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Abstract

A flow’s transition from laminar to turbulent leads to increased levels of skin friction. In recent
years, dielectric barrier discharge actuators have been shown to be able to delay the onset of
turbulence in boundary layers. While the laminar to turbulent transition process can be
initiated by several different instability mechanisms, so far, only stabilization of the
Tollmien—Schlichting path to transition has received significant attention, leaving the
stabilization of other transition paths using these actuators less explored. To fill that void, a

bi-global stability analysis is used here to examine the stabilization of boundary layer streaks
in a laminar boundary layer. These streaks, which are important to both transient and by-pass
instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force
to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can
be up to 25% of the perturbation’s kinetic energy. The damping mechanism appears to be due

to highly localized effects in the immediate vicinity of the body force, and when examined
using a linearized Reynolds-averaged Navier—Stokes energy balance, indicate negative
production of the perturbation’s kinetic energy. Parametric studies of the stabilization have
also been performed, varying the magnitude of the plasma actuator’s body force and the
spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the
boundary layer streaks appears to be linear with respect to the total amount of body force

applied to the flow.
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1. Introduction

The control of the laminar to turbulent transition process in
boundary layers is one that is of utmost importance in reducing
the drag experienced by air and ground vehicles. The benefits
of drag reduction are both economic and environmental, as
reduced drag leads to reduced fuel consumption, reducing
the operation cost of these vehicles and their impact on the
environment. Delaying the onset of turbulence in a boundary
layer reduces the extent of the vehicle wetted by a turbulent,
high drag flow, and increases the amount of the vehicle wetted
by a laminar, low drag flow. As such, so long as the flow
remains attached, the viscous drag can be reduced by forcing
the flow to remain laminar.

In recent years, attention to the use of dielectric barrier
discharge (DBD) actuators for transition control purposes has
increased. DBD actuators are plasma devices that can be
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used to generate a localized electro-hydrodynamic body force
(EHD), which can then be used to modify the surrounding
flow field. These devices have been reviewed with regard to
their fundamental physics [1] and their applications [2, 3]. The
benefits of these actuators include low power consumption,
surface compliance, rapid response (due to their lack of moving
parts), and high bandwidth, but these benefits come with the
challenges of limited control authority compared to other types
of flow control actuators. Grundmann and Tropea showed
that plasma actuators could be used to delay the onset of
turbulence in a laminar boundary layer [4,5]. A number of
studies followed by various researchers, and the focus for many
of these studies remained on the Tollmien—Schlichting (TS)
route to turbulence [4, 6-10].

While stabilizing the TS transition path is useful, it is not
the only transition mechanism in boundary layers known to
exist[11]. Stabilizing this one mechanism does not necessarily
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Figure 1. (a) The two-dimensional domain and boundary conditions used for the baseline flow modifications, and () a close up of the
co-flow oriented body force used within the boundary layer. Every fourth grid point is shown. From Riherd and Roy [10].

imply that all of the remaining paths to turbulence are also
stabilized. The transient growth of boundary layer streaks
and transition due to free stream turbulence (two growth
mechanisms thought to be related to each other [12—15]) are
areas where the use of plasma actuation for stabilization is still
largely unknown. Only limited research has been completed
with the goal of using DBD actuators to stabilize boundary
layer streaks, but that work has been primarily concerned
with developing a system to actively cancel the streaks using
streamwise oriented actuators [16, 17].

In terms of hydrodynamic stability, boundary layer streaks
present an array of complex behaviour. Fransson and his
co-workers demonstrated that these streaks can be used to
stabilize boundary layer flows against other instabilities when
they are introduced in a controlled manner to the flow [18, 19].
However, other researchers have shown that once these streaks
become sufficiently large in magnitude, the resulting flows are
subject to exponential [20] and algebraic [21] instabilities of
their own, leading to the onset of turbulence in the flow. The
difference in behaviours indicates the potential for boundary
layer streaks to be stabilizing or destabilizing, depending on the
circumstances of the flow. With the goal of flow stabilization in
mind, the most prudent approach to managing boundary layer
streaks may be to limit their growth such that they remain small
enough in magnitude so that they do not become unstable.

