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This work presents a physics based circuit model for calculating the total energy dissipated into
neutral species for nanosecond pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas.
Based on experimental observations, it is assumed that the nanosecond pulsed DBD’s which have
been proposed for aecrodynamic flow control can be approximated by two independent regions of
homogeneous electric field. An equivalent circuit model is developed for both homogeneous regions
based on a combination of a resistor, capacitors, and a zener diode. Instead of fitting the resistance to
an experimental data set, a formula is established for approximating the resistance by modeling
plasmas as a conductor with DC voltage applied to it. Various assumptions are then applied to the
governing Boltzmann equation to approximate electrical conductivity values for weakly ionized
plasmas. The developed model is then validated with experimental data of the total power dissipated
by plasmas. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792665]

. INTRODUCTION

The need for improved control over aerodynamic flow
separation has increased interest in the potential use of
plasma actuators. The inherent advantages of plasma actuator
flow control devices include: fast response time, surface com-
pliance, lack of moving parts, and inexpensiveness. However,
it has been established that the actuators which affect the
flow via directed momentum transfer are not effective at
Mach numbers associated with most subsonic aircraft appli-
cations. Recently, Roupassov ez al.' demonstrated that pulsed
plasma actuators, in which energy imparted to the flow
appears to effectively control flow separation, seem to be
suitable at Mach numbers (M = 0.3) beyond the capabilities
of the current plasma induced momentum based approaches.

Given the fundamental differences between the novel
pulsed discharge approach and the more conventional mo-
mentum based approaches, there is a need to develop an effec-
tive and efficient model for the energy delivered to the flow
by the plasma. Once calculated, that value can be input to a
computational fluid dynamics solver as an energy source term
resulting in a coupled fluid/plasma dynamics model.
Multiphysics models of this type are required in order to study
detailed flow characteristics. However, detailed numerical
simulations involving plasma Kinetics are computationally
prohibitive for a variety of coupled fluid/plasma design prob-
lems. To address this issue, efficient circuit element models
have been introduced to approximate the complex processes
within plasmas. Circuit models such as those by Orlov” rely
on empirical constants which may not be applicable to nano-
second pulsed discharges. To date, an approximate model of
nanosecond pulsed plasma actuators has not been developed.
This paper deals primarily with establishing a flexible model
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with relevant physics that could be implemented as an approx-
imation for the energy dissipated within a plasma for any
pulsed direct current (DC) dielectric barrier discharge (DBD)
configuration. Among the other goals in this paper is to probe
into the background processes that occur within plasmas and
incorporate that knowledge into the model.

Il. LUMPED ELEMENT CIRCUIT MODEL

One of the primary assumptions in creating this model is
that nanosecond pulsed DBD’s can be approximated by two
independent regions of homogeneous electric field. One such
region, dubbed the “hot spot” is the region adjacent to the
powered electrode. This region makes up a small portion of
the total discharge area but was observed to be an important
component of the plasma discharge and necessary to obtain
agreement with experimentally measured shock wave dynam-
ics by Roupassov et al.' The other region, dubbed the “tail,”
encompasses the rest of the plasma discharge and extends to
the edge of the dielectric. As both regions are independent,
the model presented in this paper consists of a single network
for each region containing a resistor, capacitors, and a diode.

As shown in Fig. 1, circuit elements that were used to
model the plasma include: an air capacitor C,, a dielectric
capacitor Cy, a resistor Ry, and a zener diode Dy. The air ca-
pacitor represents the capacitance between the dielectric sur-
face and the exposed electrode. The dielectric capacitor
represents the capacitance between the dielectric surface and
insulated electrode and is proportional to the thickness of the
dielectric layer. Thus, the dielectric layer in the form of both
its thickness and the value of its dielectric constant plays an
important role in determining the effectiveness of the plasma
actuator. Finally, the zener diode, introduced by Orlov? is
utilized in the model to enforce an energy threshold value
below which plasma will not form.

© 2013 American Institute of Physics
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FIG. 1. Electric circuit model of a dielectric aerodynamic plasma actuator.

