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Abstract The effects of plasma actuation in a flat plate boundary layer with zero pressure gradient have been
simulated. Based on these simulations, non-dimensional parameters and a combined wall jet/boundary layer
model of the velocity profile have been developed. A parametric study using local linear stability analysis has
been performed to examine the hydrodynamic stability of the velocity profiles created through this model.
Convective and absolute instability mechanisms are found to be important, some of which have not been
previously documented. Neutral stability curves have been computed for the different instabilities, and when
put in terms of the shape factor, they still compare favorably with reported canonical results, indicating that
the critical Reynolds number is primarily a function of the shape factor. These results are also discussed in
relation to existing experimental results as well as with respect to their implementation.
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1 Introduction

The process of a flow’s transition to turbulence has long been a topic of study in fluid mechanics. Specifically,
flows over flat plates with or without a pressure gradient are particularly important, as they share many
characteristics with more complex flows. These flows can be described by the Falkner—Skan similarity solution,
where the Blasius boundary layer is the special case of a zero pressure gradient (ZPG). Boundary layer flows
such as these are prevalent on many types of air, ground, and marine vehicles, such as the flow over and around
airfoils for fixed and rotating wing aircraft, the flat surfaces of automobiles and cargo trucks, and the sides and
bottoms of ships. Reduction in the overall levels of drag on these different types of vehicles can lead to energy
savings, allowing for more efficient and less costly operation, along with the associated benefits of reduced
fuel consumption.

Stabilization or destabilization of a boundary layer flow can have a significant impact on the level of drag
experienced by the body. Stabilizing the boundary layer decelerates the laminar to turbulent transition process.
When attempting to reduce the level of friction drag experienced by a body, this is a beneficial course of action,
as the drag associated with a laminar boundary layer is less than the drag associated with a turbulent boundary
layer. However, when aiming to reduce the drag created by flow separation downstream, it is sometimes
beneficial to accelerate the laminar to turbulent transition, as a turbulent boundary layer is more likely to
remain attached than a laminar boundary layer. Additional flow control applications may exist with regard to
heat transfer, chemical mixing, noise control, etc. where it may be prudent to stabilize or to destabilize the
boundary layer, based on the problems specifications.
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This study examines the effect of flow-wise (co-flow)- and flow-opposing (counter flow)-operated dielectric
barrier discharge (DBD) actuators on the stability of the ZPG boundary layer flow. A DBD actuator consists of
two electrodes asymmetrically separated from each other by a dielectric material. A high frequency (&' (kHz)),
high potential (0'(kV pp,)) signal is applied to one electrode, while grounding the other. This potential difference
generates a significant electric field and a weakly ionized plasma. Together, this electric field and the charged
particles generate an electro-hydrodynamic body force, which can be used to add or remove momentum
from the nearby fluid [1-3]. The addition (or subtraction) of momentum into (or from) the boundary layer
suggests that DBD actuators operated in a continuous manner could be very useful for flow stabilization (or
destabilization). Furthermore, these devices can be operated in a steady or duty-cycled manner, allowing them
to be implemented as components of active and passive flow control systems. The primary restriction to the use
of these actuator is their limited control authority. Under quiescent conditions, they are only able to generate
wall jet flows up to 8—10 m/s.

There has been some previous work to use this type of actuator for boundary layer stabilization. Grundmann
and Tropea [4-6] used these devices as a method of transition delay in an adverse pressure gradient boundary
layer as part of a closed loop control system to cancel oncoming Tollmien—Schlichting (TS) waves. It was found
that pulsed DBD actuators could be used to accurately inject momentum into the boundary layer, canceling the
TS waves. Those researchers [5,6] also used the actuators in a flow-wise (co-flow) orientation with continuous
actuation, constantly adding momentum into the boundary layer. Operating the actuators in this manner, they
were able to delay the transition by 200 mm for a 10 m/s flow. Gibson et al. [7] used DBD devices in a steady
manner in conjunction with boundary layer suction to reduce the displacement and momentum deficit boundary
layer heights and stabilize the flow. Duchmann et al. [§] made PIV measurements of the TS wave in the region
around the plasma actuator and showed a significant reduction in the wave amplitude and changes to the wave
speed relative to the flow without plasma actuation.

Aside from experimentation, some theoretical work has also been performed describing how momentum
addition, using electrical devices, modifies the boundary layer and its stability properties. Albrecht et al.
[10] used LST and direct numerical simulation on a Lorentz force-induced actuation in a boundary layer
flow, which showed that with a well-distributed body force mimicking wall suction, the transition can be
significantly delayed. However, due to the more localized nature of the DBD actuator as compared to the
Lorentz force actuator, the predicted global increase in stability may or may not be physically realizable.
Limited spatial LST was performed and verified numerically and experimentally by Duchmann et al. [11]
for a single condition where the flow-wise-oriented actuator was placed within the transitional Reynolds
number regime, Rey =~ 270,000 (Res+ ~ 800). While two operation modes for the plasma actuator were
performed, an unsteady active wave canceling mode and a steady boundary layer modification mode, only
the steady mode of operation was examined using LST in order to better explain the existing experimental
results. That study also shows that there are distinct changes in the flow stability near the plasma device,
but forgoes in-depth discussion of the effects. More complete stability analysis has recently been performed
by Duchmann et al. [12] and Riherd and Roy [13]. Using local stability analysis and focusing on boundary
layer profiles pulled from experiments [12] and CFD simulations [13], flow stabilization downstream of the
plasma actuator is predicted to occur. Furthermore, though the assumptions required for a local stability
analysis are ignored in the analysis, preliminary stability analysis suggests that multiple actuators grouped
together as part of an array may be useful for much more significant delay of transition than single actuator
[12].

With regard to specific applications beyond a flat plate, Séraudie et al. [14] have examined the effects of
using DBD plasma actuators for the flow over an ONERA-D airfoil at an angle of attack (which generated an
adverse pressure gradient over a majority of the chord). Their study employed low velocity wind tunnel testing
and LST to predict the transition points of the flow, using a model similar to what has been developed in this
study. Very recently, flight tests using continuous plasma actuation have been performed [9]. These flight tests
demonstrated a transition delay of 3 % of the chord length for a small aircraft (a G109b motorized glider) for
a high Reynolds number flow (Re, ~ 1.15 x 10°).

The goal of this paper is to study how momentum injection and wall-jet-like effects stabilize or destabilize
a boundary layer. While previous studies have considered the global effects of the plasma actuation, this study
primarily aims to examine the local effects of momentum injection into the boundary layer over a wide range
of parameters. This study also aims to frame the stability properties of the boundary layer in a manner based
on the physical characteristics of the velocity profiles.