The present work focuses on the passive (open loop)
control of boundary layer streaks using plasma actuators,
but the control of the transition process has been considered
using a number of different non-plasma methods. The use
of distributed roughness elements [18, 19], boundary layer
suction [22, 23], riblets [24, 25], and other methods have been
examined. A unifying feature between all of these methods
is that they modify the base flow and its stability properties,
though in different ways. Plasma actuators have certain
advantages over these other approaches, as they are surface
compliant can be turned off (unlike roughness elements or
riblets) and do not require extensive pumping and piping
systems (unlike suction). However, the high voltages required
to power plasma actuators does present itself as a challenge,
though not as one that is insurmountable.

The present study focuses on the use of DBD plasma
actuators to reduce the magnitude of boundary layer streaks in a
passive manner as part of a broader goal of stabilizing boundary
layer flows against the wider spectrum of exponential,
algebraic, and by-pass paths to turbulence. This paper is

organized as follows. In section 2, baseflows implementing
plasma actuators are simulated. In section 3, a numerical
method is outlined by which the stability of these base flows
will be characterized. Section 4 presents relevant results
and describes how the stability of these flows is modified by
the addition of plasma actuation. Finally, a brief summary
concluding these results is presented in section 5.

2. Determination of the base flow

All types of linear stability analysis require a base flow to
examine. As a starting point to examine the effects of
plasma-based momentum addition on a zero pressure gradient
boundary layer, this flow has been simulated numerically. In
order to be consistent with previous studies, base flows from
Riherd and Roy [10] are used for this work as well. These
simulations were done using a Navier—Stokes solver, FDL3DI
[26], which solves the compressible, diagonalized form of
the Navier—Stokes equations. Incompressible flows can be
simulated by setting the Mach number to an appropriately low
value. Using a Mach number of M, = 0.1 in the simulations,
the maximum variations to the fluid density are found to be on
the order of 0.15% throughout the domain, indicating that the
flow is essentially incompressible. Temperature (and viscosity
via Sutherland’s law) variations are found to be similarly small,
hence, an incompressible assumptions should be sufficient for
the flow stability analysis.

A fine, two-dimensional mesh (801 x 151) is used
as a domain for the simulation. This domain is non-
dimensionalized by the length (L) from the leading edge of the
plate (S in figure 1(a)) to the actuator location (A in figure 1(a)).
The domain extends from one unit of length (L) upstream of
the leading edge to seven units of length (7L) downstream of
the leading edge location. This mesh resolves the near wall
boundary layer, effects near a sharp leading edge (but not the
leading edge itself), and the steady addition of momentum
through a body force term. Farther away from the actuator, the
mesh is coarsened in order to prevent unsteady effects from
reflecting off of the boundary conditions. At the location of the
plasma actuator (A, x = 1, Re, % = 100 000), 62 points
are used to resolve the boundary layer height (8999, = 0.0158).
45 points are used to resolve the body force in the streamwise
direction and 43 points are used to resolve the body force
in the wall normal direction. This mesh is adequate for
resolving the flow details near regions of high gradients, and
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Table 1. Dimensional and non-dimensional values used to compute
the base flow.

Reference Parameter ~ Value
Dimensional values

Uso 7.5ms™!

L 0.20m

Poo 1.20kgm™3

v 1.5x 10> m?s~!
Non-dimensional values

Re 100000

Pr 0.72

Ma 0.1

D, varies, see figure 2(a)

these simulations should be considered a direct numerical
simulation. A schematic of the domain is shown in figure 1. A
summary of the dimensional and non-dimensional parameters
used for this study are given in table 1.

The plasma actuation is modelled using an approximate
body force distribution based on first principles simulations of
the plasma discharge [27] (figure 1(b)) in a manner consistent
with the description in Rizzetta et al [26]. A more rigorous
multi-scale analysis may capture the physics of the plasma
better, but it is anticipated that its response to the flow will
not be greatly affected by this approximation or the very
high frequency unsteady behaviour (O(10kHz), F x 10% =
2fo x 10® = 0(10%)) normally damped out by the boundary
lao}c)er. Importantly, such an approximation alleviates the
expensive computational requirements of a coupled fluid-
plasma simulation. The magnitude of the plasma actuation,
however, is modulated through a non-dimensional parameter,
D., which relates the magnitude of the body force to the
dynamic pressure (i.e. D, = ‘[{,‘;Z).

