathode gives rise to strong transverse field (with electric field 

lines ending at cathode perpendicular to it) downstream of the edge. The direction of 

electric field force vector (given by tan
-1

(Fy/Fx)) near the wall was predicted between 

225
o
 to 260

o
 oriented mostly in the third quadrant. This is indicative of an effective 

forward-downward force created by the plasma across the edge.  
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Figure 25. (a) Axial electric field for 90
o
 shoulder (b) axial electric field for 45

o
 shoulder 

(c) transverse electric field for 90
o
 shoulder (d) transverse electric field for 45

o
 shoulder 

(e) force vector for 90
o
 shoulder and (e) force vector for 45

o
 shoulder. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

 
Conclusions 

An argon gas discharge under applied rf potential between two electrodes has 

been modeled from first principles using a self-consistent coupled system of two fluid 

and a single Poisson equation. The model is based on a robust finite element algorithm 

utilized to overcome the stiffness of the plasma-wall equations. FE techniques are 

especially suitable for their adaptability to arbitrary multidimensional geometries and 

boundary conditions. The high-fidelity finite-element procedure is anchored in a 

Multiscale Ionized Gas (MIG) flow code. The code allows introduction of element-wise 

constant and local velocity based artificial diffusion which guarantees a monotone 

solution and is expected to ensure minimum dispersion error. The details of the algorithm 

flow of sequence in the code and alterations made to improve computational speed when 

handling of sparse matrices have been presented. Numerical limitations are highlighted 

for a simple 1d two fluid formulation from the theoretical derivation of algorithm 

amplification factor and phase velocity. The intention is to complement experimental 

efforts by providing a suitable tool to explore flow control concepts in future design and 

development. 

The dynamics of ions and electrons have been reported in one dimensional model 

for an applied rf frequency ω < ωpe and 0.1 torr pressure. The collisional nature of the 

problem, varying timescales for charged species in the bulk plasma and sheath, and the 
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use of an interpolation polynomial to simulate the plasma-sheath transition that has 

abrupt changes in gradients add to the complexity of the problem. The oscillation of the 

sheath edge has been correlated as a sinusoidal wave. The sheath thickness is of a few 

Debye lengths and accounts for nearly 80% potential drop for one rf cycle. 

The formulation was tested in two-dimension for plasma formed between two 

symmetric electrodes for a direct current glow discharge using nitrogen. The results 

match well with published literature. A steady state discharge is simulated for argon in an 

electrode-insulator configuration. The magnetic field has been shown to strongly affect 

the stream-wise distribution caused by the V×B coupling between x and y axes. 

Simulation results for a transient discharge evolution in the presence of time varying rf 

potential have been investigated. The present analyses have served to highlight the 

importance of understanding two-dimensional gas discharge nature and the effect of time 

varying potential and an external magnetic field on it. Finally, the shape effect in 

insulator-conductor configuration on near wall dynamics is compared using a 90
o
 

shoulder and 45
o
 chamfer. The maximum axial force is about ∼22% higher for 90

o
 

shoulder while the force vector across the edge indicates a net downward and forward 

force generated. 

The potential of combined electric and magnetic fields as a productive means in 

altering near wall plasma forces has been realized here. The results presented are 

expected to help interpret the plasma formation in the presence electromagnetic 

interaction on the discharge structure for higher pressures. 
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Recommendations 

The intent for development of the MIG code for discharge modeling at various 

pressures is to complement experimental efforts by providing a suitable numerical tool to 

explore flow control concepts in future design and development. Given the robustness of 

the algorithm and capability of the code, measures to further improve the computational 

speed like parallelization are required, particularly for solving unsteady problems. This 

will possibly cut down simulation time from days to hours. With finite element algorithm 

(e.g. Galerkin) being increasingly seen as a highly efficient tool for complex flow 

problems, the code proves as a powerful numerical tool in analysis, design and 

development. 

