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This work presents a physics based circuit model for calculating the total energy dissipated into

neutral species for nanosecond pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas.

Based on experimental observations, it is assumed that the nanosecond pulsed DBD’s which have

been proposed for aerodynamic flow control can be approximated by two independent regions of

homogeneous electric field. An equivalent circuit model is developed for both homogeneous regions

based on a combination of a resistor, capacitors, and a zener diode. Instead of fitting the resistance to

an experimental data set, a formula is established for approximating the resistance by modeling

plasmas as a conductor with DC voltage applied to it. Various assumptions are then applied to the

governing Boltzmann equation to approximate electrical conductivity values for weakly ionized

plasmas. The developed model is then validated with experimental data of the total power dissipated

by plasmas. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792665]

I. INTRODUCTION

The need for improved control over aerodynamic flow

separation has increased interest in the potential use of

plasma actuators. The inherent advantages of plasma actuator

flow control devices include: fast response time, surface com-

pliance, lack of moving parts, and inexpensiveness. However,

it has been established that the actuators which affect the

flow via directed momentum transfer are not effective at

Mach numbers associated with most subsonic aircraft appli-

cations. Recently, Roupassov et al.1 demonstrated that pulsed

plasma actuators, in which energy imparted to the flow

appears to effectively control flow separation, seem to be

suitable at Mach numbers (M � 0.3) beyond the capabilities

of the current plasma induced momentum based approaches.

Given the fundamental differences between the novel

pulsed discharge approach and the more conventional mo-

mentum based approaches, there is a need to develop an effec-

tive and efficient model for the energy delivered to the flow

by the plasma. Once calculated, that value can be input to a

computational fluid dynamics solver as an energy source term

resulting in a coupled fluid/plasma dynamics model.

Multiphysics models of this type are required in order to study

detailed flow characteristics. However, detailed numerical

simulations involving plasma kinetics are computationally

prohibitive for a variety of coupled fluid/plasma design prob-

lems. To address this issue, efficient circuit element models

have been introduced to approximate the complex processes

within plasmas. Circuit models such as those by Orlov2 rely

on empirical constants which may not be applicable to nano-

second pulsed discharges. To date, an approximate model of

nanosecond pulsed plasma actuators has not been developed.

This paper deals primarily with establishing a flexible model

with relevant physics that could be implemented as an approx-

imation for the energy dissipated within a plasma for any

pulsed direct current (DC) dielectric barrier discharge (DBD)

configuration. Among the other goals in this paper is to probe

into the background processes that occur within plasmas and

incorporate that knowledge into the model.

II. LUMPED ELEMENT CIRCUIT MODEL

One of the primary assumptions in creating this model is

that nanosecond pulsed DBD’s can be approximated by two

independent regions of homogeneous electric field. One such

region, dubbed the “hot spot” is the region adjacent to the

powered electrode. This region makes up a small portion of

the total discharge area but was observed to be an important

component of the plasma discharge and necessary to obtain

agreement with experimentally measured shock wave dynam-

ics by Roupassov et al.1 The other region, dubbed the “tail,”

encompasses the rest of the plasma discharge and extends to

the edge of the dielectric. As both regions are independent,

the model presented in this paper consists of a single network

for each region containing a resistor, capacitors, and a diode.

As shown in Fig. 1, circuit elements that were used to

model the plasma include: an air capacitor Ca, a dielectric

capacitor Cd, a resistor Rf , and a zener diode Df . The air ca-

pacitor represents the capacitance between the dielectric sur-

face and the exposed electrode. The dielectric capacitor

represents the capacitance between the dielectric surface and

insulated electrode and is proportional to the thickness of the

dielectric layer. Thus, the dielectric layer in the form of both

its thickness and the value of its dielectric constant plays an

important role in determining the effectiveness of the plasma

actuator. Finally, the zener diode, introduced by Orlov2 is

utilized in the model to enforce an energy threshold value

below which plasma will not form.
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Since a uniform charge distribution along the top of the

dielectric is assumed, the typical asymmetric 2D plasma actu-

ator geometry featured in Fig. 1 can be simplified to a series

of homogeneous symmetric regions. As shown in Fig. 2, these

regions include: an anode sheath, “hot spot,” and “tail.” This

assumption results in a series of coupled 1D models that

account for the chordwise variation along the actuator. Fig. 3

shows the simplified circuit model within each homogeneous

region.