Instead of defining the magnitude of the body force
through a characteristic force density, the magnitude of the
body force is characterized by how strong of a wall jet it can
generate under quiescent conditions, which was determined
before simulations of the plasma actuator in a boundary
layer. The same set up was used with no slip conditions
(u = v = 0) for the left, right, and bottom boundaries,
with a no shear condition on the upper boundary, leading to a
quiescent condition over a majority of the domain. The body
force distribution was operated at various values of D, with
quiescent initial conditions, representing an increase in the
operating voltage of the plasma actuator. As the body force
distribution is kept constant for all of the simulations performed
as part of this study, the value of D, is directly proportional
to the amount of total amount of body force used to inject
momentum into the flow. The effect of the actuation on the
flow is characterized by the maximum velocity induced in the
resulting wall jet (up, shown in figure 2). An interpolation was
then used to control the body force for the simulation under
non-quiescent conditions. The magnitude of the implemented
force is characterized by the non-dimensional parameter

u .
P | xy,quiescent
vw=———. (H

Uco

This parameter is selected in order to focus on the fluid
dynamic effect of the plasma actuation and its influence on the
flow stability, neglecting the electrical inputs such as voltage,
frequency and the waveform driving the device. The values of
yp are calibrated for the Reynolds number tested as part of this
study.

Putting this body force into more tangible terms, the total
streamwise oriented body force introduced by this distributed
force model is 2.53 x 107> in non-dimensional terms. Using
the dimensional parameters laid out in table 1, the total
dimensional force per unit width provided to the flow is
equal to 0.342 x D, mNm~'. For the case of ¥, = 0.25,
D. = 12.87, which results in a total force of 4.40mNm™!,
which is reasonable for generating a 1.88 ms~! wall jet when
compared to experimental results [28].

In these simulations, the body force was placed at a
position corresponding to Re, = 100000 (Res = @ =
543, where §* = f0°°(1 - ﬁ)dy) in a boundary layer flow.
This actuator location is in the transitional regime, which is
useful for understanding how the momentum addition modifies
the laminar to turbulent transition in the critical domain.

In examining the flow fields around the plasma actuator,
the addition of momentum shows a local impact on the
boundary layer. The momentum addition region can be seen
in figure 3. Boundary layer profiles extracted from these
flows upstream of the plasma actuation are slightly fuller, due
to entrainment effects of the momentum addition. Slightly
downstream of the actuator, these velocity profiles become
increasingly fuller as momentum is injected into the flow,
especially in the near wall region of the boundary layer. Even
farther downstream of the actuator, momentum added to the
flow quickly diffuses out into the boundary layer, resulting
in the velocity profiles with a more rounded shape. These
changes in the velocity profiles can also be quantified using
the shape factor of the boundary layer profiles along the length
of the plate (figure 4(d)). The ‘fullness’ of the velocity
profile is measured by its shape factor (H = %, where
0 = fooo(;’:)(l — MLW) dy), where fuller velocity profiles
have smaller values of the shape factor. The reduction in the
shape factor from the baseline value of 2.6 indicates that the
velocity profiles downstream of the plasma actuators are fuller
than those with no actuation applied. Hence, based on the
correlation between shape factor and flow stability developed
by Wazzan et al [29], the flows with actuation should be more
stable. Boundary layer heights around the plasma actuator are
also modified due to the addition of momentum into the flow. It
can be seen in figure 4(a) that increased momentum addition
results in monotonically larger changes to the displacement
boundary layer heights.

These exact baseflows have also been used in the
examination of damping TS waves using DBD actuators [10].