Since a uniform charge distribution along the top of the
dielectric is assumed, the typical asymmetric 2D plasma actu-
ator geometry featured in Fig. 1 can be simplified to a series
of homogeneous symmetric regions. As shown in Fig. 2, these
regions include: an anode sheath, “hot spot,” and “tail.” This
assumption results in a series of coupled 1D models that
account for the chordwise variation along the actuator. Fig. 3
shows the simplified circuit model within each homogeneous
region.

A. Circuit

As displayed in Fig. 1, the lumped element circuit is a
function of the two capacitance values, C, and C,. In this
model, the air is treated as both a conductor to generate a
physical relationship for the resistance Ry and a parallel plate
capacitor to generate C,. An advantage of modeling the
plasma as a conductor in addition to a parallel plate capacitor
is that it generates a physical relationship for the resistance,
Ry, a value that is traditionally empirically determined. The
air gap capacitor can be modeled as’

€ €Ay

o ;
ha

e))

where A, is the cross-sectional area of the air and /, is the
approximate height of the plasma region of interest. The
height of the plasma has been shown by Roupassov et al.' to
be approximately independent of applied voltage for nano-
second pulsed DBD actuators. As displayed in Fig. 4, A, is
the product of the spanwise length of the actuator z, and /,,
the chordwise distance from the exposed electrode to the end
of the dielectric region.

The capacitive element corresponding to the dielectric
can be modeled as®
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FIG. 2. Plasma discharge regions analyzed in this study.
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where A, is the cross-sectional area of the dielectric capaci-
tive element and A, is the height of the dielectric barrier
layer. As displayed in Fig. 5, A; is the product of the span-
wise length of the actuator z, and d,, the width of the dielec-
tric region.

Treating the plasma as a conductor, the resistance for DC
voltage is proportional to ¢, A,, and h,. It can be given as’

3)

Starting from Kirchoff’s circuit laws,” the governing dif-
ferential equation for the voltage drop experienced by the air
gap, AV, is given by

dAV(t)  dVy, Ca L) . AV (1)
e dt \C,+Cy Ri(1)(Co+ Cy)’
“)
[ 1if |E| > E
B {0 if |E| < Ecrir, ©)

where V,,, is the applied voltage and « is the contribution
from the zener diode. If the electric field magnitude, given as

-
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FIG. 4. Sketch of the capacitive air element.
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FIG. 5. Sketch of the dielectric capacitive element.
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is greater than the breakdown electric field,? E.i;, required to
ionize air, then x takes on a value of one, otherwise it is zero
to signify that plasma has not formed.

B. Conductivity

To effectively calculate the resistance governed by Eq.
(3), an expression must first be developed for the electrical
conductivity, 6,, of the plasma. This value is one that tradi-
tionally requires a numerical approach. To simplify the prob-
lem to a point where an analytic formulation can be used,
numerous simplifying assumptions were used and are
described in the following paragraphs.

For any plasma, the resulting electric current is com-
posed of two primary terms: the current from electrons and
that from ions. As the drift velocity of electrons, w,, in a
non-equilibrium plasma is significantly higher than ions, the
current density can be approximated as the portion from
electrons if the number densities, N, and N;, are approxi-
mately the same. Using a form of the generalized Ohm’s
Law, the current density vector, J and o), respectively, can
be written as

J =~ —eN.w, = 0,E, (N

op = e(Nep, + Nipy;), (®)

where 1, and u, represent the ion and electron mobilities,
respectively. Much like Eq. (7), the electrical conductivity
relation can be simplified using the concept of quasineutral-
ity which is defined as having approximate equal number
densities for charged particles of opposite polarity. Thus, as
1, is typically three orders of magnitude larger than g, it is a
good assumption to approximate the electrical conductivity
as only coming from electrons as long as N, is at least of the
same order of magnitude as N;.* Quasineutrality is a typical
assumption that is valid as long as the plasma being model-
ing is far enough away from the powered electrode to avoid
the boundary layer in plasma physics called the sheath.

