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Abstract
The response of a zero pressure gradient boundary layer modified by flow-wise oriented
momentum injection similar to that of a plasma actuator is calculated using a two-dimensional
(bi-global) stability analysis. It is found that the addition of momentum into the boundary
layer has a significant impact on Tollmien–Schlichting waves, which may be damped by up to
two orders of magnitude. Changes to the exponential growth rate of the perturbations are also
measured. These stabilizing effects are largely due to the momentum addition modifying the
downstream boundary layer profiles, but localized stabilization effects are also noted. The
relative stabilization of the TS wave appears to be a linear function with respect to the ratio of
the plasma-induced wall jet velocity under quiescent conditions and the free-stream velocity
for lower levels of plasma actuation (i.e. velocity ratios less than 0.1). For higher levels of
plasma actuation, the relative stabilization of the TS wave appears to be exponential with
respect to the total momentum addition to the boundary layer by the plasma actuator.

(Some figures may appear in colour only in the online journal)

1. Introduction

Viscous drag is known to be the largest component of drag
on ground and air vehicles. For commercial air vehicles,
the viscous drag may comprise upwards of 50% of the total
drag [1]. On heavy trucks, viscous drag represents 7% of
the overall drag on the truck and 26% of the drag on any
attached trailers [2]. For high-speed rail, the viscous drag
may be up to 70% of the total drag [3]. Economic and
environmental benefits can be obtained if the drag experienced
by these vehicles is reduced. One approach to reducing the
viscous drag is to increase the area of the vehicle wetted
by a (low drag) laminar boundary layer, and reduce the area
wetted by a (high drag) turbulent boundary layer. Boundary
layer stabilization provides a manner of achieving this goal
of drag reduction. By stabilizing the boundary layer against
external perturbations, a laminar boundary layer can be made
less sensitive to the external perturbations that eventually lead
to a turbulent boundary layer.

One path of the laminar to turbulent transition process is
through the exponentially growing Tollmien–Schlichting (TS)
waves [4]. Suppressing the growth of this instability can delay
a boundary layer from becoming turbulent. Several different

approaches to stabilizing this instability have been examined
in the past, including wall suction [5], distributed roughness
elements [6], Lorentz force actuators [7], among others.

This study examines the effects of using flow-wise
oriented (co-flow) plasma-induced momentum addition to
enhance the stability properties of a zero pressure gradient
(ZPG) boundary layer flow. In particular, the stability of
the boundary layer as it responds to a TS wave generated
upstream of a dielectric barrier discharge (DBD) actuator is
examined. DBD actuators are devices capable of generating
an electrohydrodynamic (EHD) body force, which can be used
to add momentum to the nearby fluid [8, 9]. The primary
restriction to the use of these actuators is their limited control
authority. Under quiescent conditions, most actuator designs
are only able to generate wall jet flows up to 3–5m s−1 and
produce thrusts per unit length on the order of 20mNm−1.
However, the addition of momentum into the boundary layer
suggests that DBD actuators operated in a controlled manner
could be very useful for flow stabilization.

For example, Grundmann and Tropea [10, 11] used these
actuators for boundary layer stabilization. Operating the
actuators in a co-flow orientation with continuous actuation,
constantly adding momentum into the boundary layer, they
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were able to delay the transition by 200mm for a 10m s−1

flow. Duchmann et al [12] made PIV measurements of the TS
wave in the region around the plasma actuator, and showed a
significant reduction in the wave amplitude and changes to the
wave speed relative to the flow without any plasma actuation.

Some theoretical work was also performed describing
how momentum addition using EHD devices modifies the
boundary layer and its stability properties. For example,
flow stabilization downstream of the plasma actuator has been
predicted for co-flow oriented momentum addition using local
stability analysis and employing boundary layer profiles from
experiments [13]. Riherd and Roy performed a local and a
limited, preliminary bi-global stability analysis of numerically
simulated boundary layers, which also indicated stabilization
of the flow [14]. Riherd et al have also examined a model
of plasma actuated boundary layers, performing very broad
parametric studies, identifying a number of trends for the
stability of this flow, and tying the gains in stability to the
shape factor of the velocity profiles [15].