A. Circuit

As displayed in Fig. 1, the lumped element circuit is a

function of the two capacitance values, Ca and Cd. In this

model, the air is treated as both a conductor to generate a

physical relationship for the resistance Rf and a parallel plate

capacitor to generate Ca. An advantage of modeling the

plasma as a conductor in addition to a parallel plate capacitor

is that it generates a physical relationship for the resistance,

Rf , a value that is traditionally empirically determined. The

air gap capacitor can be modeled as3

Ca ¼
�0�aAa

ha
; (1)

where Aa is the cross-sectional area of the air and ha is the

approximate height of the plasma region of interest. The

height of the plasma has been shown by Roupassov et al.1 to

be approximately independent of applied voltage for nano-

second pulsed DBD actuators. As displayed in Fig. 4, Aa is

the product of the spanwise length of the actuator za and la,

the chordwise distance from the exposed electrode to the end

of the dielectric region.

The capacitive element corresponding to the dielectric

can be modeled as3

Cd ¼
�0�dAd

hd
; (2)

where Ad is the cross-sectional area of the dielectric capaci-

tive element and hd is the height of the dielectric barrier

layer. As displayed in Fig. 5, Ad is the product of the span-

wise length of the actuator za and dd, the width of the dielec-

tric region.

Treating the plasma as a conductor, the resistance for DC

voltage is proportional to rp, Aa, and ha: It can be given as3

Rf ¼
ha

rpAa
: (3)

Starting from Kirchoff’s circuit laws,3 the governing dif-

ferential equation for the voltage drop experienced by the air

gap, DV, is given by

dDVðtÞ
dt

¼ � dVapp

dt

Ca

Ca þ Cd
� 1

� �
� j

DVðtÞ
Rf ðtÞðCa þ CdÞ

;

(4)

j ¼ 1 if jEj > Ecrit

0 if jEj � Ecrit;

�
(5)

where Vapp is the applied voltage and j is the contribution

from the zener diode. If the electric field magnitude, given as

FIG. 2. Plasma discharge regions analyzed in this study.

FIG. 3. Region of homogeneous potential, i.e., “hot spot.”

FIG. 1. Electric circuit model of a dielectric aerodynamic plasma actuator.

FIG. 4. Sketch of the capacitive air element.
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jEj ¼ jDVj
ha

; (6)

is greater than the breakdown electric field,2 Ecrit, required to

ionize air, then j takes on a value of one, otherwise it is zero

to signify that plasma has not formed.

B. Conductivity

To effectively calculate the resistance governed by Eq.

(3), an expression must first be developed for the electrical

conductivity, rp, of the plasma. This value is one that tradi-

tionally requires a numerical approach. To simplify the prob-

lem to a point where an analytic formulation can be used,

numerous simplifying assumptions were used and are

described in the following paragraphs.

For any plasma, the resulting electric current is com-

posed of two primary terms: the current from electrons and

that from ions. As the drift velocity of electrons, we, in a

non-equilibrium plasma is significantly higher than ions, the

current density can be approximated as the portion from

electrons if the number densities, Ne and Ni, are approxi-

mately the same. Using a form of the generalized Ohm’s

Law, the current density vector, J and rp, respectively, can

be written as

J � �eNewe ¼ rpE; (7)

rp ¼ eðNele þ NiliÞ; (8)

where li and le represent the ion and electron mobilities,

respectively. Much like Eq. (7), the electrical conductivity

relation can be simplified using the concept of quasineutral-

ity which is defined as having approximate equal number

densities for charged particles of opposite polarity. Thus, as

le is typically three orders of magnitude larger than li, it is a

good assumption to approximate the electrical conductivity

as only coming from electrons as long as Ne is at least of the

same order of magnitude as Ni.
4 Quasineutrality is a typical

assumption that is valid as long as the plasma being model-

ing is far enough away from the powered electrode to avoid

the boundary layer in plasma physics called the sheath.

Since a pulsed DC voltage is assumed, the activation of

the external electric field will follow the voltage waveform

as a step function. Thus, two expressions will be required for

rp, where the first is valid for the period when an external

electric field is applied, as shown in Fig. 9 from 0 to 60 ns,

and the second when the voltage drop over the air gap is

zero. For the portions of the voltage waveform that DV is

zero, the power is also zero according to Ohm’s Law and

thus the conductivity during this time is of no importance.