Since a pulsed DC voltage is assumed, the activation of
the external electric field will follow the voltage waveform
as a step function. Thus, two expressions will be required for
0,, where the first is valid for the period when an external
electric field is applied, as shown in Fig. 9 from 0 to 60ns,
and the second when the voltage drop over the air gap is
zero. For the portions of the voltage waveform that AV is
zero, the power is also zero according to Ohm’s Law and
thus the conductivity during this time is of no importance.

To generate a analytic formula for the electrical conduc-
tivity, a distribution function must be introduced to describe
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the physical evolution in the number of particles, f(v,J,r, ),
defined such that f(v,J,r,t) dv is the number of particles in
a unit volume located at point r, time ¢, internal quantum
number J, and differential velocity range v + dv. Using this
distribution function, the number of particles at point r and
time ¢ can be defined as

N(r,t)=Y" Jf(v,],r, f)dv. )

J

This distribution function allows a mathematical
description to be developed for the temporal evolution in the
number of particles resulting from particle collisions within
a control volume. The time rate of change in the number of
particles due to externally applied fields can be described as’

Df _f(v+dv.J,r+dr.t+dt)—f(v.J,rt)
Dt dt '

(10)

A partial differential equation can be developed to
describe Eq. (10) using formulas for the time rate of change of
v and r established using the equation of motion in the form of

dv F

—=— 11
i (11)
dr

— = 12
e (12)

and the chain rule of calculus to obtain the Boltzmann ki-
netic energy equation given as

=y (13)

In order to approximate the total derivative, a relaxation
time can be introduced defined as the time taken for the sys-
tem to be reduced to an equilibrium distribution function. The
tau approximation can be given as T~ (N,.q|v|) "', where
0.4 18 the collision cross section between electrons and atoms,
v is the average collision velocity, and N, is the number den-
sity of atoms.” If the number of particles within a control vol-
ume is defined as a equilibrium distribution function, f,, when
each particle is at the same energy level as its neighbor, then
the particle evolution over time due to pairwise collisions af-
ter an external force has been applied can be given as’

br = _-M_ (14)
Dt T
As 7 only accounts for collisions between electrons and
neutral atoms, it is only accurate in the event of weakly ion-
ized plasma. Plasma actuators considered in this paper tradi-
tionally feature a low degree of ionization, or simply the
amount of air that is ionized, and thus can be treated in a
weakly ionized limit. In terms of the momentum-transfer
collision frequency which can be defined as the mass cor-
rected rate at which a particle of a specific species collides
with another, the criteria for a weakly ionized plasma can be
given as”
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Vei K Ven- (15)

This equation requires that the collision frequency
between electrons and ions be much less than those between
electrons and neutrals. Thus, if this requirement is met, the
collisional occurrences between electrons and charged par-
ticles can be effectively ignored and the relaxation time
established is a good approximation of the total time rate of
change in the number of particles within a control volume.

After introducing a relaxation time to approximate Eq.
(13), an equation of motion describing the average velocity
of electrons can be established by multiplying by m,v and
integrating over the electron velocity. An analytic formula-
tion for the average velocity an electron experiences due to
an externally applied field, w,, can be obtained by assuming
that the force term can be approximated as the Lorentz force

e
F:—eE—E(va), (16)

where B represents the magnetic field and E represents the
electric field. As plasma actuators have no applied magnetic
field, B can be set equal to zero. Therefore, the equation of
motion for an electron describing w, can be given as

medwe(t) — mew,(t)
Jr
dt T

= —eE(1). (17)

Solving Eq. (17), a linear first-order differential equation, an
integral equation is obtained

we(t") = — miexp <— z—i) JOE(t)exp (— ;—Z) de.  (18)

Equation (18) can be solved in conjunction with Eq. (7)
to obtain an expression for the time varying conductivity and
in conjunction with Eq. (8) to obtain an approximation for
the time varying electron mobility if the ion mobility is

o0 1
JJJ Az —my (1 +v* 4 w?)exp

2
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neglected. The electrical conductivity and electron mobility,
respectively, can be given as

o NJ()e (" t—t
1) = s JOE(t)exp N) A9
() ~ — J[*E(t)ex L )
P )P N )

where o,, is a function of electron energy and can be
obtained for various molecules found in air from Phelps.®
Numerical values used in the model are included in the
Appendix. The electron velocity can be obtained by assuming
a Maxwellian velocity profile. As a collection of electrons
within plasma have a range of velocities, the Maxwellian ve-
locity profile represents the most probable distribution of
these velocities. Thus, the distribution of velocities,
f(u,v,w), can be given by*