In Sect. 2, direct numerical simulations are performed of a laminar boundary layer with plasma actuation.
A model of the baseline flow of a plasma-induced wall jet within a boundary layer is developed, based on the
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results of these direct numerical simulations. The characteristics of the model are described, and the existence
of instability modes in addition to the TS wave is hypothesized.

Boundary layer profiles generated by this model are then examined parametrically in Sect. 3 to determine
how the local stability of the boundary layer is changed with the magnitude and orientation of plasma actuation.
The necessary assumptions are quantified. Stability properties of boundary layer profiles from the simulations
and the model are compared. Co-flow and counter flow actuations are both examined. The latter has not yet
seen significant attention in terms of stability analysis in the existing literature. Evidence for the additional
instability modes is found based on local stability analysis. Neutral stability curves are computed for all three
types of instabilities with respect to the strength of the plasma actuation and the critical Reynolds number.
Depending on how the effects of actuation are applied, the critical Reynolds number of the boundary layer
is found to vary from an order of magnitude lower to an order of magnitude higher than that of the Blasius
boundary layer. For a range of boundary layer profiles where the momentum addition or subtraction does not
overpower the boundary layer profile, these results compare favorably with the universal correlation of Wazzan
etal. [15].

In Sect. 4, the present results are discussed in relation to previous experimental results, as well as with regard
to applications. Discrepancies between experiments and the stability analysis are discussed and reconciled.
The effects of the unsteady body force with respect to flow stability is also discussed, predicting rough bounds
on when the actuator may generate unstable perturbations in addition to modifying the flow stability properties
of the boundary layer.

2 Development of a baseline flow model

All types of linear stability analysis require a base flow to examine. While specific flows can be very useful,
especially when comparing numerical and experimental results, when attempting to examine flow physics over
a wider parameter space, it is often useful to generate a simplified model of the flow, which does not have to
be simulated or experimentally created every time a parameter is changed. Even so, simplified models must
be based on realistic flows.

As a starting point to examine the effects of DBD actuation on a ZPG boundary layer, this flow is simu-
lated numerically. This was done using a compressible Navier—Stokes solver, FDL3DI [16]. For the present
simulations, the flow features are all fully resolved and the simulations can be considered a direct numerical
simulation.
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Fig. 1 a The two-dimensional domain and boundary conditions used for the baseline flow modifications, and b a close-up of the
co-flow-oriented body force used within the boundary layer. Every other grid point is shown
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In this system of equations, p represents the fluid density, # and v are the flow velocities, p is pressure, and E
is the specific energy. All of these variables are non-dimensionalized by their reference values. Pressure is the
exception to this, as it is non-dimensionalized by the dynamic head (poougo). 7;j represents the stress tensor
and Q; is the heat flux vector. fy and f, describe the normalized, spatially varying body force. The magnitude
of this body force is modulated by the value of D..§ and n represent the body-fitted coordinate system, #
is the grid jacobian, U and V are the body-fitted velocities. The ideal gas law is also used in order to close
the system of equations. While this is the compressible form of the Navier—Stokes equations, incompressible
flow can be solved by setting the Mach number to an appropriately low value. It has been determined that a
value of Mo, = 0.1 provides a reasonable balance of incompressibility and numerical stability. At this Mach
number, variations to the fluid density are less than 1% throughout the domain. Temperature (and viscosity
via Sutherland’s law) variations are similarly small. As such, an incompressible approach to the flow stability
should be sufficient.

The pressure and velocity variables that have no additional markings should be taken as instantaneous
values. Those with an over bar, (), should be understood to be steady values, and those with a tilde or prime
marker, (*) or ('), should be interpreted as referring to an eigenmode. Furthermore, while these numerical
simulations of the flow performed using FDL3DI are instantaneous in nature, due to a lack of external pertur-
bations, the flow fields generated do converge to a steady-state flow after running for a sufficient amount of
time.

A fine, two-dimensional mesh (801 x 151) is used as a domain for the simulation. This domain is non-
dimensionalized by the length from the leading edge of the plate to the actuator location. The domain extends
upwind one unit of length from the leading edge of the plate and downwind 7 units of length. This mesh
resolves the near-wall boundary layer, the effects near a sharp leading edge (but not the leading edge itself),
and the steady addition of momentum through a body force term. Sufficiently far upstream of the leading edge,
downstream of the actuator location, and as the mesh approaches the free stream, the mesh is coarsened in
order to prevent unsteady effects from reflecting off of the boundary conditions. At the location of the plasma
actuator (x = 1, Re,, = 100,000), 62 points are used to resolve the boundary layer height (899 ¢,). This mesh is
quite adequate for resolving the flow details near regions of high gradients, particularly for the thin boundary
layer near the plate leading edge. A schematic of the domain is shown in Fig. 1. Parameters of the simulations
are given in Table 1.

Presently, the effects of plasma actuation are modeled using a phenomenological model of the plasma body
force [17] (Fig. 1b). Though improved body force models exist, based on first principles [18,19], experimental
results [20,21] or reduced order models [22,23], the focus of this study is on the fluidic effects that the actuator
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Table 1 Dimensional and non-dimensional values used to compute the base flow

Reference parameter Value
Dimensional values
Uso 7.5 m/s
L 0.20 m
Poo 1.20 kg/m?
v 1.5 x 1073 m?/s
Non-dimensional values
Re 100,000
Pr 0.72
Ma 0.1
D¢ Varies, see Fig. 2a
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Fig. 2 a The velocity profile of the wall jet under quiescent conditions at x = 1.01 and b values of u, generated by an actuator
with a body force magnitude of D¢

creates, not plasma kinetics. As such, the primary purpose of the body force is to inject momentum into the
flow over a specified area, which these different models do sufficiently well, though localized differences in
the resulting velocities fields do exist. A comparison of several different models has been performed by Maden
et al. [23], in which most of the models are found to generate a comparable wall jet profile at the end of the
body force region (Fig. 5 in that paper). As the phenomenological model is the simplest of these to implement,
it was selected for use in this study. However, to minimize against any errors due to the selection of this body
force model, no data from inside of this region is used as part of any stability calculations.

The magnitude of the body force required to produce a wall jet under quiescent conditions of a specified
velocity is determined a priori to the boundary layer simulations. The same code and mesh are used with
no-slip conditions along the length of the lower and left side boundaries, and no-shear conditions over the
other boundaries, leading to a quiescent condition over a majority of the domain, except for a wall jet in the
vicinity of the plasma actuator (Fig. 2a).