With regard to specific applications beyond a flat plate,
Séraudie et al [16] examined the effects of using DBD plasma
actuators for the flow over an ONERA-D airfoil at an angle
of attack (which generated an adverse pressure gradient over
a majority of the chord). Their study employed low-velocity
wind tunnel testing (between 7 and 15m s−1) and local stability
theory to show the transition delay of the flow. Flight tests
using continuous plasma actuation [17] also demonstrated a
transition delay of 3% of the chord length for a small aircraft
(a G109b motorized glider) for a high Reynolds number flow
(Rex = u∞x

ν
≈ 1.15× 106).

This work aims to describe the response of a boundary
layer flowmodified by plasma actuation to incoming TSwaves
in terms of the relevant physical mechanisms as well as to
quantify the growth and decay rates of perturbations over the
length of the boundary layer. Special attention is given to
the near-plasma region, including the region where a plasma
body force is applied. Furthermore, attention is paid to the
linear mechanisms by which the perturbation energy grows
or decays. Parametric studies are performed with respect to
the amount of plasma actuation, as well as the frequency of
the perturbations. A bi-global stability approach is employed
to address the two-dimensional base flow where a distributed
body force has been applied, which should provide a more
robust result than previously employed local stability analysis
methods.

This paper is organized as follows. In section 2,
the simulation of the boundary layer flows incorporating
momentum addition using plasma actuation is described. The
flows are then characterized in terms of their boundary layer
heights and shape factors, which are relevant to the local
stability properties of the boundary layer. In section 3, a
linearized bi-global stability approach is described, which is
then used to calculate the response of the boundary layer to TS
waves generated upstream of the plasma actuator in section 4.
From these calculations, themagnitude and exponential growth
rates of the TS wave are determined. Based on the magnitudes
and growth rates of the TS wave, different spatial domains
are identified where the response of the boundary layer to the

perturbations is important. The overall damping effect of the
plasma-based momentum addition is quantified in terms of the
velocity ratio and momentum addition. Finally, appropriate
conclusions are drawn in section 5.

2. Determination of the base flow

All types of linear stability analyses require a base flow
to examine. As a starting point to examine the effects
of plasma-based momentum addition on a ZPG boundary
layer, this flow is simulated numerically. This was done
using a Navier–Stokes solver, FDL3DI [18], which solves
the compressible, diagonalized form of the Navier–Stokes
equations in a body fitted coordinate system. Incompressible
flows can be solved by setting the Mach number to an
appropriately low value. It has been determined that a value of
M∞ = 0.1 provides a reasonable balance of incompressibility
and numerical stability [18]. Using this Mach number in
the present simulations, the maximum variations to the fluid
density are found to be on the order of 0.15% throughout the
domain, indicating that the flow is essentially incompressible.
Temperature (and viscosity via Sutherland’s law) variations are
similarly small. As such, an incompressible approach to the
flow stability should be sufficient.

A fine, two-dimensional mesh (801 × 151) is used
as a domain for the simulation. This domain is non-
dimensionalized by the length from the leading edge of the
plate to the actuator location. The inlet is located one unit of
length upstream of the plate’s leading edge and the outlet is
seven units of length downstream of the leading edge. This
mesh resolves the near-wall boundary layer, effects near a
sharp leading edge (but not the leading edge itself) and the
steady addition of momentum through a body force term. Far
upstream of the leading edge, downstream of the actuator
location, and as the mesh approaches the free stream, the
mesh is sufficiently coarsened in order to prevent unsteady
effects from reflecting off of the boundary conditions. At the
location of the plasma actuator (x = 1, Rex = 100 000), 62
points are used to resolve the height of the boundary layer
(δ99% = 0.0158). In total, 45 points are used to resolve the
body force in the streamwise direction and 43 points are used to
resolve the body force in the wall normal direction. This mesh
is quite adequate for resolving the flow details near regions
of high gradients, and these simulations should be considered
a direct numerical simulation. A schematic of the domain
is shown in figure 1. A summary of the dimensional and
non-dimensional parameters used for this study is given in
table 1.

The plasma actuation is modelled using an approximate
body force distribution based on first-principles simulations
of the plasma discharge [19] (figure 1(b)) in a manner
consistent with the description in [18]. While a more rigorous
multi-scale analysis may capture the physics of the plasma
better, it is anticipated that its response to the flow will not
be significantly affected by this approximation or the very
high frequency unsteady behaviour (O(10 kHz), F × 106 =
2πf ν

u2∞
× 106 = O(104)) that is normally damped out by

the boundary layer. Importantly, such an approximation
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Figure 1. (a) Two-dimensional domain and boundary conditions used for the baseline flow modifications, and (b) a close up of the co-flow
oriented body force used within the boundary layer. Every fourth grid point is shown.