1
—m(® +v* 4+ w?)

kb Te ’

fu,v,w) =Asexp | — 1)

1

m 2
A; =N, : 22
3 <2nk,,T€> (22)

Using the non-relativistic definition of kinetic energy, a
relationship can be established for the kinetic energy of an
electron that is valid in the limit |v| < ¢, where c is the speed
of light. Using this approximation, the relativistic formula-
tion of the kinetic energy can be approximated as

1
—mc” =~ —my”. (23)

Averaging Eq. (21) and using the non-relativistic definition of
kinetic energy, the mean kinetic energy of electrons becomes”

1
Emg(u2+v2—|—w2)
— du dv d
T u dv dw

. (24)

(U +v* +w?)

where kj, is Boltzmann’s constant. From the definition of ki-
netic energy, the relationship between E,, and |v| with vector
components (u, v, w) can be established and the average ther-
mal velocity of electrons becomes

3k, T,
v = .
m,

(25)

1
00 —~n,
JJJ Aszexp _2

du dv dw
kae

The required inputs for Egs. (19) and (20) include: N,, the
number density of electrons, N,, the number density of atoms,
and T,, the temperature of the electrons. Among these values,
N, can be assumed to be constant in time as the number den-
sity of atoms is significantly higher than that of free electrons.

Many other models incorporate a constant electron
temperature into their model.”’ Using experimentally
measured values of reduced electric field,® E/N, vs.
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electron temperature as detailed in Fig. 6, this model calcu-
lates a new electron temperature at each time step by com-
paring the E/N value experienced by the plasma, produced
from using Egs. (4)—(6), with Fig. 6. It is assumed in this
paper that the effects of an applied electric field have an in-
stantaneous, on a time scale much faster than 107 s, effect
on electrons.

A time-varying differential equation that governs N, can
be obtained from the drift-diffusion equations. The electron
continuity equation that governs N, can be given by

ON,
ot

+V. I, =l - pnn,, (26)

where I', is called the charged species flux, o is the
Townsend coefficient of ionization, and f is the recombina-
tion coefficient between electron and neutral atoms. By sim-
plifying the plasma discharge into a combination of two
homogeneous regions plus an anode sheath and by invoking
the irrotational property of electric fields, Eq. (26) can be
simplified by ignoring any spatial variation in the number
density of electrons, i.e., I', becomes

.~ N.ulE| 27

Assuming the number densities of electrons and ions are
equal, i.e., in the quasineutral region, the electron continuity
equation for air, with a composition of 80% N, and 20% O,,
can be written as

dN,
7 ~ O‘air‘Ne:ueEl - 080ﬁN2N3 - 0'2ﬁ02N327 (28)

where ¢, and f3, respectively, can be approximated as hav-
ing the form’

B
tair = Apexp (— fp) (29)
300
Buy — 2.8 x 1077 (T) (30)
e
Boo=2x 10" (iﬁ), (€28
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FIG. 6. Plot of electron temperature vs. reduced electric field.
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where A and B are empirical constants that have tabulated
values of 15 and 365, respectively, for air at atmospheric
pressure.9

C. Discharge development

The final remaining unknown required to close the equa-
tion system is to determine how the electric potential
changes over the horizontal length of the actuator. To accu-
rately model this, it is important to incorporate the wall
effects of the plasma actuator. In terms of potential variation,
these wall effects attract charged particles of opposite polar-
ity and shield charged particles of the same polarity.
Therefore, for regions beside the anode (powered electrode
for positive pulses), an anode sheath is developed where an
attraction of electrons occurs and a repulsion of positive ions
occur. For regions above the dielectric region on top of the
grounded electrode, a cathode sheath is developed where
positive ions are collected and electrons are repelled. Fig. 7
illustrates the two predominate sheaths that are developed in
asymmetric plasma actuators.