The simulation of plasma in one-dimension has been done extensively in 

literature. But exhaustive two-dimensional simulations in the presence of rf interactions 

and magnetic field are in rudimentary stages. The present formulation is expected to 

serve as a framework for the following suggested investigations - correlate plasma V-I 

characteristics for varying magnetic field intensities, rf interactions in presence of 

magnetic field at high pressures, inclusion of electron temperature equation to study 

electron heating mechanisms and modeling plasma chemistry for multiple levels of 

ionization. 
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NOMENCLATURE 

 

t Time co-ordinate, s 

x, y Spatial co-ordinates, cm 

λD  Debye length, cm 

T Temperature, K 

k Boltzman constant, J/K 

e Elementary charge, coulomb 

N Number density, cm
-3

 

V Species hydrodynamic velocity, cm/s 

M,m Mass of charged species, Kg 

P Pressure 

ν Frequency, s
-1

 

E Electric field, V/cm 

ϕ Potential, V 

ε Permittivity, C
2
/N.m

2
 

f Applied frequency, Hertz 

ω Applied frequency, s
-1

 

d Characteristic length, cm 

α Ionization coefficient, cm
-1

 

β Recombination coefficient 

L Linear operator 

q State variable 

w Weight function 

f Flux vector 

Ω Computational domain 

η Artificial diffusion parameter 
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G Amplification parameter 

Φ Phase velocity 

∆ Increment 

C Courant number 

ψ Test function 

F, R Residual  

Γ Flux, cm
-2

/s 

µ Mobility, cm
2
V

-1
s

-1
 

D Diffusion coefficient, cm
2
/s 

I Current 

A, B Constants 

Bz Magnetic field, Tesla 

J Jacobian 

∇ Gradient  

 

Subscripts: 

e  Electron 

i Ion 

n Neutral 

B Bohm 

0 Reference value 
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APPENDIX A 

 

 
FORTRAN 77 SUBROUTINE FOR ALTERNATE FINITE ELEMENT 

ASSEMBLY METHOD 



 76 

c This subroutine assembles the element matrix contributions to global matrix 

 

Subroutine assemgm (elemk, ndim, maxdim, elemdof, iwant, iel, mtemp, ktemp) 

 
c  elemk - element stiffness matrix 

c ktemp,mtemp - local element and mass matrices 

c  maxdim - leading dimension of elemk 

c  ndim  - order of elemk 

c  elemdof - element d-o-f array 

c dof_node - number of degree of freedom in a node 

c ielx  - number of elements in x direction in the model 

c irow  - row index 

c icol  - column index 

 

      implicit none 

      include 'common_include' 

      integer iwant  

      integer ndim, maxdim,ndof,iel,ielx, dof_node, domain 

      parameter (ielx = 20) 

      parameter(dof_node=3) 

      parameter(domain = 4*dof_node) 

      real*8 elemk(maxdim, *), ktemp(maxdim, *), mtemp(maxdim, *) 

      integer elemdof(*) 

      integer irow, icol, i, j, k, count, itest, ii, jj 

      integer locate(domain+1,domain+1,2*ielx+1), iel_num, iel_store 

      integer bottom, left, m, n, set 

 

c Initialize location flags 

       left = 0 

       bottom = 0 

 

c Store location flags 

         if(iel.gt.ielx.and.mod(iel-1,ielx).eq.0) left = 1 

         if(iel.le.ielx) bottom = 1 

 

c Initialize to 0 for every new iteration 

       itest = 0 

      if(iel.eq.1.and.count.ne.1) then 

         nelt = 0 

            do i=1,domain+1 

             do j=1,domain+1 

              do k=1,2*ielx+1 

               locate(i,j,k)=0 

              enddo 

             enddo 

            enddo 

         count = 1 
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      endif 

      if(iel.ge.2) count = 0 

 

      iF (.not. steady) then 

           if(iwant.eq.2) itest = 1 

      Else 

           if(iwant.eq.3) itest = 1 

      Endif 

 

c  Alter element number suitably 

        iel_num = mod(iel,2*ielx) 

        if(iel_num.eq.0) iel_num = 2*ielx 

 

        if(iel_num.gt.ielx) iel_store = iel_num - ielx 

        if(iel_num.le.ielx) iel_store = iel_num + ielx 

 

        if(iel.le.ielx) iel_store = iel 

 

c Outer element information scanning loop begins 

      do 10 i = 1, ndim 

 

        irow = elemdof(i) 