Table 1. Dimensional and non-dimensional values used to compute
the base flow.

Reference parameter Value

Dimensional values
u∞ 7.5m s−1

L 0.20m
ρ∞ 1.20 kgm−3

ν 1.5× 10−5 m2 s−1

f 44.7–104.4Hz

Non-dimensional values
Re 100 000
Pr 0.72
Ma 0.1
Dc Varies, see figure 2(a)
F × 106 75–175

alleviates the expensive computational requirements of a
coupled fluid–plasma simulation. The magnitude of the
plasma actuation is modulated through a non-dimensional
parameter, Dc, which relates the characteristic magnitude of
the body force (f0) to the dynamic pressure (i.e. Dc = |f0|L

ρu2∞
).

Under quiescent conditions, DBD plasma actuators
generate a wall jet [8], examples of which are shown in
figure 2(b). So, instead of defining the magnitude of the body
force through a characteristic force density, the magnitude of
the body force is characterized by how strong a wall jet it can
generate under quiescent conditions, which was determined
before simulations of the plasma actuator in a boundary
layer. The same setup was used with no-slip conditions
(u = v = 0) for the left, right and bottom boundaries,
with a no-shear condition on the upper boundary, leading to a
quiescent condition over a majority of the domain. The body
force distribution was operated at various magnitudes of Dc

with quiescent initial conditions, representing an increase in
the operating voltage of the plasma actuator. As the body
force distribution is kept constant for all of the simulations
performed as part of this study, the value of Dc is directly
proportional to the total amount of body force used to inject
momentum into the flow. The effect of the actuation on the
flow is then characterized by the maximum velocity induced
in the resulting wall jet (up, figure 2) at a specific downstream
location (x = 1.03). An interpolation was then used to
control the body force for the simulation under non-quiescent

conditions. The magnitude of the implemented force is
characterized by the non-dimensional parameter

γ0 =
up

∣∣
x0,quiescent

u∞
. (1)

This parameter is selected in order to focus solely on the fluid
dynamic effect of the plasma actuation and its influence on the
flow stability, ignoring the electrical inputs such as voltage,
frequency and the waveform driving the device. The values of
γ0 are calibrated for the Reynolds number tested as part of this
study.

Putting this body force into more tangible terms, the total
streamwise oriented body force introduced by this model of
the distributed force is 2.53× 10−5 in non-dimensional terms.
Using the dimensional parameters laid out in table 1, the
total dimensional force per unit width provided to the flow
is equal to 0.342 × DcmNm−1. For the case of γ0 = 0.25,
Dc = 12.87, which results in a total force of 4.40mNm−1,
which is reasonable for generating a 1.88m s−1 wall jet when
compared with experimental results [20].

In the simulations, the body force was placed at a
position corresponding to a streamwise Reynolds number of
Rex = 100 000 and a displacement boundary layer Reynolds
number of Reδ∗ = u∞δ∗

ν
= 543 (where δ∗ = ∫ ∞

0 (1− u
u∞

) dy)
in a ZPG boundary layer. This actuator location is in the
transitional regime, which is useful for understanding how
the momentum addition modifies the laminar to turbulent
transition in the critical domain.

In examining the flow fields around the plasma actuator,
the addition of momentum can be plainly seen to have a local
impact on the boundary layer. The momentum addition region
can be seen in the figures (figure 3). Boundary layer profiles are
extracted from these flows, and it can be seen that upstream
of the plasma actuation, the boundary layer profiles become
slightly fuller, due to entrainment effects of the momentum
addition. Slightly downstream of the actuator, the boundary
layer profiles continue to grow fuller as momentum is injected
into the flow, especially in the near-wall region of the boundary
layer. The momentum added to the flow quickly diffuses out
into the boundary layer, resulting in the velocity profiles farther
downstream of the actuator possessing a fuller, more rounded
shape. The ‘fullness’ of the velocity profile is measured by
its shape factor (H = δ∗

θ
, where θ = ∫ ∞

0 ( u
u∞

)(1 − u
u∞

) dy),
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Figure 2. (a) Values of up used to calibrate Dc. (b) Velocity profiles at a location downstream of the plasma actuation for various values
of Dc.