It is important to consider the effects of charge collection
and repulsion in these regions as such phenomenon can have
large effects on the variation of the electric potential over the
chordwise length and height of the plasma discharge.

1. Wall effects

As the model introduced in this paper is interested in
solving for the amount of energy the plasma transfers to neu-
tral species, the relative importance of both the anode and
cathode sheath regions needs to be established. Energy, O, is
a function of electrical conductivity and electric field
strength and can be given as

0 = 0,|E*|Vyo. (32)

Equation (32) shows that the energy transfer from both
sheath regions is proportional to the conductivity of the
plasma within each region. As the cathode sheath region typ-
ically has very few electrons due to repulsion effects, the
current within this region will be carried by positively
charged ions. The mobility of such ions are significantly less
than that of an electron, so as a first order approximation if
the local charged species number density and electric field
strength are assumed equal, the conductivity in the cathode
sheath will be significantly less than the conductivity in a
bulk plasma and the anode sheath, i.e.,

-{ }«Debye Length

2

Exposed Electrode\—Virtual Electrode

FIG. 7. Collective wall effects of the exposed powered electrode and virtual
electrode (dielectric region). (1) Anode sheath and (2) cathode sheath.'?
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When combined with the fact that the volume of both
sheath regions are orders of magnitude less than the bulk
plasma, an order of magnitude approximation to the plasma
discharge can be obtained by ignoring the cathode sheath’s
effects for nanosecond pulsed plasma discharges. Although
the cathode sheath is approximately negligible in terms of
energy transfer, the higher electric field strength and higher
conductivity present in the anode sheath contain important
physics necessary for capturing the energy transferred by a
plasma discharge. Fig. 2 shows the updated “hot spot” and
“tail” regions with the anode sheath included in the hot spot
region adjacent to the powered electrode.

2. Electric potential variation

To establish a variation in the electric potential, the gov-
erning Maxwell equations can be used which are written as”

vV-E=2 (34)
€0
V-B=0, (35)
OB
VxE=-=, (36)
OE
V X B = pod + toeo— (37

ot’

in differential form where p; = e(n; — n,) is the net charge
density and p, is the permeability of free space. In the ab-
sence of a time-varying magnetic field, Eq. (36), Faraday’s
Law of Induction, simplifies to

V xE =0, (38)
and since the curl of E is zero, the electric field can be solved
for as a potential function ¢ and substituted into Gauss’
Law, Eq. (34). The resulting equations, respectively, can be
given by

E=-V¢, (39)

V2= P (40)

€
The net charge density within the quasineutral region of a
plasma is equal to zero as n, = n;. For the anode sheath, the
net charge density can be approximated if the plasma is
assumed to uniformly distribute its charge density. Therefore,
the quasineutral region of the “hot spot” and “tail” features

12 eN,
D~ /D
€0

N, N,
eNe {e

260 2€0L

eNe 2 +
V.
260l P L

Vbreak - Vapp:| ()C .
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equal number densities of both electrons and ions (1, = n;),
while the cathode and anode sheaths only have electron and
ion densities, respectively. If this is assumed then the anode
sheath can be approximated as having a net charge density
equal to the quasineutral region’s calculated electron number
density. By assuming the anode sheath is devoid of any posi-
tive ions and has a time-dependent number density of elec-
trons, Poisson’s equation for the sheath can be given by

2
dq’)_eNe(t). @)

dx? €0

If this form is assumed for a single Debye length (4p), then
the remaining discharge (rest of “hot spot” and “tail”’) region
is part of the quasineutral bulk plasma and can be given by
Laplace’s equation

(42)

The ordinary differential equations for electric potential vari-
ation in the hot spot and tail regions, respectively, can be
solved to provide an approximate 1D spatial variation

eN, , .
—x +Cix+Cyif x< 2

d(x) =< 2¢ ! : =P (43)
Cix+ Cy if x> Ap.