3. Generation of boundary layer streaks

3.1. Bi-global stability approach

A bi-global stability approach is employed for studying the
growth mechanisms of boundary layer streaks. This approach
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Figure 2. (a) Values of u,, used to calibrate D,. (b) Velocity profiles at a location downstream of the plasma actuation for various values of

D.. From Riherd and Roy [10].
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Figure 3. Velocity fields around the plasma actuator for the velocity ratios of (a) yp = 0.00, (b) yp = 0.10 and (c) y» = 0.20. Boundary
layer profiles at (d) x = 0.99, (e) x = 1.01 and (f) x = 1.10 are also shown. The dashed lines in (a)—(c) indicate locations where the
boundary layer profiles are extracted from, and are shown in (d)—(f). From Riherd and Roy [10].

takes into account the effects of a two-dimensional, non- where
parallel flow, as well as the highly localized effects in the . % %) iB 0
region where a body force is applied. The velocity field, u C_Dq4 i A
u, and pressure field, p, can be decomposed into the steady o= | > |, A= O o aax ,
equilibrium and perturbation components, where u; = u; + u; w g—}j C—-D+ 3—;’ 0 BL))
and p = p+ p’. Using this decomposition, the incompressible P 0 0 C—D iB
Navier—Stokes equations can be linearized around this steady
. 0 0 0O
point such that
. B I 0 0 O @)
i _ g 2a) 07 00
ax; 0 0 1 0
, , _ , 2, The convection and viscous diffusion operators C and D are
du; _ du; ,0u; op 1 0%u; _a() L =d0) L 020 L 90
— U — it ————— =0 (2b) defined as C = u%- +v5> and D = (57 + 57)- f
ot dx; Jdx; 0dx; Re dx? o Lo 90X L0y ey dy
J indicates a periodic forcing to the system. w represents the

Assuming that these perturbations are periodic in time, such
that u} = u; exp(i(Bz — wt)), the problem can be put into
matrix operator form such that

iwBu = Au+ f 3

system’s response to that force. Both f and w are complex
vectors with real and imaginary parts. The response of the
system can be evaluated by solving the system of equations
shown above such that

u=[iwB—A]"'f. (5)
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Figure 4. (a) §* and (b) the shape factor as a function of the velocity ratio, yy, for values ranging from 0 to 0.25, with a spacing of 0.05. The
inset figure shows a zoomed in view near the actuator location with the three characteristic zones shown. The size of the actuator is

exaggerated for better visibility. From Riherd and Roy [10].

For the present case the periodic forcing term f represents
a non-homogeneous boundary condition at the inlet of the
domain.

The benefits of this approach to the flow’s stability are
that wide parametric studies can be performed relatively easily.
The linear growth of instabilities can be evaluated over a broad
range of perturbations and frequencies. However, this comes
at a cost. This model is unable to predict non-linear effects,
such as the onset of turbulence. As such, the early stages
of transition can be accurately portrayed using this approach,
but the latter stages of transition and the potential energy
savings due to the delay of transition should be evaluated using
alternative methods, such as direct numerical simulations or
wind tunnel experiments.

3.2. Numerical discretization and boundary conditions

In order to perform these calculations, the matrix operations
described in equations (2a)—(4) are discretized on a semi-
staggered mesh. The velocity fields and their gradients
produced in section 2 were interpolated onto this mesh. The
momentum equations are solved and velocity data is stored on
a set of points coincident with the domain boundaries. The
continuity equation is solved and pressure data is stored on the
intermediate set of points. For the differencing, Chebyshev
collocation methods are used in the y-direction. In the x-
direction, fourth order accurate centred differencing is used
for a majority of the domain. The exception to this is the
streamwise convection term, ﬁ%. This term is up-winded
using a third order accurate finite difference stencil. Next to
the boundaries, lower order stencils are used.

Atthe inlet boundary, a set of perturbations are introduced,
the downstream propagation of which is determined by solving
the matrix inversion in equation (5). In order to evaluate the
effects of boundary layer streaks, eigenmodes from a local,
spatial stability analysis are introduced at the inlet. The

resulting two-dimensional flow fields are used as to form a basis
set from which the boundary layer streaks can be generated.

3.3. Boundary layer streak formation

Boundary layer streaks are non-normal, algebraically growing
disturbances, and have been identified as the most amplified
perturbation over finite lengths of time and distance. Typically,
the most amplified perturbations are generated using a
superposition of the eigenmodes of the system [30,31], the
computation of which is described in the previous subsection,
such that

Nsig
u = Z ciut) (6a)
Nelg
V=) ) (6b)
Neig
(60)

/ /
w =) cw.
i

In order to study the growth of these disturbances, a
quantifying metric must be employed. The metric

K(x)

G(x) = o

@)

is selected, as it describes the amplification of the
perturbation’s kinetic energy as it develops in the streamwise
direction, where

o0
1
IC() — / 5( /*u/+v/*v/+w/*w/) dy (8(1)
0

x=inlet

o0
1
K(x) = / 3 (u™u" + ™V + w*w') dy (8b)
0

X
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Table 2. Details of the grid resolution study performed, as well as the number of eigenmodes used as a basis set for the optimal

perturbations. The Fine-L, Fine-H, and Tall cases are identical.