To generate a analytic formula for the electrical conduc-

tivity, a distribution function must be introduced to describe

the physical evolution in the number of particles, f ðv; J; r; tÞ,
defined such that f ðv; J; r; tÞ dv is the number of particles in

a unit volume located at point r, time t, internal quantum

number J, and differential velocity range vþ dv. Using this

distribution function, the number of particles at point r and

time t can be defined as

Nðr; tÞ ¼
X

J

ð
f ðv; J; r; tÞdv: (9)

This distribution function allows a mathematical

description to be developed for the temporal evolution in the

number of particles resulting from particle collisions within

a control volume. The time rate of change in the number of

particles due to externally applied fields can be described as5

Df

Dt
¼ f ðvþ dv; J; r þ dr; tþ dtÞ � f ðv; J; r; tÞ

dt
: (10)

A partial differential equation can be developed to

describe Eq. (10) using formulas for the time rate of change of

v and r established using the equation of motion in the form of

dv

dt
¼ F

m
; (11)

dr

dt
¼ v; (12)

and the chain rule of calculus to obtain the Boltzmann ki-

netic energy equation given as

Df

Dt
¼ @f

@t
þ v � @f

@r
þ F

m
� @f

@v
: (13)

In order to approximate the total derivative, a relaxation

time can be introduced defined as the time taken for the sys-

tem to be reduced to an equilibrium distribution function. The

tau approximation can be given as s � ðNareajvjÞ�1
, where

rea is the collision cross section between electrons and atoms,

v is the average collision velocity, and Na is the number den-

sity of atoms.5 If the number of particles within a control vol-

ume is defined as a equilibrium distribution function, f0, when

each particle is at the same energy level as its neighbor, then

the particle evolution over time due to pairwise collisions af-

ter an external force has been applied can be given as5

Df

Dt
¼ � f � f0

s
: (14)

As s only accounts for collisions between electrons and

neutral atoms, it is only accurate in the event of weakly ion-

ized plasma. Plasma actuators considered in this paper tradi-

tionally feature a low degree of ionization, or simply the

amount of air that is ionized, and thus can be treated in a

weakly ionized limit. In terms of the momentum-transfer

collision frequency which can be defined as the mass cor-

rected rate at which a particle of a specific species collides

with another, the criteria for a weakly ionized plasma can be

given as4

FIG. 5. Sketch of the dielectric capacitive element.
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�� ei � ��en: (15)

This equation requires that the collision frequency

between electrons and ions be much less than those between

electrons and neutrals. Thus, if this requirement is met, the

collisional occurrences between electrons and charged par-

ticles can be effectively ignored and the relaxation time

established is a good approximation of the total time rate of

change in the number of particles within a control volume.

After introducing a relaxation time to approximate Eq.

(13), an equation of motion describing the average velocity

of electrons can be established by multiplying by mev and

integrating over the electron velocity. An analytic formula-

tion for the average velocity an electron experiences due to

an externally applied field, we, can be obtained by assuming

that the force term can be approximated as the Lorentz force

F ¼ �eE� e

c
ðv� BÞ; (16)

where B represents the magnetic field and E represents the

electric field. As plasma actuators have no applied magnetic

field, B can be set equal to zero. Therefore, the equation of

motion for an electron describing we can be given as

medweðtÞ
dt

þ meweðtÞ
s

¼ �eEðtÞ: (17)

Solving Eq. (17), a linear first-order differential equation, an

integral equation is obtained

weðt�Þ ¼ �
e

me
exp � t�

s�

� �ðt�

0

EðtÞexp � t�

s�

� �
dt: (18)

Equation (18) can be solved in conjunction with Eq. (7)

to obtain an expression for the time varying conductivity and

in conjunction with Eq. (8) to obtain an approximation for

the time varying electron mobility if the ion mobility is

neglected. The electrical conductivity and electron mobility,

respectively, can be given as

rpðt�Þ ¼
Neðt�Þe2

meEðt�Þ

ðt�

0

EðtÞexp
t� t�

N�ar
�
ea�
�

� �
dt; (19)

leðt�Þ �
e

meEðt�Þ

ðt�

0

EðtÞexp
t� t�

N�ar
�
ea�
�

� �
dt; (20)

where rea is a function of electron energy and can be

obtained for various molecules found in air from Phelps.6

Numerical values used in the model are included in the

Appendix. The electron velocity can be obtained by assuming

a Maxwellian velocity profile. As a collection of electrons

within plasma have a range of velocities, the Maxwellian ve-

locity profile represents the most probable distribution of

these velocities. Thus, the distribution of velocities,

f ðu; v;wÞ, can be given by4

f ðu; v;wÞ ¼ A3 exp �
1

2
mðu2 þ v2 þ w2Þ

kbTe

2
64

3
75; (21)