Equation (43) requires a total of 4 boundary conditions.
Those can be summarized as

¢1(X = O) = Vappa (44)
¢2 (X = L) = Vbreaks (45)
¢ (x = Jp) = ¢y (x = /p), (46)
d d
W1 x = ) = 2 (x = i), @7

where ¢, is the potential in the anode sheath, ¢, is the poten-
tial in the quasineutral region, L is length of the actuator, and
/p is a Debye length. The first boundary condition is V, at
the cathode and the second is based on the experimental obser-
vations by Roupassov et al.' It was observed that a plasma dis-
charge could be approximated as stopping at the edge of the
grounded electrode for asymmetric actuators independent of
the applied voltage; so, the edge represents the absolute limit
of ionization or the breakdown voltage of air. Using Egs.
(44)—(47) as boundary conditions, the potential becomes

Vhreak - Vapp

I leS/lD

X+ Vapp
(48)

L) + Vireak if x> /ID.
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The Debye length provides an order of magnitude
approximation for the extent of a plasma sheath by assuming
an exponential Boltzmann distribution in the charge density
within the plasma discharge. Substituting this into Poisson’s

equation,
d’¢ ed
5 — Noo -1 5
€0 2 =¢ {exp <khTe

where N, is the charged particle density far away from the
electrode. Taking a first-order Taylor expansion, the Debye
length can be given as®

2 6()ka€ %
D Nooez .
Although at high voltages, a first-order approximation fails,

Eq. (50) still provides an order of magnitude approximation
of the extent of the anode sheath.

(49)

(50)

D. Numerical procedure

When solving for the energy imparted to neutral species,
a coupled equation system results from Eqgs. (4) and (28).
The coupled terms include

R¢ o N, (S
I, ox AV, (52)
B x AV, (53)
¢y o< Ne. (54)

To solve the resulting equation system, the Dormand-Prince
Runge-Kutta method was employed. This method provides
an efficient way to incorporate an adaptive step size that is
important for computational efficiency in a problem that
requires small time steps for convergence. The benefit of
such a procedure can be illustrated through a simplistic
example. If the error of each time step is defined as

& = y(t) = Vi (55)
then if two step sizes are considered, /#; and /,, the error of
each iteration and their relative error, respectively, can be
given as

y(t) — yp = €y, = ahy, (56)
y(t) = yo, = €2, = ahy, (57)
Y1212 - len = a(hl - hz)- (58)

Therefore, for a given error tolerance, €, a sequence of step
sizes can be generated

(hi — hivr)e
hiyo = q%7
‘ nit1 — Vil

(59)
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TABLE I. Experimental parameters."

h, 0.4 mm
ha 0.3 mm
€4 2.7

€4 1

A, 30 mm?
Ay 30 mm?
\'% 50kV
AT 60ns

which allows a numerical ODE solver, such as those employ-
ing the Dormand-Prince method to minimize functional error
by adjusting the step size after each time step.'” Numerical
integration required for Eqs. (19) and (20) and energy
derived from the circuit model, given as

dr, 60
oR(2) ' (0

Jf sz

were performed via the Gauss-Kronrod quadrature method'®
at each time step.

lll. RESULTS
A. Validation against experiment

To validate the accuracy of the model described in this
paper, comparisons with data presented in Roupassov
et al." are provided. The experimental parameters that were
mentioned and used in the circuit model are given in Table
I. Reference 1 uses the electrode configuration detailed in
Fig. 8.

Fig. 9 illustrates an approximation of the applied voltage
square wave that was introduced in the experimental work of
Roupassov et al.' The slope that is introduced is to simulate
a function that is differentiable. This is needed for V7, (¢) in
the governing differential equation as detailed by Egs. (4)
and (5). One could also generate a continuous function using
Fourier decomposition of a traditional square wave; how-
ever, this would not account for the minor rise and fall times
found in experimentation.

Smm @
—>

®

> <

0.05 mm

FIG. 8. Experimental scheme used by Roupassov et al.' for the discharge
gap. (1) High-voltage electrode; (2) dielectric layer; (3) low-voltage elec-
trode, (4) zone of discharge propagation, and (5) insulating plane.
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FIG. 9. Plot of the input voltage, V,, vs. time used in the model.

