

2 **Evaluation of thrust measurement techniques for dielectric
3 barrier discharge actuators**

4 **Ryan Durscher · Subrata Roy**

5 Received: 12 August 2011 / Revised: 25 June 2012 / Accepted: 26 June 2012
6 © Springer-Verlag 2012

7 **Abstract** Despite its popularity in the recent literature,
8 plasma actuators lack a consistent study to identify limita-
9 tions, and remedy thereof, of various thrust measurement
10 techniques. This paper focuses on comparing two different
11 experimental techniques commonly used to measure the
12 global, plasma-induced thrust. A force balance is used to
13 make a direct measurement of the thrust produced, which is
14 then compared with a control volume analysis on data
15 obtained through particle image velocimetry. The local
16 velocity measured by particle image velocimetry is also
17 validated with a fine-tip pressure probe. For the direct
18 thrust measurements, the effect of varying the actuator
19 plate length upon which the induced flow acts is investi-
20 gated. The results from these tests show that the length of
21 the actuator plate is most influential at higher voltages with
22 the measured thrust increasing as much as 20 % for a six
23 times reduction in the length of the plate. For the indirect
24 thrust measurement, the influence of the control volume
25 size is analyzed. When the two methods are compared
26 against each other, good agreement is found when the
27 control volume size has a sufficient downstream extent.
28 Also, the discharge length is optically measured using
29 visible light emission. A linear correlation is found
30 between the discharge length and the thrust measurements
31 for the actuator configurations studied. Finally, the energy
32 conversion efficiency curve for a representative actuator is
33 also presented.
34

1 **Introduction**

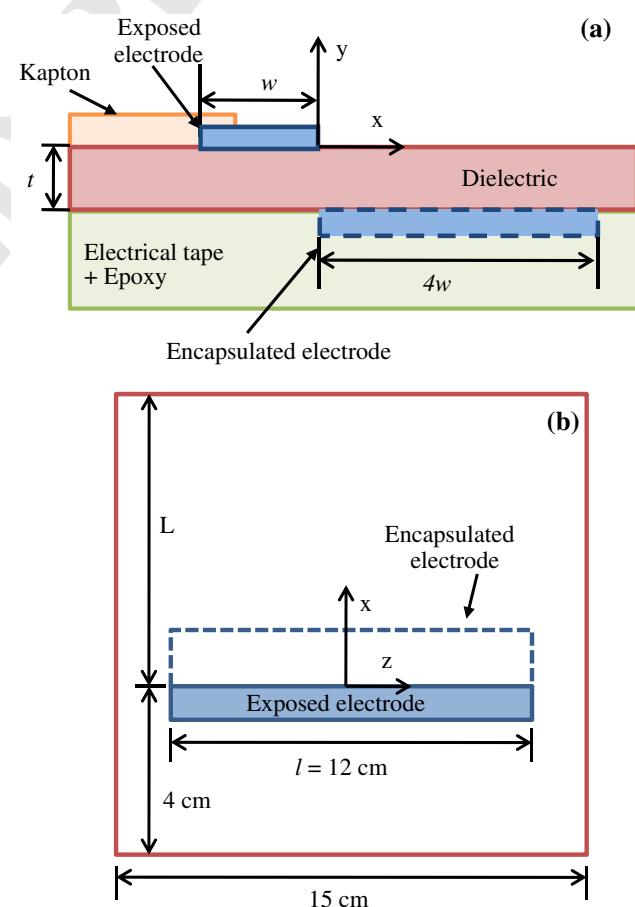
2 The dielectric barrier discharge (DBD) plasma actuator, in
3 general, consists of an asymmetric electrode arrangement
4 (one exposed and one encapsulated) separated by a
5 dielectric medium. The application of an alternating, high-
6 voltage signal results in a surface-mode discharge along the
7 dielectric. At (or near) atmospheric pressures, the discharge
8 is comprised of micro-discharges which form discrete
9 channels between the electrode and dielectric surface
10 (Gibalov and Pietsch 2000; Kogelschatz 2003; Xu 2001).
11 The expansion of the discharge along the dielectric surface
12 results in a charge deposition, which in turn reduces the
13 local electric field and extinguishes the micro-discharge.
14 Collectively, the discharge is completely extinguished
15 twice per period as evident by the light emission and dis-
16 charge current (Enloe et al. 2004). As the ionized particles
17 within the micro-discharges propagate along the dielectric
18 surface, momentum is transferred to the surrounding neu-
19 tral particles through a poorly understood collisional
20 mechanism. Macroscopically, however, the net separated
21 space charge within the plasma interacts with the electric
22 field resulting in an electro-hydrodynamic body force act-
23 ing on the working gas resulting in an acceleration of the
24 fluid. By virtue of Newton's third law, an equal and
25 opposite force is imparted to the actuator. Experiments
26 have shown this momentum exchange to be cyclic with the
27 magnitude of the force varying depending on the polarity
28 of the exposed electrode (Debien et al. 2012, Enloe et al.
29 2008b; Enloe et al. 2009; Font et al. 2011).
30