Figure 3. Velocity fields around the plasma actuator for the velocity ratios of (a) γ0 = 0.00, (b) γ0 = 0.10 and (c) γ0 = 0.20. Boundary
layer profiles at (d) x = 0.99, (e) x = 1.01 and (f ) x = 1.10 are also shown. The dashed lines in (a)–(c) indicate locations where the
boundary layer profiles are extracted from, and are shown in (d)–(f ).

where fuller velocity profiles have smaller values of the shape
factor. Changes in the velocity profiles can also be quantified
using the shape factor of the boundary layer profiles along the
length of the plate (figure 4(b)). The reduction in the shape
factor from the baseline value of 2.6 indicates that the velocity
profiles downstream of the plasma actuators are fuller than
those with no actuation applied, and based on the correlation
between shape factor and flow stability developed by Wazzan
et al [21], the flows with actuation should be more stable. The
boundary layer heights around the plasma actuator are also
modified due to the addition of momentum into the flow. In
figure 4(a), it can be seen that increased momentum addition
results in monotonically larger changes to the displacement
boundary layer heights.

Examining where the changes to the boundary layer
profiles occur (figure 4), it can be seen that the changes are
primarily local, though the boundary layer heights are slightly
modified downstream of the actuator location. As such, three
different spatial regions can be identified in the flow with
respect to the changes in the boundary layer heights. The

first of these regions is the region upstream of the actuator (I),
where the changes to the flow are minimal. Of the effects that
can occur, the flow immediately upstream of the actuator may
be slightly stabilized due to fluid being entrained closer to the
surface by the body force. The second region is the area that
is directly around the plasma actuator (II). In this region, the
changes to the boundary layer heights and velocity profiles are
the most profound, and the largest gains in stability control
should be realized in this area. The final region of the flow is
farther downstream of the actuator (III), where the boundary
layer flow has largely relaxed back to that of a ZPG boundary
layer. However, in this region the boundary layer heights are
reduced by a few per cent, due to the addition of momentum
into the boundary layer by the plasma actuator.

3. Numerical method

3.1. Bi-global stability approach

In order to determine the response of the plasma-modified
boundary layer to oncoming TS waves, a bi-global stability
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Figure 4. (a) δ∗ and (b) the shape factor as a function of the velocity ratio, γ , for values ranging from 0 to 0.25, with a spacing of 0.05. The
inset figure shows a zoomed-in view near the actuator location with the three characteristic zones shown. The size of the actuator is also
exaggerated in order to be more visible.

approach is employed. The velocity field, u, and pressure
field, p, can be decomposed into the steady equilibrium and
perturbation components, where ui = ūi + u′

i and p = p̄ + p′.
Using this decomposition, the incompressible Navier–Stokes
equations can be linearized around this steady point such that

∂u′
i

∂xi

= 0 (2a)

∂u′
i

∂t
+ ūj

∂u′
i

∂xj

+ u′
j

∂ūi

∂xj

+
∂p′

∂xi

− 1

Re

∂2u′
i

∂x2j
= 0. (2b)

Assuming that these perturbations are periodic in time, such
that u′

i = ũi exp(−iωt), the problem can be put into a matrix
operator form such that

iωBu = Au + f (3)

where

u =
⎡
⎣ũ

ṽ

p̃

⎤
⎦ , A =

⎡
⎢⎢⎢⎢⎢⎣

∂ (·)
∂x

∂ (·)
∂y

0

C − D + ∂ū

∂x

∂ū

∂y

∂ (·)
∂x

∂v̄

∂x
C − D + ∂v̄

∂y

∂ (·)
∂y

⎤
⎥⎥⎥⎥⎥⎦

,

B =
⎡
⎣0 0 0

I 0 0
0 I 0

⎤
⎦ . (4)

The convection and viscous diffusion operators C and D are
defined as C = ū ∂(·)

∂x
+ v̄ ∂(·)

∂y
and D = 1

Re
( ∂2(·)

∂y2
+ ∂2(·)

∂y2
). f

indicates a periodic forcing to the system. u represents the
system’s response to that force. Both f and u are complex
vectors with real and imaginary parts. The response of the
system can be evaluated by solving the system of equations
shown above such that

u = [iωB − A]−1f . (5)

For the present case the periodic forcing term f represents
a non-homogeneous boundary condition at the inlet of the

domain. Only two-dimensional TSwaves are examined as part
of this study, as Squire’s theorempredicts that two-dimensional
TS waves grow more quickly than three-dimensional TS
waves [22]. However, we do not discount the fact that
three-dimensional instability mechanisms, such as boundary
layer streaks [23, 24], can also lead to turbulent flow. Those
three-dimensional instabilities are beyond the scope of this
work, but are a topic of future research.