B. “Hot spot” results

For the small region of 0.4 mm x 0.4 mm over all time
outside of the anode sheath, the time variation in the number
density can be established. As an initial condition for Eq.
(28), 10" m > electrons were assumed based on work by
Ref. 1. As displayed in Fig. 10, there is a large gradient that
occurs during the rise time that peaks around 1.13 x 10"
m . It is also evident in Fig. 10 that the recombination of
electrons is largely negligible on the nanosecond time scale.
If a frequency of 1 kHz is used, the recombination of elec-
trons with atoms allows a steady-state electron number den-
sity to be achieved on the nanosecond time scale. The
recombination of electrons becomes a significant quantity
when exploring the dynamics of a plasma discharge on the
microsecond time scale.

Using Eq. (4) and Fig. 6, the model was able to produce
a time-varying electron temperature. As displayed in Fig. 11,
there is an initial spike in the electron temperature to 29 eV
(=340000K) that coincides with the peak in electron num-
ber density at 11 ns. Fig. 11 also suggests that the assumption
of a constant electron temperature is not an accurate assump-
tion for nanosecond pulsed DBD plasmas. The variability in
the electron temperature beyond 40 ns is due to the numerical
error tolerances that are selected when solving Egs. (4), (19),
and (28). Fig. 11 shows that when reducing the relative error
in the Dormand-Prince method from 1072 to 1072, the strong
functional variability experiences a significant reduction.
The higher the gradients are during the rise and fall time, the

J. Appl. Phys. 113, 083301 (2013)
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FIG. 10. Plot of electron number density vs. time for the “hot spot.”

finer the relative error tolerances are required to be to guar-
antee convergence of a solution.

Using the results displayed in Figs. 10 and 11, the total
power dissipated to neutral species as a function of time can
be established. Using the result of Eq. (4) and the relation-
ship for the instantaneous power, the time-varying power
imparted to the flow can be given as’

_ AV3(1)

P(1) R ()

(61)

As shown in Fig. 12, the instantaneous power is domi-
nate during the rise time for the “hot spot” region. Upon inte-
grating the instantaneous power over time using Eq. (60),
this model produces an energy value of 2.1 ml] for this
region. When compared to the experimentally determined
value of 4.2 mJ by Roupassov er al.,' this model produces an
order of magnitude estimate for the energy imparted to neu-
tral species in this region.

C. “Hot spot” sheath results

Using the Debye length approximation provided by Eq.
(50) and the solution from the quasineutral “hot spot” region
(n, ~ 10" m—>, T, ~ 10 eV), a Debye length of 7.43 um is
generated. The electron number density experienced in the
anode sheath is assumed to be equal to the values calculated
in the adjacent “hot spot” region. Fig. 13 shows the time

FIG. 11. Plot of electron temperature vs.
time for the “hot spot™: (a) 1072 error
and (b) 1072 error.
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FIG. 12. Plot of power vs. time for the “hot spot.”

variation in the electron number density within the sheath
and also shows a peak number density of 1.13 x 10! m~3,

Using the revised form of the electric potential within
the anode sheath given by Eq. (48) and using Fig. 6, the elec-
tric temperature variation over the duration of the pulse can
be established. As displayed in Fig. 14, there is an initial
spike in the electron temperature to (=348 000 K) that coin-
cides with the peak in electron number density at 11 ns much
like the hot spot region.

As shown in Fig. 15, the instantaneous power is dominant
during the rise time for the anode sheath region. Upon inte-
grating the instantaneous power over time using Eq. (60), this
model produces an energy value of 0.045 mJ for this region.
This number is quite small compared to the 2.1 mJ experi-
enced in the “hot spot” region. However, the anode sheath
does have a slightly higher linear energy density than the “hot
spot” region (6J/m vs. 5.25J/m). The reason that there is not
significant deviation predicted in the anode sheath and quasi-
neutral “hot spot” regions is that explicit charge buildup is not
accounted for in the circuit model within the sheath region.
As shown by Ref. 11, the electric field in the sheath and adja-
cent quasineutral regions are approximately equal until charge
buildup is allowed within the anode sheath during the length
of the pulse or a series of pulses.
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FIG. 13. Plot of electron number density vs. time for the “hot spot” sheath.
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FIG. 15. Plot of power vs. time for the “hot spot” sheath.
D. “Tail” results