31 The plasma actuator has been used as a flow control
32 mechanism in various aerodynamic applications such as
33 turbines blades (Ramakumar and Jacob 2005; Rizzetta and
34 Visbal 2008), landing gears (Thomas et al. 2005), airfoils
35 (Little et al. 2010; Post and Corke 2004), turbulent jets
36

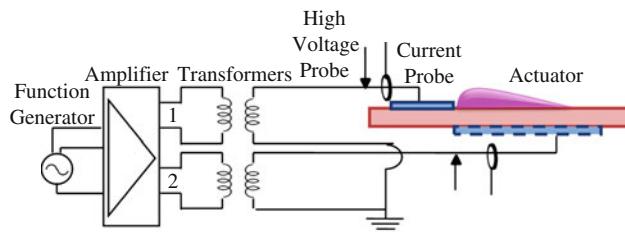
A1 R. Durscher · S. Roy (✉)
A2 Applied Physics Research Group, Mechanical and Aerospace
A3 Engineering Department, University of Florida, Gainesville,
A4 FL 32611-6300, USA
A5 e-mail: roy@ufl.edu

(Labergue et al. 2007), and an assortment of conical flows (e.g. flat plate boundary layers (Gibson et al. 2012; Grundmann and Tropea 2009; Roth et al. 2000; Schatzman and Thomas 2010), cylinder vortex shedding (Jukes and Choi 2009; Thomas et al. 2008), etc.). In order to improve the fluidic authority of the actuators, numerous parametric studies have been undertaken which have focused on various aspects (e.g. applied voltage/frequency, dielectric material, electrode arrangement) of the actuator (Abe et al. 2008; Borghi et al. 2008; Corke et al. 2007; Forte et al. 2007; Hoskinson and Hershkowitz 2010; Hoskinson et al. 2008; Jolibois and Moreau 2009; Roth and Dai 2006; Thomas et al. 2009). Characterizing the resulting induced thrust is therefore pivotal for understanding the influence of various control parameters in improving the actuator authority.

Several methods have been employed for measuring the plasma-induced thrust. Typically, a simplified approach is used to either measure the net thrust directly using a high resolution (\sim mg) force balance or calculate it indirectly based on the velocity field extracted using techniques such as Pitot probes, particle image velocimetry (PIV), and laser Doppler velocimetry (LDV). Specifically, the latter approach relies on a control volume analysis of the measured flow field to determine the net thrust produced (Baughn et al. 2006; Hoskinson et al. 2008; Kotsonis et al. 2011; Kriegseis 2011a; Debien et al. 2012). Recently, more complicated methods have also been investigated that resolves the plasma body force spatially by applying the Navier–Stokes momentum equations to PIV data (Kotsonis et al. 2011). However, a basic study aimed at the limitations of the simplified direct or indirect measurements is lacking. For example, the near wall flow as a result of actuation gives rise to a self-induced drag (Font et al. 2010), for which the plate size would likely have a significant impact on the measured thrust. The plate size, however, is not typically reported in the literature. Also, how does the calculated thrust vary with the size of control volume, and how does it compare with the direct measurement? In literature, a comparison between the two methods is often met with mixed results. Hoskinson et al. (2008) reported a factor of two difference in the calculated thrust between the two techniques (attributed to simplifications made), while Kotsonis et al. (2011) showed a reasonable agreement between the two methods.


This paper focuses on characterizing some limitations of the aforementioned direct and control volume inferred experimental techniques used to measure the net, induced thrust for a basic single dielectric barrier discharge (SDBD) actuator configuration. In particular, the influence of the plate size on the direct thrust measurement is investigated. Similarly, the thrust is indirectly determined from a control volume analysis of the flow field obtained through PIV.