The effect of the actuation on the flow is then characterized by the maximum velocity seen in the wall
jet (i) at the downstream edge of the body force (x = 1.01, shown in Fig. 2b). These simulations are then
used to calibrate the value of D, in Eq. 1 to use in the direct numerical simulations to generate a wall jet in
the boundary layer of sufficient magnitude. The magnitude of the implemented force is characterized by the
non-dimensional parameter

u .
Yo = p xo_,qulescent (6)
Uso
This parameter is selected in order to focus solely on the fluid dynamic effects of the plasma actuation and its
influence on the flow stability, ignoring the electrical inputs such as voltage, frequency, and waveform into the
device itself.
While these simulated flows allow for analysis under these specific flow scenarios, knowledge of the
stability of a boundary layer modified by an arbitrary level of plasma actuation is also desirable. In order to
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Fig. 3 Boundary layer velocity profiles as a function of y at a, d locations upstream (x = 0.99), b, e directly downstream
(x = 1.01) and ¢, f downstream (x = 1.1) of the actuator (located at x = 1). a—¢ show u and d—f show v. The rapid development
of suction and wall jet effects and the gradual diffusion of momentum in the boundary layer can be seen to increase in magnitude
as the value of y is increased

examine the effects of a more general modified boundary layer, a reduced order model must be developed. It
is known that under quiescent conditions, plasma actuation is able to create wall jets, which match the Glauert
wall jet similarity solution sufficiently far downstream [24]. The current simulations (Fig. 3) as well as past
results [2,3] suggest that the momentum addition into the boundary layer can form wall-jet-like effects if the
levels of actuation are high enough. Even for lower levels of actuation, the momentum addition is still seen.
This suggests that a superposition of a boundary layer and wall jet velocity profile should suffice to approximate
the effects of plasma actuation on a ZPG boundary layer. That is,

Ucomb, = UBL + Uwy (7

In order to manipulate this model, base flow solutions for the boundary layer and wall jet profiles are necessary,
as well as two non-dimensional parameters in order to scale the size and velocity magnitude of the momentum
injection relative to the boundary layer. The Blasius boundary layer [25] and Glauert wall jet [26] similarity
solutions are logical choices for the ZPG boundary layer, though there is no suggestion that the superposition
of these solutions will result in an actual solution to the Navier—Stokes equations, only an approximation.

Concerning the non-dimensional parameters, while the global value of yy can be used to characterize an
entire two-dimensional flow field, but when examining individual boundary layer profiles it is more useful to
define a localized velocity ratio parameter,

Up (x)

Uoo

®)

which is more closely tied to the momentum addition that exists in the boundary layer profile downstream of
the plasma actuator. This locally varying value of y is a function of the global magnitude of the momentum
injection (as characterized through y9) as well as the convective and diffusive transport of the momentum in
the boundary layer, which will vary as one moves away from the actuator location. The momentum injected
by the wall jet

5% =/—L_'W_’ 9 gy ©)
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0

and momentum deficit of the boundary layer (i.e., the displacement boundary layer height) can be formulated
as length scales
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Fig. 4 Components of the flow model

to form a relative length scale such that
*
O

n= (In
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which is a local parameter, due to the development of the boundary layer and wall jet components in the flow.
These non-dimensional parameters can then be applied to the initial model from Eq. 7 such that

1 (¥) = UBlasius (¥) + ¥ UGlavert (%) (12)

The product of the two non-dimensional parameters developed here can be used to generate a third physi-
cally important parameter, i, where

nw=ny (13)

this parameter is the ratio of the momentum injected into the boundary layer by the plasma body force as
compared to the momentum deficit in the boundary layer. While the total amount of momentum replaced is
definitely important, it also matter exactly how this momentum is added into the boundary layer. Momentum
addition outside of the boundary layer will not likely be helpful, nor will momentum addition that occurs at too
localized of a location near the surface. Therefore, it is not only the velocity ratio or total momentum addition
that will affect the boundary layer stability, but both of these parameters, improper application of which could
be counter productive (Fig. 4).

Applying this model, a wide range of potential boundary layer profiles can be created. These boundary
layer profiles are approximately matched to specific parameters from the simulations performed. The results
of this show that there is a reasonably good agreement between the velocity profiles created by the model and
those from the CFD simulations (Fig. 5a, b). Agreement is best near the wall, near the region of maximum
velocity, and into the far field. However in the intermediate region where the wall jet dissipates momentum
into the boundary layer, there is a noticeable discrepancy. As this discrepancy appears to be diffusive in nature,
it is likely to vary depending on the local Reynolds number of the boundary layer velocity profile, which is
not something that the current model takes into effect. There also appears to be a discrepancy in the inflection
points between the model and the extracted boundary layer profiles, as shown using the second derivative of the
velocity profile in Fig. Sc. The inflection points in the model velocity profiles do not occur in the same location
in the boundary layer as those in the simulated velocity profiles, though they are still within 0.258, . This
discrepancy in the location of boundary layer inflection points has implications with respect to the existence
and importance of inviscid instabilities to the boundary layer. This discrepancy seems to be smaller farther
downstream of the actuator location, as the local value of the boundary layer ratio, 1, has increased and the
velocity ratio, y, has decreased. As one moves farther and farther downstream of the actuator, the trends of n
increasing and y decreasing continue, due to the dissipation of momentum away from the wall.



72 M. Riherd et al.

3 3 3
[- - & = = 7,=0.00 - CFD r L
(—-—-4-—= ;=025 - CFD - - ]
25—~ - %=050-CFD 25 ! 251
[——o-— 7,=0.75 - CFD i f i i
......... o y=1.00 - CFD 4 I A I
ER r r
. B [ i X i
LR 15 15 50 15
= | . i . s i
:Increasmg To g6 : Increasing v, s :
1r 7 1 i 1
051 ) 05 05K \_ 1] Increasing v,
0¥ e oM 0 -
0 : 1 0 025 05 075 1 2 0 2
(a) u (b) u (c) dzﬁ/dyz

Fig. 5 Comparisons between the simulated and combined wall jet/boundary layer model of the velocity profiles are shown for the
downstream profiles at a x = 0.01 and b x = 1.1 presented in Fig. 3. The values of yy listed indicate which CFD simulation the
velocities fields are being extracted from and matched to. The values of y and n vary in order to fit to the model. ¢ A comparison
of the second derivative of u at x = 1.1 for the boundary layer profiles extracted from the CFD and generated by the model
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Fig. 6 Some of the boundary layer profiles used in the calculations n = 1.0 and varying values of y

Agreement between the boundary layer profiles is better farther downstream of the actuators (at x = 1.1,
as compared to x = 1.01, Fig. 5a, b), where the boundary layer profiles do not exhibit a large overshoot due
to momentum addition. The local parameters for the model are y < 0.91 and 0.28 < n < 0.35at x = 1.01
(Fig. 5a) and y < 0.35and 0.9 < n < 1.1 at x = 1.1 (Fig. 5b). The co-flow boundary layer profiles seen
farther downstream of the plasma actuator are much more similar to those in the common literature than those
seen very close to the plasma actuator, as such, calculations using the low-order model of the boundary layer
profile will use comparable values of y and 7.