A3 ¼ Ne
m

2pkbTe

� �1
2

: (22)

Using the non-relativistic definition of kinetic energy, a

relationship can be established for the kinetic energy of an

electron that is valid in the limit jvj � c, where c is the speed

of light. Using this approximation, the relativistic formula-

tion of the kinetic energy can be approximated as

Ek ¼
mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jvj2=c2

q � mc2 � 1

2
mv2: (23)

Averaging Eq. (21) and using the non-relativistic definition of

kinetic energy, the mean kinetic energy of electrons becomes4

Eav ¼

ð ð ð1
�1

A3

1

2
meðu2 þ v2 þ w2Þexp �

1

2
meðu2 þ v2 þ w2Þ

kbTe

2
64

3
75 du dv dw

ð ð ð1
�1

A3 exp �
1

2
meðu2 þ v2 þ w2Þ

kbTe

2
64

3
75 du dv dw

; (24)

where kb is Boltzmann’s constant. From the definition of ki-

netic energy, the relationship between Eav and jvj with vector

components ðu; v;wÞ can be established and the average ther-

mal velocity of electrons becomes

jvj ¼

ffiffiffiffiffiffiffiffiffiffiffi
3kbTe

me

s
: (25)

The required inputs for Eqs. (19) and (20) include: Ne, the

number density of electrons, Na, the number density of atoms,

and Te, the temperature of the electrons. Among these values,

Na can be assumed to be constant in time as the number den-

sity of atoms is significantly higher than that of free electrons.

Many other models incorporate a constant electron

temperature into their model.2,7 Using experimentally

measured values of reduced electric field,8 E=Na vs.
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electron temperature as detailed in Fig. 6, this model calcu-

lates a new electron temperature at each time step by com-

paring the E=N value experienced by the plasma, produced

from using Eqs. (4)–(6), with Fig. 6. It is assumed in this

paper that the effects of an applied electric field have an in-

stantaneous, on a time scale much faster than 10�9 s, effect

on electrons.

A time-varying differential equation that governs Ne can

be obtained from the drift-diffusion equations. The electron

continuity equation that governs Ne can be given by

@Ne

@t
þr � Ce ¼ ajCej � bnine; (26)

where Ce is called the charged species flux, a is the

Townsend coefficient of ionization, and b is the recombina-

tion coefficient between electron and neutral atoms. By sim-

plifying the plasma discharge into a combination of two

homogeneous regions plus an anode sheath and by invoking

the irrotational property of electric fields, Eq. (26) can be

simplified by ignoring any spatial variation in the number

density of electrons, i.e., Ce becomes

Ce � NelejEj: (27)

Assuming the number densities of electrons and ions are

equal, i.e., in the quasineutral region, the electron continuity

equation for air, with a composition of 80% N2 and 20% O2,

can be written as

dNe

dt
� aairjNeleEj � 0:80bN2N2

e � 0:2b02N2
e ; (28)

where aair and b, respectively, can be approximated as hav-

ing the form9

aair ¼ Ap exp �Bp

E

� �
; (29)

bN2 ¼ 2:8� 10�7 300

Te

� �
; (30)

b02 ¼ 2� 10�7 300

Te

� �
; (31)

where A and B are empirical constants that have tabulated

values of 15 and 365, respectively, for air at atmospheric

pressure.9

C. Discharge development

The final remaining unknown required to close the equa-

tion system is to determine how the electric potential

changes over the horizontal length of the actuator. To accu-

rately model this, it is important to incorporate the wall

effects of the plasma actuator. In terms of potential variation,

these wall effects attract charged particles of opposite polar-

ity and shield charged particles of the same polarity.