 

      do 20 j = 1, ndim 

 

          icol = elemdof(j) 

 

c Skip negative index 

         if(irow.lt.0.or.icol.lt.0)  goto 130 

 

c Depending on row and column number, add to appropriate matrix 

 

          IF (iwant.eq.0.or.iwant.eq.3) THEN 

 

            if(.not.steady) then 

             ktemp(i,j)= elemk(i,j)*delta_time*wilson_theta 

            else 

             ktemp(i,j) = elemk(i,j) 

            endif 

 

  

           ENDIF 

 

           IF(itest.eq.1) THEN 

 

           ktemp(i,j) =  mtemp(i,j) + ktemp(i,j) 
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       if(iel.eq.1) then 

          if(ktemp(i,j).ne.0.d0) then 

           nelt = nelt + 1 

           a(nelt) = ktemp(i,j) 

           ipos(nelt) = irow 

           jpos(nelt) = icol 

           locate(i,j,1) = nelt 

        else 

           locate(i,j,1) = 0 

        endif 

      endif 

 

        IF(iel.gt.1) THEN 

 

c Retrieving information from locate for shared nodes 

c For node 1-1 contribution of present element to appropriate location 

          if(i.ge.1.and.i.le.dof_node) then 

          if(j.ge.1.and.j.le.dof_node) then 

 

               if(left.eq.1)  ii = locate(i+3*dof_node,j+3*dof_node,iel_store) 

 

               if(bottom.eq.1) 

     &         ii = locate (i+dof_node,j+dof_node,iel_store-1) 

 

               if(left.ne.1.and.bottom.ne.1) 

     &         ii = locate (i+2*dof_node,j+2*dof_node,iel_store-1) 

 

               if(ii.gt.0)   a(ii) = a(ii) + ktemp(i,j) 

               goto 120 

           endif 

          endif 

 

       IF(left.ne.1) THEN 

c Add node 4-1 contribution of current element 

          if(i.ge.1+3*dof_node.and.i.le.4*dof_node) then 

          if(j.ge.1.and.j.le.dof_node) then 

                ii = locate(i-dof_node,j+dof_node,iel_num-1) 

                if(ii.gt.0)  a(ii) = a(ii) + ktemp(i,j) 

                goto 120 

          endif 

          endif 

 

c Similar loop for node 1-4 

 

c Add node 4-4 contribution of current element 
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          if(i.ge.1+3*dof_node.and.i.le.4*dof_node) then 

          if(j.ge.1+3*dof_node.and.j.le.4*dof_node) then 

               ii = locate(i-dof_node,j-dof_node,iel_num-1) 

               if(ii.gt.0) then 

                  a(ii) = a(ii) + ktemp(i,j) 

               else 

                 if(ktemp(i,j).ne.0.d0) then 

                  nelt = nelt + 1 

                  a(nelt) = ktemp(i,j) 

                  ipos(nelt) = irow 

                  jpos(nelt) = icol 

                  m=i-dof_node 

                  n=j-dof_node 

                  locate(m,n,iel_num-1) = nelt 

                 endif 

               endif 

             goto 120 

          endif 

          endif 

 

       ENDIF 

 

       IF(bottom.ne.1) THEN 

 

c Add node 2-1 contribution of current element 

          if(i.ge.1+dof_node.and.i.le.2*dof_node) then 

          if(j.ge.1.and.j.le.dof_node) then 

               ii = locate(i+dof_node,j+3*dof_node,iel_store) 

               if(ii.gt.0) 

     &            a(ii) = a(ii) + ktemp(i,j) 

                  goto 120 

          endif 

          endif 

 

c Similar loop for node 1-2 

 

c Node 2-2 

          if(i.ge.1+dof_node.and.i.le.2*dof_node) then 

          if(j.ge.1+dof_node.and.j.le.2*dof_node) then 

               ii = locate(i+dof_node, j+dof_node, iel_store) 

               if(ii.gt.0) then 

                  a(ii) = a(ii) + ktemp(i,j) 

               else 

                 if(ktemp(i,j).ne.0.d0) then 

                  nelt = nelt + 1 

                  a(nelt) = ktemp(i,j) 
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                  ipos(nelt) = irow 

                  jpos(nelt) = icol 

                  m=i+dof_node 

                  n=j+dof_node 

                  locate(m,n,iel_store) = nelt 

                 endif 

               endif 

             goto 120 

          endif 

          endif 

 