It should be noted that there are now two displacement boundary layer heights relevant to the boundary
layer stability, both of which are important for different reasons. From a flow control perspective, the scaling
based on the boundary layer component (8, , i.e., the Blasius boundary layer) of the combined velocity profile
is most relevant. Holding this boundary layer height constant, momentum can be added or subtracted from
the flow and the changes in the boundary layer’s stability properties can be examined. When it comes to
understanding the relevant physics, the displacement boundary layer height based on the combined boundary
layer velocity profile (§*) is more relevant, as it is this boundary layer height defined by the velocity profile
(Fig. 6).
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2.1 Additional instability modes

In addition to the viscid, convective instability associated with boundary layers (the TS mode), additional
instabilities may also be present.

Previous studies of the effect of DBD actuation on boundary layer stability have focused on the co-
flow orientation of the plasma actuation for flow stabilization. However, there do exist instances where flow
destabilization is a preferable goal of flow control. In these instances, operating the plasma actuator in a counter
flow manner may be of use. Just as co-flow actuation injects momentum into the boundary layer and stabilizes
it, counter flow actuation removes momentum from the boundary layer and should destabilize the boundary
layer. In addition to removing momentum, for high enough levels of counter flow actuation (that is large,
negative values of y), flow separation and reversal may occur. This flow reversal, while not a requirement of an
absolute instability, suggests that one may be present, adding another instability mode to the existing convective
instability associated with ZPG boundary layers. Flow regimes (w.r.t. ¥ and ) at which flow reversal may
occur are shown in Fig. 7, which are evaluated using the present model of the plasma modified boundary layer
profile.

Examining the different boundary layer velocity profiles generated by the simulation and the model, it can
be seen that inflection points may occur in the velocity profile (Fig. 5¢). While an inflection point does not
necessarily indicate that an inviscid instability is present, it raises suspicions that one may exist. Fjgrtoft’s
criterion is a stricter condition for the presence of an inviscid instability and is defined as

Pu
a—yz(us—u) <0 (14)

where i is the steady-state wall tangential velocity, and iy is the velocity at whatever inflection points may
exist. Applying this criterion to the many boundary layer profiles computed for determining whether flow
reversal had occurred, it can be seen that there is only a small region in the (y, ) plane where Fjgrtoft’s
criterion is not met (Fig. 8). This result suggests that the region for stabilizing flow control is limited and that
only slight levels of co-flow actuation can be used for this purpose. If too large of a co-flow actuation is applied,
then inviscid instabilities will become a significant problem.
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3 Flow stability

The present analysis employs a local stability method, which requires the assumptions of a slowly developing,
parallel flow. In order to quantify how appropriate these assumptions are, three parameters have been devel-
oped, E|, E4, and E,. Using the already non-dimensionalized velocities and length scale (in this case, the
displacement boundary layer height), the validity of the parallel flow assumption can be

v
:D (15)
u

which is the maximum angle of the flow a given point along the length of the boundary layer. The validity of
the slowly developing flow assumption can be quantified using

E; = max (tan_1
y€(0,00)

au

E; = —
d 0x

(16)
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y€(0,00)
which measures how rapidly the flow is developing. Another source of error, which does not see significant

exposure when considering flat plate boundary layers, is that of the streamline curvature. This assumption can
be quantified using derivative in the flow angle

dtan~! (
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All of these metrics are local parameters and can be applied at specific points along the length of the boundary
layer (here indicated by Re,). Furthermore, these values have all been dimensionalized with respect to the
boundary layer height, not distance between the leading edge and the actuator location. As such, this should
provide a better representation of these values with respect to the boundary layer.

Computing these metrics, it can be seen that the approximations necessary for the one-dimensional eigen-
value method are only invalid within several boundary layer lengths upstream and downstream of the plasma
actuation (Fig. 9). This is good news, as it allows for the stability analysis to be applied over a majority of
the flow field. This quantification of the assumptions shows that in the region of momentum injection, where
the largest values of y are expected to be found, the present model of hydrodynamic stability is weakened. In
order to perform analysis in this region immediately around the plasma actuator, more sophisticated stability
tools would need to be employed.

For smaller values of y, the results of this model are expected to be quantitatively accurate. For the larger
values of y examined, the results are to be interpreted with care. Though the assumptions for the model are
weakened, the results produced by the model are sensible within the hypotheses presented in Sect. 2.

3.1 Numerical model of the eigenvalue method

Linear stability theory can be used to predict the existence and growth rates of instabilities that may manifest
in the boundary layer. Temporal instabilities are examined here for the reasons of computational simplicity
and so that simplified one-dimensional model of the plasma influenced boundary layer can be employed,
though a spatial analysis would be equally valid for these one-dimensional velocity profiles. The simulations
performed in Sect. 2 suggest that while it does exhibit some rapid spatial changes near the actuator, this
flow can be considered a slowly developing, nearly parallel flow over the remainder of the domain. As such,
one-dimensional linear stability theory can be applied. Starting with the linearized Navier—Stokes equations,

uip=u; +ij,p=p+p (18a)
oll;
M _p (18b)
8)6,'
30 - TET; 1 9%
G R R A UL NY (18¢)
ot T ox; Tox; o 0x; Regg 8xj2.

The non-dimensionalization here is based on the displacement boundary layer height of the non-actuated case
(85;) at a given location in x rather than location of the actuator as it was done in the previous section.
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The problem can be further simplified if several assumptions are made. Assume that all of the disturbance
quantities are wavelike in nature and can be split into the product of a disturbance profile which varies in y
and a traveling wave in x and z, such that

¢ =¢'(y)exp (i (ax + Bz — wt)) (19)

where «, 8, and w are the angular wave numbers in x, z, and time, respectively, and that if: «/—71. Also
assume that a slowly developing flow can be approximated as a 1D mean flow (v = w = % = BaLz) = 0).