Therefore, for regions beside the anode (powered electrode

for positive pulses), an anode sheath is developed where an

attraction of electrons occurs and a repulsion of positive ions

occur. For regions above the dielectric region on top of the

grounded electrode, a cathode sheath is developed where

positive ions are collected and electrons are repelled. Fig. 7

illustrates the two predominate sheaths that are developed in

asymmetric plasma actuators.

It is important to consider the effects of charge collection

and repulsion in these regions as such phenomenon can have

large effects on the variation of the electric potential over the

chordwise length and height of the plasma discharge.

1. Wall effects

As the model introduced in this paper is interested in

solving for the amount of energy the plasma transfers to neu-

tral species, the relative importance of both the anode and

cathode sheath regions needs to be established. Energy, Q, is

a function of electrical conductivity and electric field

strength and can be given as

Q ¼ rpjE2jVvol: (32)

Equation (32) shows that the energy transfer from both

sheath regions is proportional to the conductivity of the

plasma within each region. As the cathode sheath region typ-

ically has very few electrons due to repulsion effects, the

current within this region will be carried by positively

charged ions. The mobility of such ions are significantly less

than that of an electron, so as a first order approximation if

the local charged species number density and electric field

strength are assumed equal, the conductivity in the cathode

sheath will be significantly less than the conductivity in a

bulk plasma and the anode sheath, i.e.,

FIG. 6. Plot of electron temperature vs. reduced electric field.
FIG. 7. Collective wall effects of the exposed powered electrode and virtual

electrode (dielectric region). (1) Anode sheath and (2) cathode sheath.12
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rs�c � rp � rs�a: (33)

When combined with the fact that the volume of both

sheath regions are orders of magnitude less than the bulk

plasma, an order of magnitude approximation to the plasma

discharge can be obtained by ignoring the cathode sheath’s

effects for nanosecond pulsed plasma discharges. Although

the cathode sheath is approximately negligible in terms of

energy transfer, the higher electric field strength and higher

conductivity present in the anode sheath contain important

physics necessary for capturing the energy transferred by a

plasma discharge. Fig. 2 shows the updated “hot spot” and

“tail” regions with the anode sheath included in the hot spot

region adjacent to the powered electrode.

2. Electric potential variation

To establish a variation in the electric potential, the gov-

erning Maxwell equations can be used which are written as3

r � E ¼ qf

�0

; (34)

r � B ¼ 0; (35)

r� E ¼ � @B

@t
; (36)

r� B ¼ l0J þ l0�0

@E

@t
; (37)

in differential form where qf ¼ eðni � neÞ is the net charge

density and l0 is the permeability of free space. In the ab-

sence of a time-varying magnetic field, Eq. (36), Faraday’s

Law of Induction, simplifies to

r� E ¼ 0; (38)

and since the curl of E is zero, the electric field can be solved

for as a potential function / and substituted into Gauss’

Law, Eq. (34). The resulting equations, respectively, can be

given by

E ¼ �r/; (39)

r2/ ¼ �qf

�
: (40)

The net charge density within the quasineutral region of a

plasma is equal to zero as ne ¼ ni. For the anode sheath, the

net charge density can be approximated if the plasma is

assumed to uniformly distribute its charge density. Therefore,

the quasineutral region of the “hot spot” and “tail” features

equal number densities of both electrons and ions (ne ¼ ni),

while the cathode and anode sheaths only have electron and

ion densities, respectively. If this is assumed then the anode

sheath can be approximated as having a net charge density

equal to the quasineutral region’s calculated electron number

density. By assuming the anode sheath is devoid of any posi-

tive ions and has a time-dependent number density of elec-

trons, Poisson’s equation for the sheath can be given by

d2/

dx2
¼ eNeðtÞ

�0

: (41)

If this form is assumed for a single Debye length (kD), then

the remaining discharge (rest of “hot spot” and “tail”) region

is part of the quasineutral bulk plasma and can be given by

Laplace’s equation

d2/

dx2
¼ 0: (42)

The ordinary differential equations for electric potential vari-

ation in the hot spot and tail regions, respectively, can be

solved to provide an approximate 1D spatial variation

/ðxÞ ¼
eNe

2�0

x2 þ C1xþ C2 if x � kD

C3xþ C4 if x > kD:

8<
: (43)

Equation (43) requires a total of 4 boundary conditions.