Here, the influence of the control volume size on the calculated thrust is analyzed by comparing with the plate size-independent direct thrust data. Also, the discharge length is optically measured using visible light emission. A functional relationship between the measured discharge length and the measured thrust is studied. The local velocity measured by the PIV technique is also validated with Pitot tube measurements at different locations. The paper is organized in the following manner. Section 2 describes the experimental setup for the tests conducted. This includes a discussion of the direct thrust measuring arrangement, PIV details, and the control volume analysis. Section 3 presents the results for the aforementioned investigations, while conclusions are drawn in Sect. 4.


2 Experimental arrangement

2.1 Plasma actuator design and discharge generation

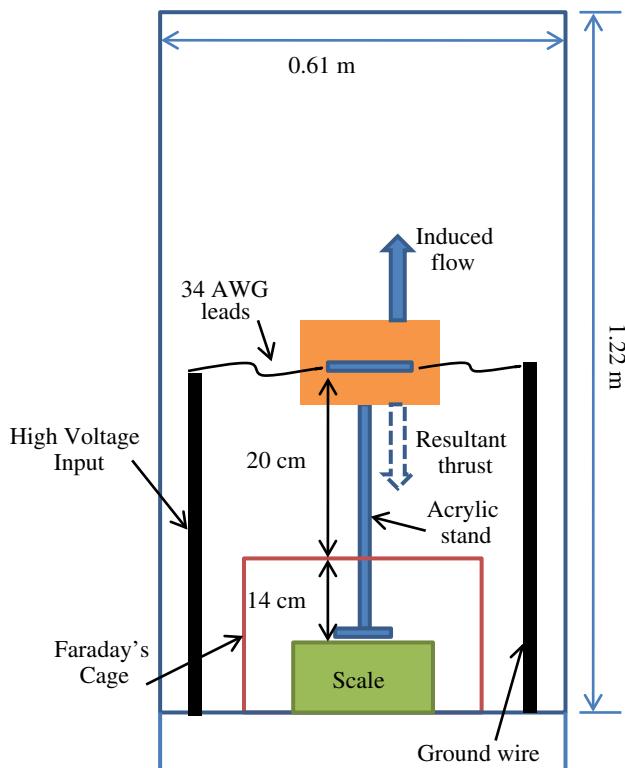

A cross-sectional schematic of the DBD plasma actuator used in these experiments is shown in Fig. 1a. The actuator

Fig. 1 Schematic of DBD plasma actuator: **a** side view and **b** top view (not drawn to scale)

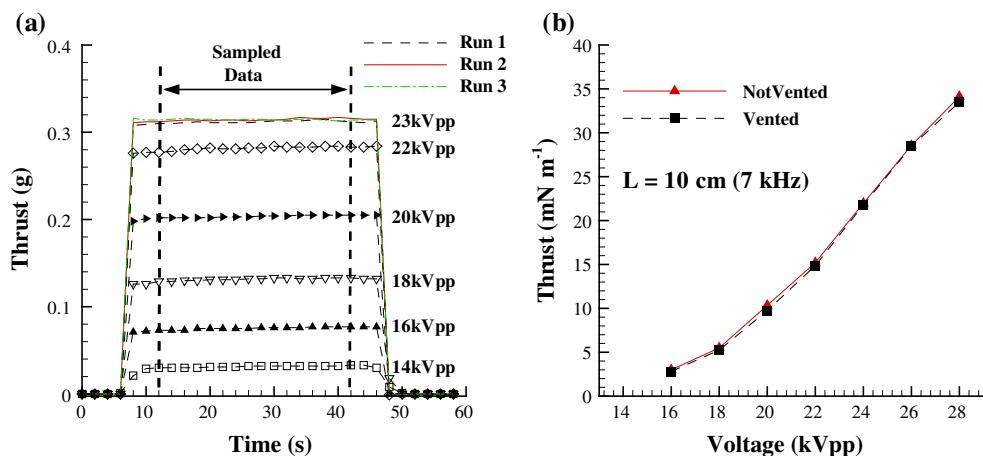
Fig. 2 Circuit schematic used to generate a DBD plasma discharge

Fig. 3 Experimental setup schematic for direct force measurement

140 consists of two thin (70 μm) copper electrodes placed
 141 asymmetrically on either side of the dielectric material
 142 with no horizontal gap between the two electrodes. The
 143 dielectric in this case was a 3-mm-thick (t) sheet of acrylic
 144 which has a nominal relative dielectric constant of 3. The
 145 width, w , of the upper electrode was 0.5 cm while the
 146 lower electrode's width is 2 cm. Both electrodes have a
 147 length, l , of 12 cm. Three layers of vinyl electrical tape
 148 (178- μm thick) covered the encapsulated electrode to avert
 149 an unwanted discharge on the lower surface. Similarly, an
 150 84- μm -thick piece of Kapton was placed on the opposite
 151 side of the exposed electrode preventing the occurrence of
 152 a discharge. The actuator depicted in Fig. 1b shows the
 153 dimensions of the dielectric used in the actuator plate
 154 length tests, where the effect on the thrust was investigated
 155 by shortening the actuator's plate length, L .