For the region 0.4 mm x 4.6 mm, the time variation in
the number density can be established. As an initial condi-
tion for Eq. (28), 10" m3 electrons were assumed, the same
number of electrons assumed for the “hot spot” region.
When comparing Figs. 10 and 16, the tail region experiences
a lower growth rate in the number of electrons which is due
to the lower electric field experienced by this region. As
described by Eq. (28), a lower electric field produces a lower
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FIG. 16. Plot of electron number density vs. time for the “tail.”
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FIG. 17. Plot of electron temperature vs. time for the “tail.”

number of ionizations and therefore a more gradual rise and
lower total peak in N,, approximately 3.4 x 10'7 m ™.

Using Eq. (4) and Fig. 6, the model was able to produce
a time-varying electron temperature. As displayed in Fig. 17,
the traditional assumption of 1eV (=11600K) does not
agree well with the results obtained in this model for the tail
region on the nanosecond time scale. Instead, Fig. 17 sug-
gests that the peak electron temperature is achieved during
the rise time of the pulse, 220000K (x~19eV) and then
trends downward during the plateau portion of the voltage
waveform. Much like Fig. 11, the highest electron tempera-
tures are achieved during the initial high gradient of the
pulse. Fig. 17, unlike Fig. 11, also shows a rise in electron
temperature during the fall time of the pulse as well. This is
due to the lower electric potential and negative gradient
experienced in the tail region during the fall time.

As shown in Fig. 18, the instantaneous power is dominant
during the plateau portion of the applied voltage pulse for the
“tail” region. Upon integrating the instantaneous power over
time using Eq. (60), this model produces an energy value of
6.6 mJ. When compared to the experimentally determined
value of 8 mJ by Roupassov ez al.,' this model produces an
absolute error of ~17.5%. The significant improvement in
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FIG. 18. Plot of power vs. time for the “tail.”
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TABLE II. Comparison between calculated and experimentally measured
energy deposition.

Circuit model (mlJ]) Experimemal1 (m]) Abs. error (%)

Hot spot’ 2.1 42 50
Tail’ 6.6 8 17.5
Total 8.7 12.2 28.7

accuracy for the tail region can likely be attributed to the
larger distance from the cathode. This increase in distance
improves the assumptions of quasineutrality and that the spa-
tial diffusion of charged species is negligible. The region
close to the cathode features complicated ion and electron
buildup and as the relative distance from the cathode
increases, its impact on the problem becomes negligible.

Table II summarizes the results obtained using the cir-
cuit model presented in this paper and associated experimen-
tal measurements made by Roupassov er al.' for both the
“hot spot” and “tail” regions.

IV. CONCLUSION

A new lumped element circuit model was presented that
is valid for pulsed DC DBD plasmas. The model approxi-
mates the total energy dissipated into neutral species using a
lumped element circuit while containing relevant plasma
physics in the form of a variable electron temperature and
number density. An approximate expression was formulated
using the conductivity of the discharge to calculate the resist-
ance value for the air gap. Asymmetric wall effects were
also approximated in the model by including the effect of the
anode sheath. Results of the model were verified against a
pulsed DC experiment conducted by Roupassov et al.' and
order of magnitude agreement was obtained for the energy
imparted into the plasma in both the homogeneous “hot spot™
region and “tail” region.
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APPENDIX: CROSS-SECTION DATA

The momentum cross sections used for the numerical
approximations in the model are shown in Table III. These
values were obtained by A. V. Phelps.°

TABLE III. Momentum cross sections.®

Kinetic energy (eV) N, (10~ "°cm?) 0, (10 '%cm?)

1 10 7.2
2.1 27 6.6
3 21.7 5.7
12.6 55
5 10.9 5.6
10 10.4 5
15 11 8.8
20 10.2 8.6
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