3.2. Numerical discretization and boundary conditions

In order to perform these calculations, the matrix operations
described in equations (2a)–(4) are discretized on a semi-
staggered mesh. A subdomain of the velocity fields and
their gradients simulated in section 2 (0.52 � x � 4.69,
0 � y � 0.157) were interpolated onto this mesh. By limiting
the domain of the stability analysis to only the boundary
layer, receptivity issues at the leading edge of the plate can
be neglected, as well as any receptivity issues regarding
how the initial TS waves are produced from acoustic or
vortical disturbances. The momentum equations are solved
and velocity data are stored on a set of points coincident with
the domain boundaries. The continuity equation is solved
and pressure data are stored on the intermediate set of points.
For the differencing, Chebyshev collocation methods are used
in the y-direction. In the x-direction, fourth-order accurate
centred differencing is used for a majority of the domain. The
exception to this is the streamwise convection term, ū ∂(·)

∂x
. This

term is up-winded using a third-order accurate finite difference
stencil. Next to the boundaries, lower order stencils are used.

For boundary conditions, a TS wave is enforced at the
inlet to the domain by way of the vector f (equation (3)),
examples of which are shown in figure 5. These TS waves are
calculated using a local, spatial eigenvalue solver. The shape of
the incoming TS wave is varied depending on the perturbation
frequency. For the boundary layer wall and the free-stream,
no-slip conditions are employed. In the latter portion of the
domain, a sponge region is implemented in order to damp
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Figure 5. A sample of the (a) u and (b) v velocity component perturbations enforced at the inlet of the domain at varying frequencies.

Table 2. Details of the grid resolution study performed. The Very Fine-L, Fine-H, and Tall cases are identical.

Study Case Nx Ny Lx/δ
∗
0 Ly/δ

∗
0 
x/δ∗

0 
ywall/δ
∗
0

Streamwise resolution Coarse-L 513 65 1061.7 40 2.0736 0.02409
Medium-L 725 65 1061.7 40 1.4664 0.02409
Fine-L 1025 65 1061.7 40 1.0368 0.02409
VeryFine-L 1449 65 1061.7 40 0.7332 0.02409

Wallnormalresolution Coarse-H 1449 33 1061.7 40 0.7332 0.09631
Medium-H 1449 49 1061.7 40 0.7332 0.04282
Fine-H 1449 65 1061.7 40 0.7332 0.02409

Height Short 1449 33 1061.7 20 0.7332 0.04815
Medium 1449 49 1061.7 30 0.7332 0.03212
Tall 1449 65 1061.7 40 0.7332 0.02409

out the velocity perturbations as they approach the outlet.
This sponge region effectively prevents the perturbations from
reflecting off of the outlet and affecting the upstream flow.

3.3. Grid resolution study

A grid resolution study was performed in order to ensure that
the problem is adequately resolved. Details of the domain
and mesh parameters are indicated in table 2. This study
was performed on the unforced boundary layer, but addition
grid resolution studies for boundary layers where momentum
addition was applied were also performed, indicating similar
convergence. Those results are not shown for brevity.

In order to quantify the growth and decay of theTSwave as
it propagates downstream, the magnitude of the perturbations
along a line in the flow is measured, a sample of the results
can be seen in figure 6(a). Examining the convergence of the
results as a function of the streamwise grid density, it can be
seen in figure 6(c) that the results approach convergence as the
mesh density increases.

Comparing the spatial exponential growth rates of these
perturbations (figure 6(b)), it can be seen that there is good
agreement between the different meshes using this bi-global
method. Comparisons can also be made with local stability
methods, which predict similar behaviour, though the exact
values differ by a small amount. In order to make a good
comparison with the bi-global stability analysis, the local
growth rates are normalized by the local boundary layer
displacement height and multiplied by a factor of two to

account for the energy (rather than velocity) perturbation
growth. Convergence studies for the wall normal mesh density
(figure 6(d)) and domain height (figure 6(e)) are also examined,
and show good convergence.