Thus, the problem can be formulated as a generalized eigenvalue problem:
N L
iou + ™ +ipw =0 (20a)
y

dit 1 3%u’
ioiiu’ + v’% +iap — Ze (—ozzu/ + B_yuz - ﬁzu’) =iou (20b)
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Table 2 Convergence of the critical eigenvalue for two sample cases. For both cases, Res Blasius = 1,000, = 0.3

ny Blasius, wrs Model (n =1, y = 0.25) , wrast

51 0.11238325236 — 0.00090042619i 0.23306979831 + 0.00220664208i
71 0.11017358051 + 0.00059957882i 0.23281253531 4+ 0.00242939870i
101 0.10924347588 4 0.00163256137i 0.23273816623 + 0.00249039239i
142 0.10898287015 + 0.00213952218i 0.23272109814 4 0.00250492030i
201 0.10892701325 + 0.00235576622i 0.23271726363 + 0.00250853091i
283 0.10892058760 + 0.00243347102i 0.23271652043 + 0.00250929338i
401 0.10892145449 + 0.00246038133i 0.23271638394 4 0.00250945035i
566 0.10892233968 + 0.00246910010i 0.23271636662 + 0.00250947873i
801 0.10892273162 + 0.00247197532i 0.23271636809 + 0.00250948486i

9 / 1 82 /
ity + % oy (—azv’ + a_yl; - ,321/) =i (20¢)
1 32w’
iauw’ +iBp’ — Re (—osz/ + % - ,Bzw’) =iow (20d)

where w are the eigenvalues and u’, v/, w’, and p’ are the eigenmodes of this system. All of these variables
should be thought of as having complex values. The stability of this system and individual modes in the
system are characterized by the imaginary part of @, where w = wg + iw;. Should w; < O for any particular
eigenmode, then that mode is stable. Should w; > 0 for any mode, then that mode and the entire eigensystem
can be considered unstable.

This set of equations (Egs. 20a—20d) is then discretized onto a uniform staggered mesh. A fourth-order
accurate, centered finite difference stencil is used for the differencing over a majority of the domain. A second-
order accurate, centered finite difference scheme is used at the boundaries. Boundary layer profiles from the
model developed in Sect. 2 are interpolated onto the uniform mesh, which extends 4899, (*11.635; ) away
from the wall.

3.1.1 Grid convergence

The appropriateness of the present local stability model is dependent on the satisfaction of the assumptions
outlined in the previous section. When this model is appropriate, it must still be properly implemented. In
order to check for the accuracy and convergence of the solution, a grid resolution study has been performed.
Two separate cases, one examining the TS mode, the other examining a “fast” mode, which will be expanded
upon in Sect. 3.3, have been examined. The convergence of the most unstable eigenvalue can be found in
Table 2 and Fig. 10. The order of accuracy of the stencils employed for the calculations were second- and
fourth-order accurate, respectively. The convergence of the unstable eigenmodes reflects this, as it converges
at a rate between ny_2 and ny_4.

Based on this convergence data, the grid resolution of n, = 201, Ay = 0.05814
sufficient resolution for the present method.

*

Blasius aPpears to be

3.1.2 Comparison between computed boundary layer profiles and the model

Before performing a large number of calculations, it would be beneficial to compare the stability properties
of the computed boundary layer profiles with those generated by the model. This comparison would be
beneficial in determining the validity of the present model for this type of calculation. For this calculation, the
boundary layer profiles shown in Fig. 5b have been chosen for examination. At this point, Re, = 110,000 and
Res+ = 556. While these profiles may not be the most optimal due to their closeness to the plasma actuator,
they exhibit enough variation in the boundary layer profile to determine whether or not the model and the
computed boundary layer profiles predict similar behavior. The exact parameters used for the model are given
in Table 3.

In comparing the result of the two models, it should be noted that both the eigenmodes and the eigenvalues
should be considered, as they together predict the relevant physics. Comparing the eigenvalues (Fig. 11), it can
be seen that the error of the real and imaginary components is less than 20 % of the magnitude of the critical
eigenvalue, and for most of the comparison cases, it is less than 10 %, especially at higher wavenumbers.
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Table 3 Parameters of the model used to generate the approximated boundary layer profiles and to compare the stability properties
of the computed and modeled boundary layer profiles

Case 14 n

o = 0.25 0.0492 1.0502
yo = 0.50 0.1264 0.9775
o = 0.75 0.2376 0.9045

Further comparing the results, it can be seen that the general trends of the frequency and growth rate with
regard to the increase in the magnitude of the plasma actuation (increasing yp), as well as the streamwise wave
number, are comparable for the boundary layer profiles extracted from the CFD simulations and for the model.

Examining the eigenmodes (Fig. 12), it can be seen that the general shape of the eigenmode is comparable
for the boundary layer profiles extracted from the CFD simulations and those generated by the model. The
trends of increased actuation are present, as the maximum value of |u’| moves away from the wall and an
indentation forms in the perturbation velocity profile near the wall for both sets of base flow velocity profiles.
The model appears to amplify these trends more than the boundary layer profiles extracted from the CFD
simulations, but the trend is present for both sets of velocity profiles.

3.2 Linear stability using the 1D flow model

In Sect. 2.1, it was suggested that a number of different effects could occur to the flow stability as a function
of the local velocity ratio, y. Different instabilities may occur, and significant changes to the nature of the
instabilities may occur as the effect of the momentum injection is varied.

For these calculations, the model of the boundary layer flow developed in Sect. 2 is used (Eq. 7, some of the
velocity profiles of which are shown in Fig. 6), as it affords more ease and flexibility in generating boundary
layer profiles than a CFD based approach. Based on the quantification of the assumptions required for a local
stability analysis based on Eqgs. 15—17, this stability analysis should not examine any flows immediately around
the plasma actuator, and should focus on regions farther away from the actuator.

In order to determine which instabilities may exist, a parametric study is presented in order to determine
the effects of co-flow and counter flow actuation on the different eigenmodes of the boundary layer. The
eigenvalues of the flow are computed for the case of n = 1.0 and & = 0.3 for various Reynolds numbers and
varying the level of actuation from y = —0.5to y = 0.5 (Fig. 6). The value of y for which the eigenvalues are
computed has been varied slowly (Ay = 0.02) in order to ensure that smooth behavior exists. The computed
eigenvalues are shown in Fig. 13. It can be seen that at the lowest Reynolds number examined (Res+ = 150,
Fig. 13a), that the most unstable mode for a given value of y varies continuously as y varies from —0.5 to 0.5.
However, at a higher Reynolds number (Res+ = 450 and 600, Fig. 13c, d), the most unstable mode changes
as the value of y is increased from —0.5 to 0.5. At the higher Reynolds number, the TS mode becomes more
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stable as co-flow actuation is applied and is destabilized as counter flow actuation is applied. Even though the
TS mode is stabilized as co-flow actuation is applied, a different mode, which had previously been very stable,
becomes unstable as this type of flow control is utilized.