Study Case N, Ny, L./& Ly/8; Ax/8§  Aywa/8;  Neig
Streamwise resolution ~ Coarse-L 513 65 1061.7 40 2.0736  0.02409 64
Medium-L 725 65 1061.7 40 1.4664  0.024 09 64
Fine-L 1025 65 1061.7 40 1.0368 0.02409 64
Wall normal resolution ~ Coarse-H 1025 33 1061.7 40 1.0368 0.09631 32
Medium-H 1025 49 1061.7 40 1.0368 0.04282 48
Fine-H 1025 65 1061.7 40 1.0368 0.02409 64
Height Short 1025 33  1061.7 20 1.0368 0.04815 32
Medium 1025 49 1061.7 30 1.0368 0.03212 48
Tall 1025 65 1061.7 40 1.0368 0.02409 64

and * represents the complex conjugate. Furthermore, the most
amplified perturbations are defined as those which maximize
the growth in kinetic energy at some point along the streamwise
direction, i.e.

K(x)
G nax (X) = max .
Ko#0 Ko

©))

Farrell [30] describes finding the most amplified modes by
forming a second eigenvalue problem,

K,'K,c=c (10)
where K and K, are mass matrices representing the modal
products of the different eigenmodes at the inlet and at
downstream locations such that

o0
1
KO,U:/O (a0 i) dy (110)
x=inlet
K= 001( ’*u’+v’*v'+w’*w’)d (11b)
o = f g W U W) y
X

The largest eigenvalue (A) of the problem described in
equation (10) represents the amplification of the kinetic
energy at a downstream point (Gpax(x), equation (9)).
The initial conditions at the inlet can be extracted by the
linear superposition of eigenvalue perturbations described
in equation (6) by the coefficents given in the associated
eigenvector, c.

3.4. Grid resolution studies

A grid resolution study has been performed in order to ensure
that the problem is adequately resolved. The details of the
domain and mesh parameters are indicated in table 2. This
study has been performed primarily on the unforced boundary
layer, but addition grid resolution studies for boundary layers
where momentum addition was applied were also performed,
indicating similar convergence.

For the grid resolution study, perturbations with spanwise
wave numbers of 8 = 0.45, 0.60 and 0.75 and a temporal
frequency of @ = 0 are examined. @ The maximum
amplification of perturbations at streamwise location of
x/8; = 600 is considered. It can be seen in figures 5(a)
and (b), that the streamwise resolutions chosen converge
very well in the absence of momentum injection in the
boundary layer. Furthermore, the wall normal grid resolution

appears to be sufficient (figure 5(c)). A study of the domain
height also shows convergence of the perturbation’s magnitude
(figure 5(d)).

A case with a body force applied to the boundary layer is
also considered. The streamwise resolution in the near actuator
region may present itself as difficult to resolve due to the steep
gradients in the streamwise direction. However, based on the
grid resolution study performed (figure 6), the Fine-L. mesh
sufficiently resolves all of the important effects in the flow.