Based on this grid resolution study, all computations will
be performed using the Very Fine-L mesh, and the magnitude
of the boundary layer perturbations is assumed to be accurate
to within a few per cent.

4. Results

By comparing the instantaneous perturbation flow fields
(figure 7), it can be seen that as the magnitude of the plasma
actuation is increased, the perturbations are increasingly
damped downstream of the plasma actuator.

The metric

Au(x) =
∫ ∞
0

(∣∣u′∣∣2 + ∣∣v′∣∣2) dy
∣∣∣
x∫ ∞

0

(|u′|2 + |v′|2) dy∣∣
x=inlet

(6)

is used to quantify the magnitude of the boundary layer
perturbation. This metric quantifies the amount of kinetic
energy in the flow along a given point in x.

By applying this metric, the magnitudes of the
perturbations are calculated, samples of which can be seen
in figure 8 for several different forcing frequencies. In
examining the magnitudes of these perturbations, the amount
of damping caused by the addition of flow-wise momentum
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Figure 6. Comparison of the (a) amplitudes and (b) spatial growth rates of the incoming TS waves for different mesh densities for five
different frequencies. These metrics are defined in equations (6) and (7). The convergence of the F × 106 = 150 case can also be seen for
the (c) streamwise grid resolution, (d) wall normal grid resolution and (e) height of the domain.

Figure 7. Real component of the u′ perturbation velocity for the non-dimensional frequency of F × 106 = 100 and plasma actuation levels
of (a) γ0 = 0.00 (no plasma actuation), (b) γ0 = 0.10 and (c) γ0 = 0.20. The dashed line indicates the location of the plasma actuator. The
contour values in this plot do saturate for −0.1 < ur and 0.1 > ur in order to show greater detail for smaller values of the perturbation
velocity.

into the boundary layer is found to be significant. As
the velocity ratio of the plasma actuation is increased, the
magnitude of the energy perturbations is decreased by up to
two orders of magnitude (only a single order of magnitude

for the velocity perturbations). In terms of N -factor, the
damping of these perturbations is equivalent to a drop in the
N -factor of approximately 2.3 relative to the non-actuated case.
Considering that a transition is normally assumed to occur in
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Figure 8. Magnitude of the perturbations as measured using the metric Au for the non-dimensional frequencies (a) F × 106 = 80, (b)
F × 106 = 100, (c) F × 106 = 120 and (d) F × 106 = 140. The vertical dashed line indicates the location of the actuator, and the inset
figures are a close up of the near-actuator region.

a boundary layer for an N -factor of 9–10 [25], this damping
of the perturbation could delay the transition by a significant
amount.

Basedon these data, the growth rates of these perturbations
can be calculated. The exponential growth rate is defined as

αI = − 1

Au

dAu

dx
. (7)

The growth rates for a number of cases are shown in figure 9 for
several different forcing frequencies. For these calculations, a
negative value ofαI indicates instability (perturbation growth),
while a positive value of αI indicates stability (perturbation
decay).

By examining the flowfields, perturbationmagnitudes and
exponential growth rates, it canbe seen that the behaviour of the
TS wave is not homogeneous along the length of the boundary
layer when plasma actuation is introduced into the boundary
layer. Rather, there appear to be a number of distinct regions
in the flow where this behaviour changes. These regions can
be described as the region upstream of the actuator, the regions
immediately around and downstream of the actuator where the
momentum addition by the body force strongly modifies the
flow field, and finally the region sufficiently far downstream
such that the modifications to the boundary layer have relaxed
enough to become negligible.

The first region in the flow is the region upstream of the
actuator (x/δ∗

0 < 240), which exhibits only weak changes in
its response to perturbations at the domain inlet. In this region,
the behaviour of the flow is slightly stabilized with the addition
of plasma actuation relative to the non-actuated case, but there
are no significant changes to the structure of the TS wave.