Those can be summarized as

/1ðx ¼ 0Þ ¼ Vapp; (44)

/2ðx ¼ LÞ ¼ Vbreak; (45)

/1ðx ¼ kDÞ ¼ /2ðx ¼ kDÞ; (46)

d/1

dx
ðx ¼ kDÞ ¼

d/2

dx
ðx ¼ kDÞ; (47)

where /1 is the potential in the anode sheath, /2 is the poten-

tial in the quasineutral region, L is length of the actuator, and

kD is a Debye length. The first boundary condition is Vapp at

the cathode and the second is based on the experimental obser-

vations by Roupassov et al.1 It was observed that a plasma dis-

charge could be approximated as stopping at the edge of the

grounded electrode for asymmetric actuators independent of

the applied voltage; so, the edge represents the absolute limit

of ionization or the breakdown voltage of air. Using Eqs.

(44)–(47) as boundary conditions, the potential becomes

/ðxÞ ¼

eNe

2�0

x2 þ eNe

2�0L
k2

D �
eNe

�0

kD þ
Vbreak � Vapp

L

� �
xþ Vapp if x � kD

eNe

2�0L
k2

D þ
Vbreak � Vapp

L

� �
ðx� LÞ þ Vbreak if x > kD:

8>>><
>>>:

(48)
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The Debye length provides an order of magnitude

approximation for the extent of a plasma sheath by assuming

an exponential Boltzmann distribution in the charge density

within the plasma discharge. Substituting this into Poisson’s

equation,

�0

d2/
dx2
¼ eN1 exp

e/
kbTe

� �
� 1

� �
; (49)

where N1 is the charged particle density far away from the

electrode. Taking a first-order Taylor expansion, the Debye

length can be given as4

kD 	
�0kbTe

N1e2

� �1
2

: (50)

Although at high voltages, a first-order approximation fails,

Eq. (50) still provides an order of magnitude approximation

of the extent of the anode sheath.

D. Numerical procedure

When solving for the energy imparted to neutral species,

a coupled equation system results from Eqs. (4) and (28).

The coupled terms include

Rf / Ne; (51)

Ce / DV; (52)

b / DV; (53)

/1 / Ne: (54)

To solve the resulting equation system, the Dormand-Prince

Runge-Kutta method was employed. This method provides

an efficient way to incorporate an adaptive step size that is

important for computational efficiency in a problem that

requires small time steps for convergence. The benefit of

such a procedure can be illustrated through a simplistic

example. If the error of each time step is defined as

�i
k ¼ yðtÞ � yi

k; (55)

then if two step sizes are considered, h1 and h2, the error of

each iteration and their relative error, respectively, can be

given as

yðtÞ � y1
n1 ¼ �1

n1 ¼ ah1; (56)

yðtÞ � y2
n2 ¼ �2

n2 ¼ ah2; (57)

y2
n2 � y1

n1 ¼ aðh1 � h2Þ: (58)

Therefore, for a given error tolerance, �, a sequence of step

sizes can be generated

hiþ2 ¼ q
ðhi � hiþ1Þ�
jyn

iþ1
iþ1 � yn

i
ij
; (59)

which allows a numerical ODE solver, such as those employ-

ing the Dormand-Prince method to minimize functional error

by adjusting the step size after each time step.10 Numerical

integration required for Eqs. (19) and (20) and energy

derived from the circuit model, given as

Q ¼
ðt

0

DV2

Rf ðtÞ
dt; (60)

were performed via the Gauss-Kronrod quadrature method10

at each time step.

III. RESULTS

A. Validation against experiment

To validate the accuracy of the model described in this

paper, comparisons with data presented in Roupassov

et al.1 are provided. The experimental parameters that were

mentioned and used in the circuit model are given in Table

I. Reference 1 uses the electrode configuration detailed in

Fig. 8.

Fig. 9 illustrates an approximation of the applied voltage

square wave that was introduced in the experimental work of

Roupassov et al.1 The slope that is introduced is to simulate

a function that is differentiable. This is needed for V0appðtÞ in

the governing differential equation as detailed by Eqs. (4)

and (5). One could also generate a continuous function using

Fourier decomposition of a traditional square wave; how-

ever, this would not account for the minor rise and fall times

found in experimentation.