4. Damping of boundary layer streaks

4.1. Baseline case

Beginning with the unforced boundary layer, several things
should be noted about the streaks that are generated using
this method. First, the most amplified boundary layer streaks
display similar trends in growth and structure regardless
of where the optimization is performed in the streamwise
direction, but there are quantitative variations in the growth
depending on where along the streamwise direction the
optimization takes place (figure 7(a)). The growth of
these streaks is driven by streamwise oriented vortices in
the boundary layer (figure 7(b)). These streaks start off
as having a small, if not negligible streamwise velocity
component. However, the streamwise oriented vortices
transfer low momentum fluid upwards and away from the
surface of the boundary layer on one side of the vortex, while
simultaneously transporting high momentum fluid from the
free stream downwards closer to the surface on the other. This
results in localized high and low speed streaks in the surface
(figure 7(c)). As this process occurs, the magnitude of the
streak grows as the vorticity continues to transport streamwise
momentum into and out of the boundary layer, but after a
certain length of boundary layer, viscous effects dissipate the
streamwise vorticity, which limit the maximum growth, as well
as the boundary layer streaks, which leads to their eventual
decay in the absence of non-linear effects. This process is very
well documented in the literature for both one-dimensional
[31,32] and two-dimensional flows [33,34]. The maximum
level of growth for this type of perturbation is very strongly
tied to the spanwise wavenumber of the perturbation, and wider
perturbations grow more slowly at first, but ultimately reach
larger magnitudes, but at points much farther downstream of
narrower perturbations.
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Figure 5. (a) Kinetic energy amplification for perturbations of spanwise wavenumber 8 = 0.45, 0.60, 0.75 that are most amplified at the
location x /8; = 600 as a function of the streamwise resolution, along with (b) data collected at individual points along the streamwise
direction for the 8 = 0.60 case. Convergence data for the (c) wall normal resolution and (d) domain height are also shown.
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Figure 6. (a) Kinetic energy amplification for perturbations of spanwise wavenumber g = 0.45, 0.60, 0.75 that are most amplified at the
location x /85 = 600 case where body force is injected (y, = 0.20) in the boundary layer as a function of the streamwise resolution, along
with (b) data collected at individual points along the streamwise direction for the § = 0.60.
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Figure 7. (a) Growth of kinetic energy contained in boundary layer streaks for § = 0.6 (thin lines) as a function of where the most
amplified perturbation is determined (circles). The thick line represents the envelope of maximum growth as a function of the streamwise
location for B = 0.6. (b) Spanwise slices of the flow field at the initial condition and (c) flow at x /65 = 600 are shown for the most
amplified perturbation at x /§; = 600 for 8 = 0.6. The contour lines indicate the streamwise vorticity, while the shading indicates the

streamwise velocity.
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Figure 8. Growth of kinetic energy contained in boundary layer streaks for 8 = 0.6 with and without plasma actuation. The streaks shown
are the most amplified perturbations at (a) x/8; = 200 and (b) x/§; = 600. The dashed vertical line indicates the location of the plasma
actuator, and the circle indicates where this perturbation is the most amplified perturbation, as well as G ,,x for the unforced case.

4.2. With plasma actuation

When a plasma-based body force is applied to the flow,
adding momentum into the boundary layer, it appears that the
boundary layer streaks are reduced in amplitude. Figure 8
shows that damping of the streaks downstream of the body
force can occur, regardless of where they are considered to
be the most amplified streak. Furthermore, depending on the
magnitude of the body force and where the streak amplitude is
considered, this damping appears be up to 20% of the overall
streak magnitude.

Having observed that the kinetic energy contained in these
streaks is reduced downstream of the plasma actuation, the
next item of concern is to determine why this damping occurs.
In order to identify the source of this damping, a Reynolds-
averaged Navier—Stokes (RANS) based kinetic energy balance
for these perturbations can be used.

D(TKE' aT;
D(TKE) T _ e, (12)
Dt 8)6,'
where |
TKE =3 (uu) (13a)
— 7 0il;
P=—urw, (13b)
) 0x;
2 (=
€= Te (sjsj) (13c¢)

and g—z represent accelerative transport terms due to the
perturbation’s own pressure and strain fluctuations. The
right-hand side terms in equation (12), P and €, represent
the production and dissipation of kinetic energy in the
perturbation, respectively.

Evaluating the perturbation kinetic energy, production,
and dissipation terms (figure 9), it becomes apparent that
the addition of a body force region in the boundary layer
interferes with the production of the perturbation’s kinetic
energy. Inside of the body force region, it appears that not only
is the production of kinetic energy attenuated, but if the amount
of body force is high enough, it can even become negative.

Examining the effects of viscous dissipation, it appears that
this sink for the perturbation’s energy is largely unaffected
by the addition of plasma actuation, though there are some
variations due to the decreased magnitude of the perturbation.