It could be assumed that these eigenmodes are moving in the complex plane as the dispersion relationship
which controls them is varied with respect to the Reynolds number. However, it can be seen that these two



Local stability effects of plasma actuation 79

N T.S. Wave
0.05F f

- Fast Mode =~

r “m
N . Counter flow [ U g
I Fast Mod N
-0.25:— ast Mode o Co-flow -0.25 r . ::
0.3 L. . . . | - Blasius 03 1 Ll :: 1
0 0.1 0.2 0.3 0 0.1 0.2 0.3
(a) 0, (b) 0

0.05 F 0.05 F
0% (1

-0.05 ‘ 00sfE T
-0.1 -0.1 f BT A
-0.15 : -0.15 f e
02 (E:.-_-; 02F ]

. 3 [ Fast Mode - .
-0.25 F - -0.25 F

u Bl u
03 I I I S S S R T \:: 1 03 I R

0 0.1 02 03 0 0.1
(0 (d)

Fig. 13 Computed eigenvalues as a function of y (—0.5 < y < 0.5) at the wave number of « = 0.3 and a boundary layer height
ratio of n = 1.0 for a Res« Blasius = 150, b Res+ Blasius = 300, € Regr Blasius = 450, and dRes+ Blasivs = 600. Dots indicate
eigenvalues for a certain counterflow velocity profile. Circles indicate eigenvalues for a certain co-flow velocity profile

branches of the dispersion relationship intersect (Fig. 13b) and then trade portions of their branch to each
other as the Reynolds number is changed. The critical point at which this occurs is Res+ Blasius = 315 and
y = 0.0675 at the point @ = 0.155 —i0.495 for the wavenumber o = 0.3 (this value of & was not optimized to
find the absolute lowest value of Re where this effect occurs). There may be a number of different implications
with this branch switching. The implication most relevant to this study is that at very low Reynolds numbers,
only a single eigenmode is relevant to the stability of these combined wall jet and boundary layer flows, but at
moderate to high Reynolds numbers, two separate modes exist that are connected to each other.

3.3 Co-flow actuation

Examining the effects of co-flow actuation, it is expected that this manner of operation will stabilize the
boundary layer up to a certain point, above which inviscid instabilities will become relevant and the flow will
be destabilized. Neutral stability curves have been calculated for the cases of positive y and are shown in
Fig. 14. Two different scalings based on the displacement boundary layer height and the displacement height
of Blasius component of the combined velocity profile are used. However, neither of these scalings provide a
sufficient collapse of the data. These neutral stability curves confirm that there are two separate modes which
can become unstable, with widely varying properties. For the case of co-flow actuation, these two modes can
be separated as being a (slow) TS wave and a (fast) outer mode, based on the real phase speed (cg = %).
Examining the velocity profiles of these waves (Fig. 15), it can be seen that the structure of the waves is
different. The TS mode is not independent of the plasma actuation, but it does retain its basic shape as the
magnitude of the wall jet is varied. The faster mode shows a stronger dependence on the plasma actuation. As
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the momentum injection effects become more and more pronounced, the shape of this outer eigenmode also
changes, indicating that this faster mode is strongly coupled to the momentum injection and more sensitive to
the magnitude of the wall jet.
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This second mode does not become relevant until the wall jet effects in the boundary layer reach a certain
level. From the computations of Fjgrtoft’s theorem, this effect should occur at y = 0.153 &£ 0.003. When the
flow stability is examined in the inviscid limit (Re — ©0) using the current eigenvalue method, the critical
value is found to be y = 0.14375 £ 0.006. The viscid results (a sampling of which are shown in Fig. 14)
indicate that the inviscid instabilities become relevant near y = 0.156 4-0.006. In all, there is reasonably good
agreement at what point this mode should become important between these different methods and that this
mode is inviscidly unstable.

3.4 Counter flow actuation

If the plasma actuator is oriented in the opposite direction such that momentum is removed from the flow, it
is expected that the boundary layer will be destabilized relative to the Blasius boundary layer profile. Neutral
stability curves have been calculated for the case of counter flow operation (Fig. 16). These calculations show
that this method of operation is highly destabilizing, reducing the critical Reynolds number more than an order
of magnitude from Res+ = 520 for the Blasius boundary layer (y = 0) to Res+ < 30 (y = —1).

It was noted in Sect. 2 that the velocity profiles for counter flow operated plasma actuation may cause
flow reversal. With this flow reversal, there is the implication that some eigenmodes of the flow may travel
upstream or remain stationary. Within this subset of modes which remain stationary, the possibility of an
absolute instability exists. Furthermore, the neutral stability curves (Fig. 16) indicate that for sufficiently large,
negative values of y, there are unstable modes with zero real phase velocity (as cg = F Re/a). However, this
observation does not satisfy the more rigorous requirements of an absolute instability as defined by Briggs
[27] and Bers [28]. These requirements for an absolute instability are that:

1. There exists a dispersion relationship connecting w and «, defined as ¥ (w, ) = 0. In the complex
domains of w and «, there must be saddle points where dw/da = 0, i.e., the group velocity equals zero.

2. The saddle points must be pinch points of an upstream and downstream traveling mode.

3. The saddle point must also be unstable. That is, w; > 0 at the saddle point.

Constructing a “net map” allows for the visualization of the dispersion relationship (which is a function of
the velocity profile and Reynolds number) in terms of the complex values of « and w (Fig. 17). A saddle
point is immediately visible in each of these plots. It can be seen that as the Reynolds number is increased,
the value of w; at this point increases from negative to positive, which satisfies the third requirement for
an absolutely instability. It can be seen that above a critical Reynolds number, Res+ abs.crit, the previously
convective instability becomes an absolute instability.

This absolute instability presents a conflicting view of the viscous convection instability. Measurements
of the eigenvalues as shown in Fig. 13 indicate that instabilities seen with counter flow actuation are direct
modifications of the Tollmien—Schlichting wave as momentum is injected in the direction opposing the free
stream velocity. However, Fjgrtoft’s criterion (and the calculations of the flow instability in the inviscid limit)
suggest that an inviscid instability should be present, even for small, negative values of y. When one considers
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Fig. 18 A comparison of the critical Reynolds numbers of the different instabilities compared to y for n = 1

the growth rates of instabilities occurring from counter flow operation (shown in Fig. 13), the evidence pushes
more toward this instability being inviscid in its behavior. Large growth rates are normally associated with
inviscid instability, and the calculated growth rates are significantly higher for counter flow actuation than they
are for a normal Blasius boundary layer and other known viscid instabilities.