TABLE I. Experimental parameters.1

ha 0.4 mm

hd 0.3 mm

�d 2.7

�a 1

An 30 mm2

Ad 30 mm2

V 50 kV

DT 60 ns

FIG. 8. Experimental scheme used by Roupassov et al.1 for the discharge

gap. (1) High-voltage electrode; (2) dielectric layer; (3) low-voltage elec-

trode, (4) zone of discharge propagation, and (5) insulating plane.
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B. “Hot spot” results

For the small region of 0.4 mm� 0.4 mm over all time

outside of the anode sheath, the time variation in the number

density can be established. As an initial condition for Eq.

(28), 1015 m�3 electrons were assumed based on work by

Ref. 1. As displayed in Fig. 10, there is a large gradient that

occurs during the rise time that peaks around 1:13� 1019

m�3. It is also evident in Fig. 10 that the recombination of

electrons is largely negligible on the nanosecond time scale.

If a frequency of 1 kHz is used, the recombination of elec-

trons with atoms allows a steady-state electron number den-

sity to be achieved on the nanosecond time scale. The

recombination of electrons becomes a significant quantity

when exploring the dynamics of a plasma discharge on the

microsecond time scale.

Using Eq. (4) and Fig. 6, the model was able to produce

a time-varying electron temperature. As displayed in Fig. 11,

there is an initial spike in the electron temperature to 29 eV

(�340 000 K) that coincides with the peak in electron num-

ber density at 11 ns. Fig. 11 also suggests that the assumption

of a constant electron temperature is not an accurate assump-

tion for nanosecond pulsed DBD plasmas. The variability in

the electron temperature beyond 40 ns is due to the numerical

error tolerances that are selected when solving Eqs. (4), (19),

and (28). Fig. 11 shows that when reducing the relative error

in the Dormand-Prince method from 10�2 to 10�3, the strong

functional variability experiences a significant reduction.

The higher the gradients are during the rise and fall time, the

finer the relative error tolerances are required to be to guar-

antee convergence of a solution.

Using the results displayed in Figs. 10 and 11, the total

power dissipated to neutral species as a function of time can

be established. Using the result of Eq. (4) and the relation-

ship for the instantaneous power, the time-varying power

imparted to the flow can be given as7

PðtÞ ¼ DV2ðtÞ
Rf ðtÞ

: (61)

As shown in Fig. 12, the instantaneous power is domi-

nate during the rise time for the “hot spot” region. Upon inte-

grating the instantaneous power over time using Eq. (60),

this model produces an energy value of 2.1 mJ for this

region. When compared to the experimentally determined

value of 4.2 mJ by Roupassov et al.,1 this model produces an

order of magnitude estimate for the energy imparted to neu-

tral species in this region.

C. “Hot spot” sheath results

Using the Debye length approximation provided by Eq.

(50) and the solution from the quasineutral “hot spot” region

ðne 	 1019 m�3, Te 	 10 eV), a Debye length of 7.43 lm is

generated. The electron number density experienced in the

anode sheath is assumed to be equal to the values calculated

in the adjacent “hot spot” region. Fig. 13 shows the time

FIG. 10. Plot of electron number density vs. time for the “hot spot.”

FIG. 11. Plot of electron temperature vs.

time for the “hot spot”: (a) 10�2 error

and (b) 10�3 error.

FIG. 9. Plot of the input voltage, Vapp vs. time used in the model.
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variation in the electron number density within the sheath

and also shows a peak number density of 1:13� 1019 m�3.

Using the revised form of the electric potential within

the anode sheath given by Eq. (48) and using Fig. 6, the elec-

tric temperature variation over the duration of the pulse can

be established. As displayed in Fig. 14, there is an initial

spike in the electron temperature to (�348 000 K) that coin-

cides with the peak in electron number density at 11 ns much

like the hot spot region.

As shown in Fig. 15, the instantaneous power is dominant

during the rise time for the anode sheath region. Upon inte-

grating the instantaneous power over time using Eq. (60), this

model produces an energy value of 0.045 mJ for this region.

This number is quite small compared to the 2.1 mJ experi-

enced in the “hot spot” region. However, the anode sheath

does have a slightly higher linear energy density than the “hot

spot” region (6 J/m vs. 5.25 J/m). The reason that there is not

significant deviation predicted in the anode sheath and quasi-

neutral “hot spot” regions is that explicit charge buildup is not

accounted for in the circuit model within the sheath region.