In order to ionize the surrounding air, the exposed and grounded electrodes were each supplied with high-voltage signals that were 180° out of phase. A congruent powering scheme has previously been used by Thomas et al. (2009). The sinusoidal input signals were generated using an arbitrary waveform generator (Tektronix AFG3022B). These signals were further amplified by a dual output audio amplifier (QSC RMX 2450) which was then stepped up using high-voltage transformers (Corona Magnetics, Inc. CMI 5523) (Fig. 2). Actuators were tested with total voltages ranging from 14 to 28 kVpp at two distinct frequencies 7 and 14 kHz.

The voltage and current supplied to the actuators were monitored using high-voltage (Tektronix P6015A) and current probes (Pearson Electronic 2100). In order to calculate the delivered power, the voltage and current waveforms were captured using a digitizing oscilloscope (Tektronix DPO3014). In a single acquisition, the oscilloscopes captured 1 million points for each waveform at a sampling rate of 250 MSa s^{-1} . For each input voltage, 10 acquisitions were recorded. This corresponds to 280 and 560 periods over which the calculated power is averaged for 7 and 14 kHz waveforms, respectively. The total power, P , delivered to the plasma actuator was considered to be a linear superposition of the power supplied to each electrode. The average real power was numerically calculated by multiplying the instantaneous voltage, V_i , by the instantaneous current, I_i , and then summing and dividing by the total number of samples, N . The indices 1 and 2 in Eq. 1 correspond to the respective circuit branches in Fig. 2.


$$P = \frac{1}{N} \left(\sum_{i=1}^N V_{1,i} I_{1,i} + \sum_{i=1}^N V_{2,i} I_{2,i} \right) \quad (1)$$

2.2 Direct thrust measurements

Direct thrust measurements were obtained using an Ohaus precision balance (Adventurer™ Pro AV313C). The actuators were mounted to the scale by an acrylic stand which protruded though a small opening in a Faraday's cage (Fig. 3). The cage was constructed using aluminum (3.18-mm thick) and was used to shield the balance from any electromagnetic interference due to the high electric fields required to generate the plasma discharge. To prevent ambient room currents from influencing the sensitive scale (of resolution 1 mg), the entire setup was housed in a large quiescent chamber with dimensions 0.61 \times 0.61 \times 1.22 m (width \times depth \times height). Thin insulated wire (34 AWG) was used to connect the high-voltage input leads to the actuator in order to limit the rigidity of the wire from influencing the reading. For each input voltage, 15 measurements were recorded from the scale

156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186

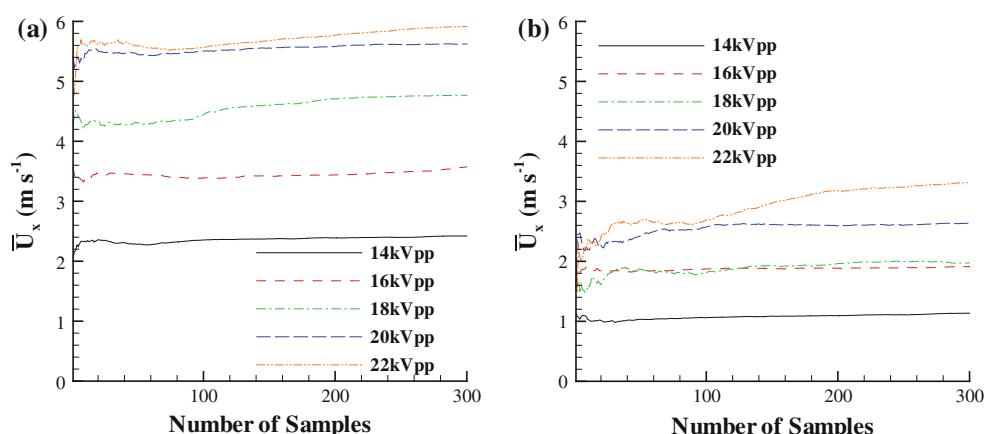
188
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205