3.5 Comparison of the onset of different stability modes

Combining all of the stability results that have been garnered from this model of the flow, it can be seen that
there exist a wide variety of phenomena that occur within the combined wall jet/boundary layer velocity profile.
The different critical Reynolds numbers have been plotted as a function of y in Fig. 18. It can be seen that the
TS wave remains present for all values of y, though for larger levels of co-flow actuation, the TS instability
is stabilized relative to its importance in the Blasius boundary layer, only being present at significantly higher
Reynolds numbers. The upper limit on improving the stability of the boundary layer appears to occur around
y = 0.075, with the critical Reynolds number being increased from Res+ Blasius = 520 for the non-actuated
flow to Res Blasius = 5,818. For the counter flow actuation, the TS wave is destabilized and becomes unstable
at Reynolds numbers a full order of magnitude lower than that of the Blasius boundary layer. Furthermore, for
sufficiently strong counter flow actuation, an absolute instability becomes significant.

3.6 Comparison to the universal correlation

It can be seen that both co-flow and counter flow operation of the plasma actuators have a profound effect on
the boundary layer stability. However, other boundary layer profile modifications can have an equally strong
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effect on the flow stability. It is thought that there is a certain “universal correlation” between the flow stability
and the shape factor [15]. It can be seen in Fig. 19 that for the convective viscid instability, the critical Reynolds
numbers reached as part of this study are in agreement with other boundary layers when compared via the
shape factor, H = §*/6.

For small levels of actuation, these stability limits are comparable to other boundary layer profiles. However,
as larger levels of plasma actuation are examined, it can be seen that they deviate from the behavior seen in other
boundary layer profiles. This effect is likely due to the wall jet component of the velocity profile becoming
significant relative to the boundary layer component, and transforming the flow in such a way that it cannot
be compared to other boundary layers. Data is presented for the critical Reynolds number scaled by both
8B jasius and the calculated value of §* for the velocity profile. The Reynolds number scaling does seem to make
some difference in matching the current results to the universal correlation. However, once the velocity profile
allows for significant wall-jet-like effects to develop, the critical Reynolds number diverges from that of more
traditional boundary layers.

4 Qualitative comparison with experimental efforts

The present results do not initially seem to align with the existing experimental results. Experimental results
show that the application of DBD plasma actuators in a steady co-flow orientation are able to stabilize the flow,
but not necessarily to the degree suggested by the present analysis. Furthermore, the over-shoot seen produced
by the present model is rarely seen, though experimental results have reported it [2]. Furthermore, the separated,
reversed flow generated by strong counter flow actuation has never been reported in the existing literature.
While these experimental results seem to disagree with the present analysis, upon closer examination, these
disagreements may not actually exist.

Experimental results show that the addition of a single DBD actuator operated in a co-flow manner is
able to stabilize the flow [5,6,8, 14]. Furthermore, as the voltage of the actuator is increased (which implies
greater momentum addition, and increased values of u, and y), the transition point in the flow moves farther
and farther downstream [14]. This indicates that as y is increased, the flow is stabilized. The boundary layer
profiles displayed in studies showing moderate increases in boundary layer stability typically show small to
moderate changes in the boundary layer profile, suggesting that the value of y in these boundary layer profiles
is moderate, largely in the range of 0.05 < y < 0.25, which is in the region of enhanced stability shown in
Fig. 18 (the low velocity tests of Séraudie et al. [14] being the exception), a sample of the experimental results
can be found in Table 4.

The order of magnitude increase in the critical Reynolds number also presents itself as contradictory with
the experiments, as the experiments performed thus far all still transition at some point downstream. The
transition eventually seen in the experimental results is due to a gradual dissipation of the momentum induced
by the body force, and the boundary layer velocity profile relaxing back to the preexisting profile. As the
velocity profile relaxes, the local value of y asymptotically approaches zero. Any gains in stability due to
the modification of the boundary layer profile may be lost, though gains due to a reduction in the boundary
layer height because of the momentum should still remain. To achieve the incredibly high values of Rei
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Table 4 Sample of experimental results showing stabilization of the boundary layer using a single co-flow-oriented plasma
actuator in terms of yp

Study Y0 Geometry

Grundmann and Tropear [5,6] 0.06 Adverse pressure gradient

Séraudie et al. [14] 0.20-0.57 Airfoil (favorable pressure gradient near the actuator, adverse downstream)
Duchmann et al. [8] 0.18-0.25 Adverse pressure gradient

shown in Fig. 18, an array of distributed actuators would be necessary to generate and maintain the modified
boundary layer profile, starting from below the critical Reynolds number and beyond the critical point where the
boundary layer becomes unstable. To the authors knowledge, no experiments of this configuration examining
the boundary layer’s stability have been reported, though the stability analysis of Duchmann et al. [12] suggests
that there are significant gains to be made with respect to flow stabilization.

The conditions where the plasma generated wall jet greatly overshoots the boundary layer profile are
rarely seen under experimental conditions. The first reason for this plasma actuators are only able to generate
velocities up to approximately 10 m/s, and many actuator geometries cannot generate flow velocities this high.
As such, a wind tunnel test performed at 20 m/s could only see a maximum value of Yy = 0.5 and more likely
a value closer to yp = 0.25. When examining boundary layer profiles downstream, the localized values of y
would be even lower. However, there does appear to be some evidence that these boundary layer profiles do
exist [2]. A second reason, which better reconciles the gap in experimental results with the present results, is
that the boundary layer profiles that display a large overshoot are highly unstable. The present work suggests
that these flow exhibit an inviscid instability long before the overshoot is present (Figs. 6, 15¢). As such, even
if they can be created, they will likely transition very quickly, destroying the laminar base flow. As such, the
laminar flow displaying a large overshoot is somewhat of an artificial flow and should not exist naturally,
except at very low Reynolds numbers or in low disturbance environments, where it is still stable.

A similar reconciliation of experimental data and stability calculations exists for the counter flow results. A
counter flow-oriented plasma actuator of sufficient magnitude will likely cause the flow to reverse and separate
at the location of the actuator. This separation should generate a laminar separation bubble if the incoming
flow is laminar. This type of flow is known to possess an absolute instability and transition very quickly [29].
Again, for this flow to remain laminar in a natural setting is highly unlikely, due to the large growth rates, and
the flow will most likely transition quickly, making it difficult to spot under experimental circumstances.

4.1 Unsteady effects

The momentum addition provided by DBD actuation is inherently unsteady, as the devices are powered by a
high-frequency AC signal. Normally, the time scales associated with plasma actuation are on the order of 10’s
of kHz, while those associated with a low-speed flow are on the order of 100’s of Hz. These two time scales are
separated by two orders of magnitude, and it is often assumed that only the mean component of the momentum
addition is relevant to the flow control. It should be noted that this order of magnitude approximation still based
around the use of a steady flow for the stability analysis. For a more accurate analysis, the unsteady effect of
the plasma actuation on the boundary layer would need to be taken into account through a Floquet stability
analysis.