As shown by Ref. 11, the electric field in the sheath and adja-

cent quasineutral regions are approximately equal until charge

buildup is allowed within the anode sheath during the length

of the pulse or a series of pulses.

D. “Tail” results

For the region 0.4 mm� 4.6 mm, the time variation in

the number density can be established. As an initial condi-

tion for Eq. (28), 1015 m�3 electrons were assumed, the same

number of electrons assumed for the “hot spot” region.

When comparing Figs. 10 and 16, the tail region experiences

a lower growth rate in the number of electrons which is due

to the lower electric field experienced by this region. As

described by Eq. (28), a lower electric field produces a lower

FIG. 14. Plot of electron temperature vs. time for the “hot spot” sheath.FIG. 12. Plot of power vs. time for the “hot spot.”

FIG. 13. Plot of electron number density vs. time for the “hot spot” sheath.

FIG. 15. Plot of power vs. time for the “hot spot” sheath.

FIG. 16. Plot of electron number density vs. time for the “tail.”
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number of ionizations and therefore a more gradual rise and

lower total peak in Ne, approximately 3:4� 1017 m�3.

Using Eq. (4) and Fig. 6, the model was able to produce

a time-varying electron temperature. As displayed in Fig. 17,

the traditional assumption of 1 eV (�11 600 K) does not

agree well with the results obtained in this model for the tail

region on the nanosecond time scale. Instead, Fig. 17 sug-

gests that the peak electron temperature is achieved during

the rise time of the pulse, 220 000 K (�19 eV) and then

trends downward during the plateau portion of the voltage

waveform. Much like Fig. 11, the highest electron tempera-

tures are achieved during the initial high gradient of the

pulse. Fig. 17, unlike Fig. 11, also shows a rise in electron

temperature during the fall time of the pulse as well. This is

due to the lower electric potential and negative gradient

experienced in the tail region during the fall time.

As shown in Fig. 18, the instantaneous power is dominant

during the plateau portion of the applied voltage pulse for the

“tail” region. Upon integrating the instantaneous power over

time using Eq. (60), this model produces an energy value of

6.6 mJ. When compared to the experimentally determined

value of 8 mJ by Roupassov et al.,1 this model produces an

absolute error of �17:5%. The significant improvement in

accuracy for the tail region can likely be attributed to the

larger distance from the cathode. This increase in distance

improves the assumptions of quasineutrality and that the spa-

tial diffusion of charged species is negligible. The region

close to the cathode features complicated ion and electron

buildup and as the relative distance from the cathode

increases, its impact on the problem becomes negligible.

Table II summarizes the results obtained using the cir-

cuit model presented in this paper and associated experimen-

tal measurements made by Roupassov et al.1 for both the

“hot spot” and “tail” regions.

IV. CONCLUSION

A new lumped element circuit model was presented that

is valid for pulsed DC DBD plasmas. The model approxi-

mates the total energy dissipated into neutral species using a

lumped element circuit while containing relevant plasma

physics in the form of a variable electron temperature and

number density. An approximate expression was formulated

using the conductivity of the discharge to calculate the resist-

ance value for the air gap. Asymmetric wall effects were

also approximated in the model by including the effect of the

anode sheath. Results of the model were verified against a

pulsed DC experiment conducted by Roupassov et al.1 and

order of magnitude agreement was obtained for the energy

imparted into the plasma in both the homogeneous “hot spot”

region and “tail” region.
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APPENDIX: CROSS-SECTION DATA

The momentum cross sections used for the numerical

approximations in the model are shown in Table III. These

values were obtained by A. V. Phelps.6

FIG. 17. Plot of electron temperature vs. time for the “tail.”

TABLE II. Comparison between calculated and experimentally measured

energy deposition.

Circuit model (mJ) Experimental1 (mJ) Abs. error (%)

Hot spot’ 2.1 4.2 50

Tail’ 6.6 8 17.5

Total 8.7 12.2 28.7

TABLE III. Momentum cross sections.6

Kinetic energy (eV) N2 (10�16cm2) O2 (10�16cm2)

1 10 7.2

2.1 27 6.6

3 21.7 5.7

4 12.6 5.5

5 10.9 5.6

10 10.4 5

15 11 8.8

20 10.2 8.6
FIG. 18. Plot of power vs. time for the “tail.”
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