Fig. 4 **a** Example readouts from the balance showing the stability and repeatability of the direct thrust measurement (14 kHz). **b** Effect of a vented versus unvented chamber on the induced thrust (7 kHz). The plate length (L) was 10 cm for both plots

over a 30-s span once an initial stable reading was reached. An example output from the balance is shown in Fig. 4a for various voltages. The maximum uncertainty associated with a given measurement is estimated to be within 4 % (to 95 % confidence), based on repeated measurements (at a constant voltage) and the scale's inherent uncertainty. Furthermore, the error in the thrust measurement due to the scale's cross-axis sensitivity was investigated and found to be negligible. This was determined by orienting the actuator on the mass balance to measure the z-component of the force (referring to Fig. 1). In such an arrangement, the scale would be affected by both x and y components in the cross-axis direction. Given that the z-component should be zero for a linear actuator, a registered thrust reading by the balance should presumably be a result of its sensitivity to cross-axis forces. No thrust was measured as the balance read zero over the entire range of input voltages.

Furthermore, the chamber in which the scale is housed is only slightly vented to prevent potentially dangerous amounts of ozone from continuously spreading into the laboratory. As a consequence, one could argue that for particularly long runs of the actuator that the air chemistry inside of the chamber is being modified. To test this argument, two tests were carried out over a range on input voltages. In one case, the 0.74 m^2 door to the chamber was closed during testing, while it was left wide open in the other. The measured thrust from these tests is shown in Fig. 4b, where “not vented” and “vented” correspond to the door being closed and open, respectively. As evident from the figure, the resultant thrust was nearly identical regardless of ventilation. This result would likely change if the volume of the quiescent of chamber was reduced, though the results seem indifferent for the current experimental setup.

3 Control volume analysis


3.1 Flow field measurements

Two-component PIV was used to generate time-averaged, spatially resolved data of the induced flow due to the plasma actuation. These averaged vector fields were then used for the control volume analysis. The plasma actuator geometry is similar to that described previously (Fig. 1); however, the dielectric plate upon which the actuator was built was much larger. The dimensions of the plate are $30 \text{ cm} \times 30 \text{ cm}$ with the electrodes placed in the center. The actuator was set up in the same quiescent chamber as described above.

A Nd:YAG, dual cavity pulsed 532-nm laser (New Wave Research Solo PIV II 30) was used to generate a light sheet along the centerline of the actuator normal to the span. This illuminated the vaporized Ondina oil used to seed the chamber (see Sect. 7). Adjustable focal length optics allowed for fine adjustments to the waist of the laser sheet, which had an estimated thickness of 1 mm. The time separation (dt) between laser pulses was adjusted accordingly depending on the induced flow velocity. In general, the dt was set to maintain a maximum particle displacement of 5–7 pixels, with the value ranging from 48 to 22 μs (voltage/velocity dependant). LaVision's ImagerProX 4 M ($2,048 \times 2,048$ pixels) camera fitted with a 105-mm lens was used to capture the PIV images. The field of view for each image was approximately $48 \text{ mm} \times 48 \text{ mm}$ (x, y).

LaVision's DaVis 7.2 PIV software package was used to calibrate, capture, pre-process, process, and post-process the PIV images. Image calibration was performed with a $40 \text{ mm} \times 40 \text{ mm}$, two-tiered calibration plate. In processing the PIV data, the local average intensity was

Fig. 5 Convergence plot for the x -component of velocity (\bar{U}_x) for two locations in the flow field (14 kHz driving frequency). **a** Point $(x, y) = (5, 0.5)$ mm and **b** $(x, y) = (35, 1.5)$ mm

274 subtracted from the raw images in order to increase the
 275 relative contrast between the particles and the background.
 276 Furthermore, a local particle intensity correction was
 277 applied in which the particle intensities are normalized
 278 over a window of 4 pixels, allowing smaller particles to
 279 contribute more effectively in the correlation. Having
 280 masked the surface of the actuator, each image pair was
 281 then subjected to a cross-correlation multi-grid procedure.
 282 The correlation process consisted of an initial pass with a
 283 32×32 pixel² interrogation window with a 50 % overlap,
 284 followed by two refining passes with 16×16 pixel² windows
 285 again with 50 % overlaps. For the initial pass, a 1:1
 286 Gaussian weight was applied to the integration windows,
 287 while a 2:1 was applied on the refining passes. This
 288 resulted in a resolution of 5.26 vectors per mm. Outliers
 289 were detected and removed using a recursive spatial outlier
 290 detection (Westerweel 1994) in between multi-grid passes
 291 as well as on the final vector field.