The present analysis of instabilities relevant to the plasma actuated flow indicates that potential inviscid and
absolute instabilities may occur at significantly higher frequencies than the TS wave. As such, assumptions
based on the separation of time scales must be revisited in order to establish when they may or may not
be valid. The non-dimensional frequency used to characterize the present instabilities can be defined using
(dimensional) parameters as

= 21

may be arranged to provide an upper limit on the speed where plasma actuation is able to be used without
self-exciting the flow (100, y ). Performing this rearrangement, the upper limit is

27Tfplasma v

Fo (22)

Uoo,NE <
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Table 5 Approximate non-dimensional frequencies for different instability modes and the free stream velocity where the plasma
actuation will begin to excite these modes

Instability mode Fo x 106 Uoo NE (M/S)
TS wave—co-flow 200 68.4
TS wave—counter flow 2,000 21.7
Inviscid instability 1,000 30.7

For each of the three instabilities, rough estimates of the baseline non-dimensional frequency, Fj, can be
established in order to provide order of magnitude estimates as to when the plasma actuation will begin to
excite these modes on its own, which are provided in Table 5. These frequencies are case specific, depending on
the total level of momentum added into the flow, as well as the Reynolds number, so only approximate values
are provided. For the other variables, dimensional parameters are v = 1.5 X 107> m?/s, and Splasma = 10kHz.
The results of this order of magnitude analysis indicate that even for relatively low-speed flows, the inviscid and
counter flow actuated TS instability mechanisms may be self-excited by the plasma actuation. At moderately
higher velocities (upward of 68 m/s), the DBD actuation may even excite the TS mode when co-flow actuation
is employed, at which point this type of actuation is actively causing the flow to transition, not stabilizing it.

When it comes to stabilizing a flow using DBD plasma actuation, this result places an approximate upper
limit on the free stream velocity where success may be found, thatis, #o, < Uso v E. However, when attempting
to accelerate the laminar to turbulent transition process at higher velocities (i.e., Uso > Uoco,NE), it appears
that the DBD actuation has the potential to simultaneously destabilize the flow and to generate the unstable
perturbations. This self-excitation may be one reason why these other instability modes have not yet been
reported in the literature, and it may also provide some additional control authority at higher velocities when
attempting to destabilize the boundary layer at higher velocities.

5 Conclusions

Numerically simulated velocity profiles have been used as the basis for developing a model of a boundary layer
influenced by DBD actuation, based on the superposition of wall jet and boundary layer velocity profiles. In
developing this model, non-dimensional parameters have been developed to characterize the velocity profiles
seen in the simulations (and which could be applied to velocity profiles collected experimentally) in order to
parameterize the present model the boundary layer flow. While only a zero pressure gradient boundary layer
was examined in this study, the method could be easily extended to boundary layers with pressure gradients.

The velocity profiles created through this model were then examined in a number of different ways. Very
basic analysis suggested the existence of absolute and inviscid instabilities, in addition to the preexisting TS
instability. Using a local linear stability analysis and parametric studies, the existence of these modes was
verified, and neutral stability curves were computed in order to map out where these different instabilities lie
with respect to the Reynolds number and the velocity ratio of the plasma actuation to the free stream velocity.
The eigenvalue method used does have some weaknesses in terms of the assumptions made. The applicability
of these assumptions has been quantified based on flow fields from the simulations, and for appropriate values
of the velocity ratio, these assumptions are satisfied. Closer to the actuator, and for larger values of the velocity
ratio, the assumptions are not strictly satisfied, but the results of using this method still seem to confirm the
existence of the predicted absolute and inviscid instabilities.

In performing these parametric studies, the domain of the different instabilities was found to strongly
support destabilizing the boundary layer using co-flow or counter flow operation of plasma devices. This is
good news for those who hope to use this type of plasma-based flow control to accelerate the laminar to turbulent
transition process, as this flow destabilization can decrease the critical Reynolds number by more than an order
of magnitude. However, it was also found that there is a distinct region of the parametric landscape which
allows for significant flow stabilization, into a comparable regime as boundary layer suction. This regime,
which is characterized by very slight co-flow actuation in the boundary layer (y € (0.01,0.2) for n = 1),
allows for the critical Reynolds number of the boundary layer to be increased by a full order of magnitude.

Comparing these results to the existing experimental evidence, some qualitative support for the stability
calculations does exist. Evidence for stabilizing the flows with reasonable levels of plasma actuation, that is,
y = 0(0.01 — 0.1), can be found in several studies [5,6,8,14]. The present results suggest that the highly
unstable nature of strong co-flow or counter flow actuation will not allow for these flows to exist in a laminar
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form. Rather, these flows will quickly transition and will only be possible in specialized low disturbance or
computational environments.

Depending on the operation of the actuator, the critical Reynolds number of the boundary layer is found
to vary from an order of magnitude lower to an order of magnitude higher than that of the Blasius boundary
layer. In real flow conditions, where the value of y is likely to be ££7(0.01 — 0.1), the stability effects largely
line up with the universal correlation developed by Wazzan [15], which relates the shape factor and critical
stability of the flow. When the addition of momentum to the boundary layer modifies the boundary layer too
much, the relationship with the universal correlation breaks down and no longer applies, and though the most
extreme effects of implementing plasma actuation occur outside of this region of small y, this limited region
is still important for flow stabilization and destabilization. Stabilization or destabilization effects of roughly
half and order of magnitude can be seen, depending on the orientation of the actuator even with velocity ratios
of approximately 0.1. If the length scale of the momentum injection to the boundary layer height were to be
adjusted beyond n = 1, further improvements could likely be found, even for the limited values of the velocity
ratio. Even without further optimization, and an actuator induced velocity of 5 m/s, significant gains in stability
control would be made for free stream velocities of up to 50 m/s.

The present work shows that the use of plasma actuation has potential for the control of a boundary layer’s
stability. However, there are still a number of questions to be answered. In particular, an understanding of
the stability properties in the region immediately around the plasma actuator would be beneficial. There are
also questions on the non-modal growth of perturbations in the plasma actuated boundary layer, especially as
the wave packets are convected over the actuator. As this flow is two-dimensional when the plasma actuator
region is included in the flow domain, bi-global stability analysis should be employed in the future in order to
better understand this problem. While eigenvalue formulations such as the present are useful, DNS using very
specific initial conditions and/or periodic inlet conditions would allow for the examination of predetermined
wave packets in the desired path to transition. Such simulations would enable a fuller understanding of how
plasma actuators are able to control a boundary layer’s transition process. Even though there is much more
work to be done in understanding this problem, the current work presents forward progress in transition control
using plasma actuators.
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