Decomposing the production of kinetic energy into its
individual terms, the localized effects become even more
apparent (figure 10). The effects of the v u/gz and v u/a”
on the energy production are negligible with or without the

body force added to the flow, but the changes to the u/u’ 3%

ax
and u v’d; terms and the changes to them are significant. It

appears that the majority of the negative production in the body
force region is due to the u'u’ 5} "” term. This term, which is the
less dominant production term 1n the unforced boundary layer,
is reliant on the streamwise development of the flow. As the
addition of a very localized body force generates significant
high gradients in the streamwise direction, it logically follows
that this production term would be affected. As the flow is
accelerated by the co-flow actuation, the velocity gradient
9 jincreases in magnitude, leading to a reduction in the

ax

perturbation’s kinetic energy production by the u'u’ 5 "“

term.
The other term of significance is the u/v’ g’g term, Wthh is
responsible for a majority of the energy production. This
term also shows a very localized attenuation in production,
as well as a slight decreased in production downstream of the
actuator. However, this effect does not seem to be as dominant
to reducing the streak magnitude as the u'u’ ”” term.

The change in perturbation kinetic energy production has
also been noted in the stabilization of the TS wave [10].
However in that scenario, the stabilization is primarily due
to modification of the u’v’ ?—’7 term, though local stabilization

due to the u u’a” term also plays a small part. For the TS
wave, the streamwrse and wall normal velocity components
are of comparable magnitude. However, for boundary layer
streaks, the streamwise velocity component is far greater in
magnitude, and a large difference in magnitude of the u'u’ and
u'v’ terms reﬂects this. As such, for boundary layer streaks,
changes to - will have a greater impact on the production term
than Therefore the localized acceleration of the flow by
the co ﬁow oriented body force is stabilizing, but only in the
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Figure 10. Comparison of the two dominant perturbation kinetic energy production terms (a), (b) without and (c), (d) with plasma actuation

(o = 0.20).

region immediately around the plasma actuator. Downstream
of the actuator, these effects reverse as the flow relaxes back
to a zero pressure gradient boundary layer, and the normalized
production due to the Wg—ﬁ term will be increased relative to
the baseline flow. This offsets most of the stabilization due
to the fuller downstream boundary layer profile. Even so, the
localized stabilization effects are sufficient enough to ensure

a reduced magnitude of the streak in the downstream region.

The extend of these stabilizing effects can be seen more clearly
in figure 11.

4.3. Scaling of the damping

The observation that the addition of a plasma-based body force
can reduce the amplitude of boundary layer streaks is interest-
ing and suggests that there is potential in this application, but it
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Figure 11. (a) Total production of kinetic energy in the boundary layer (P (x) = fvoio P(x, y)dy) for varying levels of plasma actuation.
This data is also presented once normalized by the total kinetic energy contained in the perturbation (K(x)).

would be very beneficial to characterize the behaviour of these
devices over a broad range of parameters, as well as to reduce
the scaling effects down to a single value for comparison.

Parametric studies have been performed determining the
value of G as a function of the spanwise wavenumber,
as well as the velocity ratio along the streamwise direction
(figure 12). This approach, while it does not focus on the
growth and decay of individual streaks, does provide informa-
tion about what the maximum possible growth will be. As
such, this approach describes the growth of the most amplified
perturbation with or without the effects of the plasma actuator.

In figure 12(a), the values of G are shown across a
spectrum of spanwise wavenumbers for the unforced boundary
layer, indicating that wider perturbations (lower ) grow more
slowly initially, but eventually grow to larger magnitudes. With
the addition of plasma control (yp = 0.20, figure 12(b)), this
trend continues to hold, but there is a noticeable dip in the
perturbation’s energy located around the plasma actuator for
all of the wavenumbers examined. Further examining this data,
the maximum of G, for all of the wavenumbers examined
is shown in figure 12(c). It can be seen in that figure that the
addition of the body force damps the the entire envelope of
most amplified potential perturbations.