292 For each input voltage, 300 image pairs were taken at a
 293 repetition rate of 7.2 Hz. Typical convergence plots of the
 294 mean tangential velocity component (\bar{U}_x) are shown in
 295 Fig. 5a and b for two locations in the velocity field. The
 296 first point, (5, 0.5) mm, is representative of the high
 297 velocity region near the discharge (Fig. 5a), while the
 298 second position, (35, 1.5), is within the fully developed
 299 wall jet (Fig. 5b). After ~ 200 samples, the average values
 300 begin to converge to a constant value for both points. The
 301 relative statistical uncertainty ζ for these two points is
 302 shown in Fig. 6 as calculated from

$$\zeta = \frac{t_{N-1,95\%} \bar{\sigma}_x}{\bar{U}_x} \quad (2)$$

304 where $t_{N-1,95\%}$ is the t estimator ($N - 1$ degrees of freedom,
 305 95 % confidence interval), $\bar{\sigma}_x$ is the standard deviation
 306 of the mean velocity, and \bar{U}_x is the mean velocity (x -
 307 component). The results indicate a maximum relative error
 308 of ~ 4 % in the velocity measurements.

Fig. 6 Relative statistical uncertainty as a function of voltage and position for the velocity vector field (14 kHz driving frequency). Red squares correspond to point $(x, y) = (5, 0.5)$ mm while black circles represent $(x, y) = (35, 1.5)$ mm

3.1.1 PIV seeding

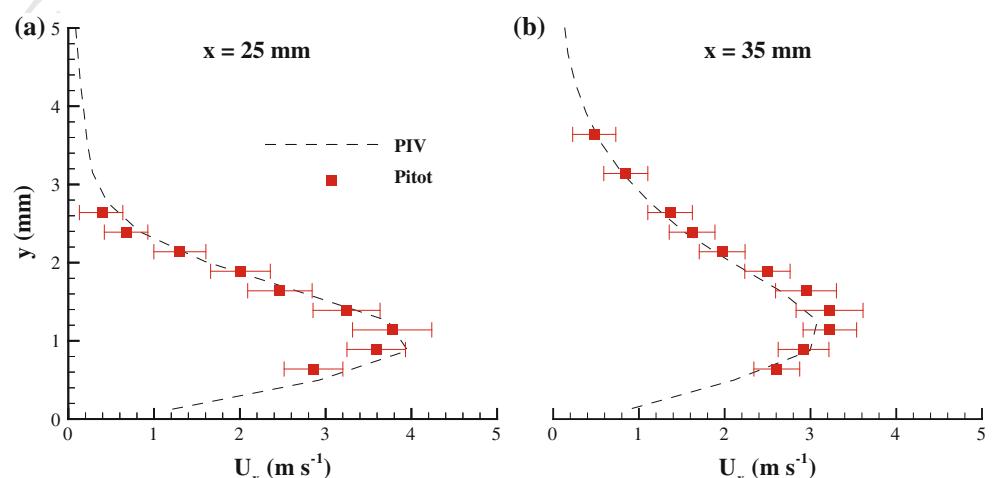
310 For the experiments outlined in this text, Ondina oil was
 311 used as the seeding particles. The oil was vaporized using a
 312 TSI atomizer (Model 9302) which, when pressurized at
 313 25 psi, produces a droplet with a mean diameter of
 314 $\sim 0.8 \mu\text{m}$ (TSI 2000). Assuming a characteristic velocity
 315 of 5 m s^{-1} , a reference length of 1 mm, and Stokesian
 316 drag, the Stokes number (St) as defined by Adrian and
 317 Westerweel (2011) is 7.8×10^{-3} (or $St \ll 1$), indicating a
 318 reasonable fluidic response from the particles.

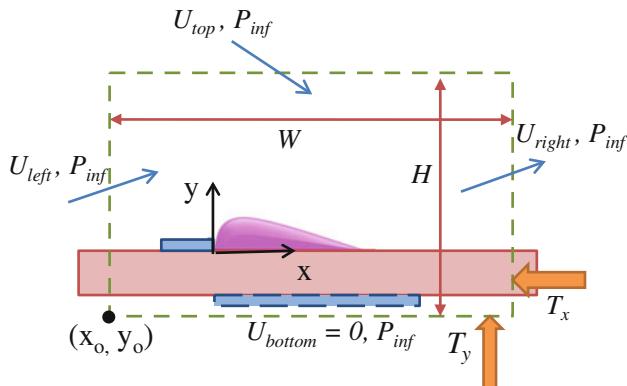
319 For plasma actuation, however, consideration of the
 320 electrodynamic influence on the particles is also warranted
 321 due to the presence of the large electric fields required to
 322 initiate the discharge. In doing so, the PIV images may be