       ENDIF 

 

c Storage of new entry into locate matrix 

 

        if(ktemp(i,j).ne.0.d0) then 

             nelt = nelt + 1 

             a(nelt) = ktemp(i,j) 

             ipos(nelt) = irow 

             jpos(nelt) = icol 

             locate(i,j,iel_num) = nelt 

        else 

             locate(i,j,iel_num) = 0 

        endif 

 

        ENDIF 

 

  120    continue_flag = 1 

            endif 

  130    continue_flag = 1 

 

 20     continue 

 10     continue 

 

          return 

          end 
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subroutine FEelement (elemk, elemf, elemutminus, elemutplus, elemx, elemmatprop, 

max_elem_dim, max_dim, eltype, iwant, nelems, iel) 

 

c “FEelement” is an element subroutine for a bi-quadratic element containing all 

information required to form a element matrix 

 

c  elemdim    - Dimension of the element matrix (degrees of freedom of an element) 

c  loc_<var>    - Location of variable name <var> in the element matrix 

c  Nmat,DNmat  - Basis function and derivative 

c elemx   - x and y location of a node in an element of the domain 

c  elemk   - Element stiffness matrix 

 

c  Algorithm-specific variable and constant-declaration 

 

      implicit none 

      integer max_elem_dim, max_dim, eltype, iwant, elemdim, nelems, iel 

      real*8 elemk(max_elem_dim,*), elemf(*), elemutminus(*), elemutplus(*) 

      real*8 elemx(max_dim,*), elemmatprop(*) 

 

      parameter (elemdim = 27) 

      integer nint, iint, i, j, ii, jj 

      integer loc_Ni(9), loc_Ne(9), loc_phi(9), 

      real*8 rint(9), wint(9), sint(9), jac, rr, wt, ss 

      real*8 Nmat33(9), DNmat33Dx(9), DNmat33Dy(9) 

      real*8 elemk_lin(elemdim,elemdim), elemk_non_lin(elemdim,elemdim) 

      real*8 term, constant 

 

c  Problem-specific variables and constants - declaration 

 

      real*8 Ne, DNeDx, DNeDy, Ni, DNiDx, DNiDy, phi, DphiDx, DphiDy 

      real*8 nevex, nevey, neve, Ex, Ey, E 

      real*8 mewi, mewe, t_0, kb, p_l, pi, omega, new 

      real*8 epsilon, N_0, eps, mi, vb, me 

      real*8 mag, omi, ome, alpha, e_charge, p, Te, Di, De, A, B 

 

c Control variables 

      loc_Ni(1) = 1 

      loc_Ni(2) = 4 

      loc_Ni(3) = 7 

      loc_Ni(4) = 10 

      loc_Ni(5) = 13 

      loc_Ni(6) = 16 

      loc_Ni(7) = 19 

      loc_Ni(8) = 22 

      loc_Ni(9) = 25 
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      do i = 1,9 

        loc_Ne(i)   =  loc_Ni(i) + 1 

        loc_phi(i)  =  loc_Ni(i) + 2 

      enddo 

 

c Electron , ion  parameters and ionization rate 

 

c    e_charge  is  charge of electron 

c     p  is  pressure in torr 

c     Te  is  temperature of electron 

c     Ti  is  temperature of ion  

c     Di  is  ion diffusion coefficient 

c     De  is  electron diffusion coefficient 

c     p_l  is  characteristic plasma length 

c    omega  is  applied rf biased frequency 

c     kb  is  boltzman constant  

c     mi  is  mass of ion  

c     mag is the magnetic field 

 

        kb = 1.3807* 1.e-23 

        p = 0.1 

        epsilon = 8.8532 * 1.e-12 

        e_charge = 1.6022 * 1.e-19 

        pi = 3.14159 

        Te = 11600.d0 

        omega = 13.56* 1.e6 * 2.d0 * 3.14159 

        mi   = 40.d0 * 1.6726 * 1.e-27 

        me = 9.1038 * 1.e-31 

        vb   = dsqrt(Te * kb / mi) 