A second region in the flow can be defined as the
region directly around the plasma actuator and its body force
(240 < x/δ∗

0 < 260). Around the actuator, the TS wave
rapidly begins to decay in magnitude (figure 8, inset) to a
lower value than it possessed upstream of the device. As the
disturbance moves over the body force region, production of
the wave’s kinetic energy (defined here using the turbulent
kinetic energy production, P = −u′

iu
′
j

∂ui

∂xj
) is reduced,

and even becomes negative for large enough amounts of
plasma actuation (figures 10(b), (e) and (h)). Kinetic energy
production is normally offset by dissipation (defined here using
the turbulent kinetic energy dissipation, ε = 2

Re
s ′
ij s

′
ij where

s ′
ij = 1

2 (
∂u′

i

∂xj
+

∂u′
j

∂xi
), figures 10(c), (f ) and (i)). In the present

scenario, the production of the TS wave’s kinetic energy is
reversed by the addition of the body force, which immediately
begins to attenuate the perturbationmagnitude, with dissipative
effects compounding this attenuation. This near immediate
drop in perturbation’s growth around the plasma actuator
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Figure 9. Exponential growth rates of the perturbations for the non-dimensional frequencies (a) F × 106 = 80, (b) F × 106 = 100,
(c) F × 106 = 120 and (d) F × 106 = 140.

indicates that the localized changes in the velocity field around
the body force region are stabilizing. Again, there is no
significant change in the structure of the TS wave at this point
(figure 11(a)), even though its magnitude does begin to drop
at this point.

By examining the flow fields downstream of the actuator
(260 < x/δ∗

0 < 600, shown in figure 10), it is seen that the
effects of flow stabilization continue (figure 10). The reduced
production of perturbation kinetic energy leads to additional
attenuation of the TS wave. The amount of perturbation
energy production and dissipation are reduced in the flow
farther downstream of the actuator, though this can likely be
attributed to the reduced magnitude of the TS wave in this
region. Furthermore, it seems that as soon as thewave convects
over the actuator, it moves slightly away from the wall, before
moving back down towards it. This effect is very small for
the weaker levels of plasma actuation, but can be more clearly
seen for γ0 = 0.20 and γ0 = 0.25. This movement of the TS
wave away from the wall can be more clearly seen through the
perturbation velocity profiles (figure 11). It can be seen that
the TS waves are modified by the changing boundary layer
profiles, but in the near-actuator region, the shape of the TS
wave is preserved. However, as one examines the velocity
profiles farther downstream where the perturbation has moved
away from the wall, the shape of the perturbation changes
significantly for the cases involving higher levels of plasma

actuation, and more of the perturbation’s energy is transferred
away from the wall (i.e. γ0 = 0.20 and γ0 = 0.25).

As the modifications to the boundary layer by the body
force relax back to zero as one moves downstream, the TS
wave eventually returns to its original state. It can be seen
in the perturbation growth rates (figure 9), that the growth
of the perturbations matches the baseline non-actuated case
downstream of the plasma actuator, indicating that this final
region begins at x/δ∗

0 ≈ 600. Beyond this point, it would
seem that the impact of the momentum addition is essentially
zero.

4.1. Overall stabilization of the TS wave

Understanding the localized behaviour of the flow stabilization
provides insight into the underlying physical mechanisms at
play, but at the same time, it is also beneficial to reduce
the entire TS wave stabilization process down to a single
value, such that the total effect of the stabilization can be
understood. In order to understand this total effect of the
addition of momentum into the boundary layer using DBD
plasma actuation, the ratio of the perturbationmagnitudes with
and without plasma actuation can be used. In figure 12(a),
it can be seen that sufficiently far downstream of the plasma
actuation (i.e. the regionwhere themodifications to the stability
properties have relaxed away), the ratio of the perturbation
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Figure 10. (a), (d), (g) Real component of the u perturbation velocity for the non-dimensional frequency of F × 106 = 140, (b), (e), (h)
perturbation kinetic energy production and (c), (f ), (i) perturbation kinetic energy dissipation for plasma actuation levels of (a)–(c)
γ0 = 0.00 (no plasma actuation), (d)–(f ) γ0 = 0.10 and (g)–(i) γ0 = 0.20. The black line indicates a domain within which the body force is
at least 10% of its maximum. The contour values in this plot saturate in order to show greater details for smaller values of the perturbation
velocity, perturbation kinetic energy production and perturbation kinetic energy dissipation.
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Figure 11. u-velocity profiles of the boundary layer disturbance at selected points in the boundary layer, normalized by each profile’s
maximum value for F × 106 = 100. (a) x/δ∗

0 = 250, (b) x/δ∗
0 = 300, (c) x/δ∗

0 = 350, (d) x/δ∗
0 = 400, (e) x/δ∗

0 = 400, and (f ) x/δ∗
0 = 450.