323 broken into two regions: (1) the discharge volume itself
 324 and (2) the far-field away from the vicinity of the discharge. Within the discharge volume, a charging of the
 325 particle could result in a combination of fluidic and Coulombic forces influencing the particle's path. In the far-
 326 field, however, the dominant electrodynamic effect would
 327 likely be a dielectrophoretic force due to polarization of the
 328 particle. This is a topic which certainly remains an open
 329 area for future exploration as an electrodynamic influence
 330 on the seeding particles could potentially alter the accuracy
 331 of the velocity measurement and consequently the inferred
 332 thrust. Here, however, we will rely on a comparison of the
 333 vector field with and without seeding particles.

334 To investigate any potential electrodynamic effects on
 335 the seeding particles, the PIV velocity profiles were
 336 compared against measurements obtained using a Pitot
 337 (pressure) probe. The probe used was a United Sensor
 338 Corp. stainless steel "boundary layer probe" (Model BR-
 339 .025-12-C-11-.120) having an inner and outer diameter of
 340 0.4318 and 0.635 mm, respectively. The design of the
 341 probe's tip, however, is flattened (the diameter is reduced
 342 by half), which significantly reduces its presence in the
 343 wall normal direction. Positioning of the probe was con-
 344 trolled using a two-axis traverse (Velmex MN10-0150-
 345 M02-21) with a minimum step size of 5 μm . The pressure
 346 measurements were made using a Furness Controls
 347 FCO332 differential manometer calibrated to ± 25 Pa
 348 with a ± 10 V output. Each data point represents the
 349 average of 800 voltage readings recorded at a sampling
 350 rate of 20 Hz using a National Instruments data acquisi-
 351 tion module (PCI-6133). The differential pressure, ΔP ,
 352 measurements were converted to velocities using Eq. 3
 353 where ρ is the air density. Here, the air density was taken
 354 as 1.184 kg m^{-3} which corresponds to a laboratory tem-
 355 perature of 25°C . An error analysis was carried out on
 356 the obtained data which took into account the accuracy of
 357 358

359 the transducer ($\pm 0.5\%$ Pa), the accuracy of the voltage
 360 reading (± 5 mV), and the statistical uncertainty of the
 361 sampled set.


$$U_x = \sqrt{2\Delta P/\rho} \quad (3)$$


363 The use of a metallic probe limited the proximity in
 364 which a measurement may be made near the plasma.
 365 Furthermore, measurements near the dielectric surface
 366 were also prohibited as arcing was observed between the
 367 probe and the dielectric when the probe itself was in
 368 contact with surface. These problems were alleviated,
 369 however, by taking readings sufficiently far downstream
 370 (25 and 35 mm) and keeping the probe away the dielectric
 371 surface (>0.5 mm). As shown in Fig. 7, reasonably good
 372 agreement is seen between the two data sets both in terms
 373 of magnitude and shape giving some indication that
 374 electrodynamic effects may be negligible in the current
 375 experimental setup

3.1.2 Inferred thrust calculation

376 The rectangular control volume as depicted in Fig. 8 was
 377 applied to the time-averaged velocity field generated from
 378 the PIV measurements. The net thrust, T_x and T_y , pro-
 379 duced by the actuator (normalized by the electrode length)
 380 is determined from the conservative form of the
 381 momentum equations assuming time independence
 382 (Eq. 4a, b). The net thrust produced would be the sum-
 383 mation of the wall shear stress (F_s), pressure differential,
 384 and the plasma-induced body force (F_p), acting within
 385 and on the control volume. If the control volume
 386 boundaries are significantly removed from the bulk
 387 plasma, a constant pressure assumption may be made
 388 (Kotsonis et al. 2011), in which the net thrust in the x -
 389 direction would be equal to $T_x = F_{x,p} - F_s$. In this

Fig. 7 Comparison between pitot measurements and PIV profiles taken at (a) 25 and (b) 35 mm downstream of the exposed electrode for an applied voltage of 20 kVpp at 14 kHz

Fig. 8 Schematic of control volume used to calculate reaction forces induced by the plasma discharge