 

c Non-dimensional variables 

 

        p_l = 0.02 

        t_0 = 1.0 / omega 

        n_0 = 2.e15 

        alpha =  p_l/(vb*t_0) 

        eps = epsilon*kb*Te/(e_charge**2 * n_0 * p_l**2) 

 

        mewe = 3.0*1.e5 / p * 1.e-4 

 

        mag = 0.002 

        omi = 1.d0 

        ome = 1.d0 + mewe**2 * mag**2 

 

 

      call zero (elemk_lin,elemdim,elemdim,elemdim) 
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      call zero (elemk_non_lin,elemdim,elemdim,elemdim) 

      call zero (elemk,elemdim,elemdim,max_elem_dim) 

      call zero (elemf,elemdim,1,max_elem_dim) 

 

      call setup_integration (rint,wint,nint,3) 

      call integ_pt_1t2d (rint,sint,wint,nint) 

 

      do iint = 1, nint 

        rr = rint(iint) 

        ss = sint(iint) 

 

call shape_fn_2d_3x3(Nmat33, DNmat33Dx, DNmat33Dy, jac, rr, ss, elemx,  

max_dim) 

 

        Ni = 0.d0 

        DNiDx = 0.d0 

        DNiDy = 0.d0 

 

        Ne = 0.d0 

        DNeDx = 0.d0 

        DNeDy = 0.d0 

 

        phi = 0.d0 

        DphiDx = 0.d0 

        DphiDy = 0.d0 

 

c Cell averaged values 

 

        do i = 1,9 

           ii = loc_Ni(i) 

           Ni = Ni + Nmat33(i) * elemutplus(ii) 

           DNiDx = DNiDx + DNmat33Dx(i) * elemutplus(ii) 

           DNiDy = DNiDy + DNmat33Dy(i) * elemutplus(ii) 

 

           ii = loc_Ne(i) 

           Ne = Ne + Nmat33(i) * dabs(elemutplus(ii) 

           DNeDx = DNeDx + DNmat33Dx(i) * elemutplus(ii) 

           DNeDy = DNeDy + DNmat33Dy(i) * elemutplus(ii) 

 

           ii = loc_phi(i) 

           phi = phi + Nmat33(i) * elemutplus(ii) 

           DphiDx = DphiDx + DNmat33Dx(i) * elemutplus(ii) 

           DphiDy = DphiDy + DNmat33Dy(i) * elemutplus(ii) 

        enddo 

 

        Ex = -DphiDx 
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        Ey = -DphiDy 

        E  = (Ex**2 + Ey**2)**0.5 

        nevex = (-Ne*mewe*1.e4* Ex - mewe*1.e4 * DNeDx )/(p_l*100.0) 

        nevey = (-Ne*mewe*1.e4* Ey - mewe*1.e4 * DNeDy )/(p_l*100.0) 

        neve = (nevex**2 + nevey**2)**0.5 

 

c Ionization rate 

 

           A = 34.0 

           B = 16.0 

           new = [A *p *dexp(-B/(E/p)) * neve ] * p_l / vb 

 

c Ion mobility calculation 

 

         Ex = -(elemutminus(loc_phi(2))-elemutminus(loc_phi(1)))/  

      &                          (elemx(1,2)-elemx(1,1)) / (p_l*100.0) 

         Ey = -(elemutminus(loc_phi(4))-elemutminus(loc_phi(1)))/ 

     &                         (elemx(2,4)-elemx(2,1)) / (p_l*100.0) 

         E  = (Ex**2 + Ey**2)**0.5 

 

        if( (E/p).le.60.d0 ) then 

           mewi = 1.e3 * (1.d0 - 2.22e-3 * E/p) * 1.e-4 / p 

        else 

           mewi = 8.25e3/dsqrt(E/p) * 1.e-4 / p 

        endif 

 

c Non-dimensional local electric field in an element 

 