In order to quantify the damping of these perturbations,

the metric
Gmax (x, B, ¥0)
Gmax (x, /37 Yo = 0)
is used, which compares the ratio of the maximum disturbance
amplification with and without plasma actuation. Evaluating
this metric at a point downstream of the plasma actuator
(x/8; = 300), it can be seen that there is damping of the
perturbations, and that this damping can be significant, up to
25% of the overall magnitude of the perturbation, depending on
the magnitude of the plasma actuation is examined. While the
amplification of these perturbations is obviously wavenumber
dependent (figure 13(a)), the damping effects are not as
sensitive to the spanwise wavenumber (figure 13(b)). It would
appear that while there is a slight spanwise wavenumber
dependence, the damping is much more strongly dependent
on the magnitude of the plasma actuation.
Comparing the damping of the streaks across a the velocity
ratio and total amount of body force added to the flow

Hpax = (14)

(which is proportional to the parameter D.), several trends
become apparent. The magnitude of the damping increases
monotonically with respect to both parameters. While the
damping is very low (=5%) for the weaker levels of plasma
actuation (yp < 0.1), once the plasma actuation reaches a
high enough level, a linear trend in the damping appears with
respect to the total amount of body force added to the flow. As
such, it follows that the damping follows a power law trend
for the velocity ratio as u, is proportional to D.. However,
when compared to the power added to the flow by the plasma
body force (figure 14(c)), the monotonicity of the response
continues, but there is a decreasing margin of gain as additional
power is added. However, this is complicated by the fact
that the power supplied to the plasma actuator does not all
go to the body force and that plasma actuators become more
efficient as they are operated at higher voltages (i.e. greater
body forces) [35].

5. Conclusions

Using a bi-global stability analysis, it has been shown that
DBD plasma actuators may be used to stabilize boundary
layer streaks, filling a gap in the understanding of how these
actuators can be used to delay the onset of turbulent flow
in boundary layers with respect to algebraic and by-pass
transition scenarios. The physical mechanisms responsible for
flow stabilization have been examined using a RANS approach
to the perturbation growth. Parametric studies examining these
streaks over a range of wavenumbers and levels of plasma
actuation have also been performed. The damping of these
streaks is predicted to be on the order of 5-25% of the total
streak magnitude, and occurs over the entire range of spanwise
wavenumbers examined.

The stabilization of these streaks can be attributed to
highly localized effects around the plasma induced body force.
The addition of the body force locally deforms the flow field.
In turn, the localized variations in the flow field attenuate the
linearized production of the streak’s kinetic energy, and for
sufficiently high levels of actuation, these flow field variations
can induce negative kinetic energy production.

Based on the parametric studies performed, the overall
effect of stabilization scales linearly with the magnitude of the
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Figure 14. H,, in terms of the (a) wall jet velocity ratio, (b) body force magnitude applied to the flow, and (¢) power applied to the base
flow over the domain in figure 1 (Power = f D.(fyu+ fyv)dx dy). Hna is shown for spanwise wavenumbers, 8, between 0.3 and 0.9.

body force applied to the flow by the plasma actuators. There
is some wavenumber dependence to the stabilization, but the
attenuation of the streaky structures in the flow is more strongly
tied to the magnitude of the plasma actuation.

Furthermore, this analysis (along with prior studies on
stabilizing the TS wave) indicates that DBD actuators used
in a continuous manner are able to suppress a broader range
of perturbations that occur over multiple paths to transition

than have been previously examined. While the damping of
boundary layer streaks is not as dramatic as the damping of TS
waves, the present analysis indicates that the stabilization of
boundary layer streaks by DBD actuators can be significant,
and indicates that these actuators are not limited to a stabilizing
a single path to transition.

As this type of actuators continues to mature, future
studies should focus examining how well these actuators scale
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up at higher Reynolds numbers and under more realistic
disturbance environments, particularly conditions that will
be experienced during operation of air and ground vehicles.
Should the effectiveness of these actuators still hold under more
rigorous conditions, it would indicate that these devices have
potential to reduce turbulent skin friction drag for more and
more applications.

The present study has taken a linear approach to examine a
broad parameter set, at the expense of non-linear effects, such
as the onset of turbulence in the flow. However, the effect of
transition delay in terms of the power savings and the power
required to operate the plasma actuator should be evaluated
as part of future efforts, and comparisons should be made
with other methods of active and passive flow stabilization (i.e.
boundary layer suction, riblets, etc). Direct measurements of
the power usage and savings will either show that this approach
is too inefficient to be of use or bolster the case for plasma
actuators as a tool to stabilize boundary layers.
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