magnitudes is approximately constant. An average of the ratio
of the perturbation magnitudes can be taken over a length of
the boundary layer downstream of the actuation (Bu) in order
to quantify this ratio in a more general manner. Defining this
metric as

Bu = 1

xe − xs

∫ xe

xs

Au (x, γ0)

Au (x, γ0 = 0)
dx (8)

where xs/δ
∗
0 = 700 and xe/δ

∗
0 = 1000. Using this metric,

it appears that the averaged ratio of the magnitudes is weakly
dependent on the frequency of the perturbations (figure 12(b)).
Furthermore, it appears that the relative magnitude of these
perturbations is much more dependent on the momentum
addition into the boundary layer through plasma actuation.

For small values of the velocity ratio, the level of damping
is proportional to the velocity ratio (that is, 1 − Bu ∝ γ0,

figure 13(a)). However, as the magnitude of the velocity ratio
increases, this linear approximation of the damping breaks
down. For larger levels of plasma actuation, it appears that
the relative damping of the TS wave is more closely related
to the amount of momentum addition into the boundary layer
by the plasma body force (figure 13(b)) and that the relative
magnitude of the perturbations decreases exponentially with
respect to Dc (that is, Bu ∝ exp(−kDc), where k is a
constant).

5. Conclusion

The present bi-global stability analysis has examined how
continuous momentum addition into a zero pressure gradient
boundary layer through a plasma-based body force can be
used to stabilize the TS path to transition. Two-dimensional
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Figure 12. (a) A comparison of the ratio of the perturbation magnitudes for varying values of the velocity ratio γ0 for the non-dimensional
frequency F × 106 = 100. (b) Average values of the velocity ratio along a length of the boundary layer downstream of the plasma actuation
as a function of the non-dimensional frequency.
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Figure 13. A comparison of the ratio of the perturbation magnitudes for varying non-dimensional frequencies 75 < F × 106 < 175
as a function of the (a) velocity ratio, and (b) proportional to the amount of momentum addition. The dashed lines indicate the
(a) linear (1− Bu ∝ γ0) decrease in the relative magnitudes of the perturbations.

boundary layer simulations are performed simulating the
effects of a body force. The resulting boundary layer flows are
characterized by the relevant flow effects. Parametric studies
are performed by varying the frequency of the oncoming TS
wave, as well as the magnitude of the body force injected into
the flow.

By examining the local flow physics around and
downstream of the momentum injection point, a number
of different effects are seen to occur. There is a sudden
stabilization of the flow around the actuator. Immediately
downstream of the actuator, where the displacement boundary
layer heights and shape factor are reduced, the TS perturbation
is further stabilized, leading to a significant decrease in
its magnitude. Sufficiently far downstream of the point
of momentum addition, the effects of flow control become
minimal, and the flow returns to its uncontrolled state.

Based on the parametric studies, the relative magnitude of
the oncoming TSwaves can bemonotonically decreased as the
body force injectingmomentum into the flow is increased. The
magnitude of the perturbation can be decreased by up to two

orders ofmagnitude across awide range of frequencies, though
more modest reductions in perturbation magnitude are seen
for smaller levels of plasma actuation. For smaller amounts
of plasma actuation, the stabilization effects are proportional
to the velocity ratio between the free-stream velocity and the
induced velocity of the body force under quiescent conditions.
For larger magnitudes of plasma actuations, the stabilization
of the TS wave appears to be exponential with respect to the
amount of momentum added to the boundary layer.

Future work in this topic should focus on examining
the other paths to turbulence and any relevant receptivity
mechanisms [4], as well as characterizing their behaviour
at higher Reynolds numbers and in the presence of pressure
gradients. While this study, along with other studies described
in the literature, indicates that plasma actuators can be used
to stabilize the TS transition path, the impact of using these
actuators to control other instabilities, such as the growth of
three-dimensional vortex streaks in boundary layers [23, 24],
is still unknown. Furthermore, these actuators generate very
localized changes in the boundary layer, which could lead to
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the boundary layer becoming more receptive to free-stream
perturbations [26], an issue that is yet to be examined for this
particular type of actuator. However, if all of the available
paths for the flow to transition to turbulence are stabilized over
a sufficiently wide parametric space of boundary layer flows,
then thismanner of flow control could have a significant impact
in reducing the turbulent skin friction experienced by air and
ground vehicles.
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