          Ex = -(elemutminus(loc_phi(2))-elemutminus(loc_phi(1)))/ 

     &                         (elemx(1,2)-elemx(1,1)) / p_l 

          Ey = -(elemutminus(loc_phi(4))-elemutminus(loc_phi(1)))/ 

     &                         (elemx(2,4)-elemx(2,1)) / p_l 

 

        wt = wint(iint) * jac 

 

        IF (iwant.eq.0) then 

 

c Integration of spatial terms 

 

     do i = 1,9 

 

            ii = loc_Ni(i) 

            elemf(ii) = elemf(ii) -wt * new * Nmat33(i) 

 

            ii = loc_Ne(i) 

            elemf(ii) = elemf(ii) - wt * new * Nmat33(i) 
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     do j = 1,9 

 

c#############  Equation for Ni ############### 

            ii = loc_Ni(i) 

 

c for  dphi/dx Ni 

            jj = loc_Ni(j) 

            term=  wt * mewi/(p_l*vb) * Nmat33(i) *DNmat33Dx(j)* 

     &          ( (-DphiDx) + mewi*mag*(-DphiDy) ) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 

 

c for  -d
2
Ni/dx

2
 

            jj = loc_Ni(j) 

            term= wt * Di * DNmat33Dx(i) * DNmat33Dx(j) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 

 

c for  - d
2
Ni/dy

2
 

            jj = loc_Ni(j) 

            term= wt * Di *  DNmat33Dy(i) * DNmat33Dy(j) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 

 

c for  dphi/dy Ni 

            jj = loc_Ni(j) 

            term=  wt * mewi/(p_l*vb)  

     &               * Nmat33(i) *DNmat33Dy(j)* 

     &          ( (-DphiDy) - mewi*mag*(-DphiDx) ) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 

 

c for  +Ni*(Ni-Ne)/eps 

            jj = loc_Ni(j) 

            term=  wt * mewi/(p_l*vb)  

     &                * Nmat33(i) *Nmat33(j) * (Ni-Ne)/eps 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 

 

c Similar formulation for Ne 

 

c#############  Equation for Phi ################### 

            ii = loc_phi(i) 

 

c   (eps) d
2
φ/dx

2
 

            jj = loc_phi(j) 

            term = -wt * eps* 

     &                 (  DNmat33Dx(i) * DNmat33Dx(j) 

     &                 +  DNmat33Dy(i) * DNmat33Dy(j) ) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + term 
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c   -Ne 

            jj = loc_Ne(j) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) -wt * Nmat33(i) * Nmat33(j) 

 

c   +Ni 

            jj = loc_Ni(j) 

            elemk_lin(ii,jj) = elemk_lin(ii,jj) + wt * Nmat33(i) * Nmat33(j) 

 

c End of loop for elemk formation from spatial terms 

 

            enddo 

            enddo 

 

         ENDIF 

 
c Integration of time terms 

 

        IF (iwant.eq.1) then 

 

          do i = 1,9 

          do j = 1,9 

 

c +alpha * dNi/dt 

               ii = loc_Ni(i) 

               jj = loc_Ni(j) 

               elemk(ii,jj) = elemk(ii,jj) +  wt * alpha * Nmat33(i) * Nmat33(j) 

 

c +alpha * dNe/dt 

               ii = loc_Ne(i) 

               jj = loc_Ne(j) 

               elemk(ii,jj) = elemk(ii,jj) +  wt * alpha * Nmat33(i) * Nmat33(j) 

 

          enddo 

          enddo 

 

        ENDIF 

 

c End of integration loop 

      enddo 

 

c Global matrix formation 

 

      IF (iwant.eq.0) then 

 

       do i = 1,elemdim 

       do j = 1,elemdim 
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           elemk(i,j) = elemk_lin(i,j) + elemk_non_lin(i,j) 

           elemf(i) = elemf(i) + elemk(i,j) * elemutplus(j) 

       enddo 

       enddo 

 

      ENDIF 

 

c Negative force for the N.R. Scheme 

 

      do i = 1, elemdim 

       elemf(i) = - elemf(i) 

      enddo 

      return 

      end 

 

 

 

 

 