391 analysis, however, we are interested in only the net thrust
 392 imparted to the dielectric. The control volume used is
 393 drawn accordingly to negate such distinctions. In particular,
 394 the boundaries of the volume extend below the
 395 dielectric surface where the velocity field is zero, to
 396 emphasize that the wall shear stress is not considered as a
 397 separate force. The thrust components are calculated from
 398 the velocity field as follows:

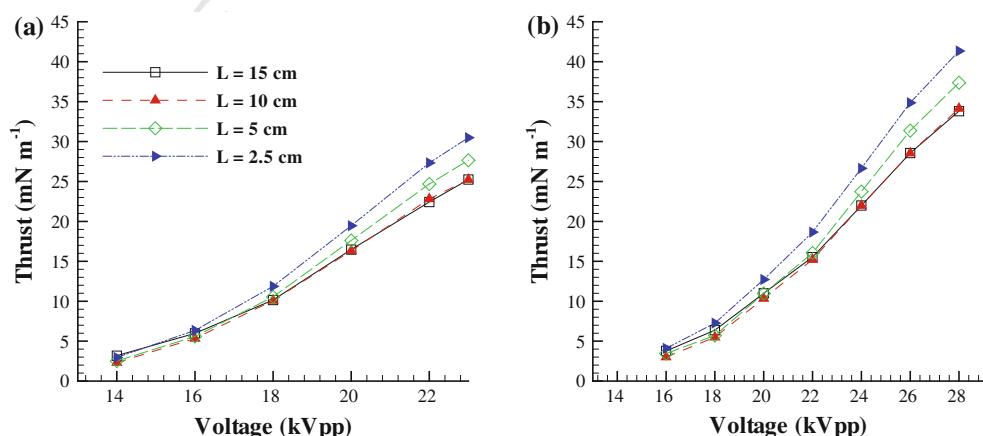
$$T_x = - \int_{y_0}^H \rho U_{x,\text{left}}^2 dy + \int_{x_0}^W \rho U_{x,\text{top}} U_{y,\text{top}} dx + \int_{y_0}^H U_{x,\text{right}}^2 dy \quad (4a)$$

$$T_y = - \int_{y_0}^H \rho U_{y,\text{left}} U_{x,\text{left}} dy + \int_{x_0}^W \rho U_{y,\text{top}}^2 dx + \int_{y_0}^H \rho U_{y,\text{right}} U_{x,\text{right}} dy \quad (4b)$$

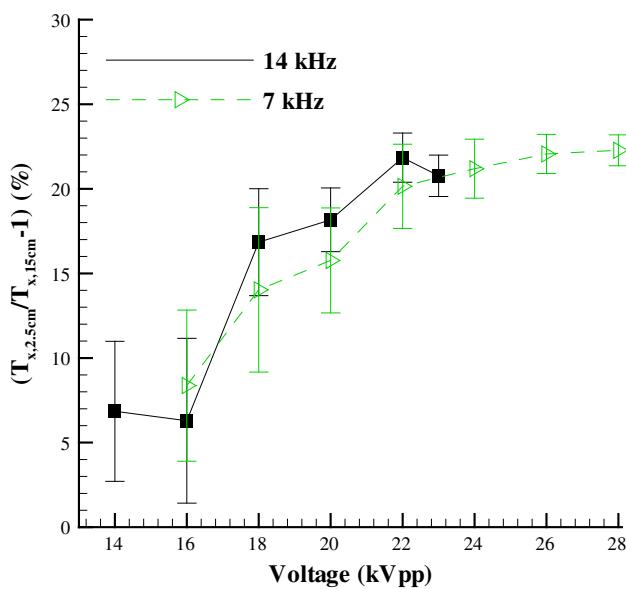
400

402

4 Results


4.1 Influence of the actuator plate length

404


In order to evaluate the effect of the actuator's plate length (L), shown in Fig. 1b, different plate lengths were tested. The same actuator was used throughout the experiments with the plate length, L , being reduced each time. Lengths corresponding to 15, 10, 5, and 2.5 cm were investigated over a range of voltages (14–28 kVpp). A plate length of 15 cm was chosen as to mimic the plate length of the actuator used in the control volume analysis. A limiting length of 2.5 cm was imposed to avoid the possibility of arcing around the dielectric substrate, since the encapsulated electrode itself is 2-cm wide. The lengths 10 and 5 cm were chosen arbitrarily as incremental lengths.

The results of this study, presented in Fig. 9, indicate that there is little variation in the resultant thrust regardless of the length of the plate for lower input voltages. This trend does not hold, however, as the voltage increases. At the higher voltages investigated, an increase in thrust is observed, as the actuator's plate length is decreased. This increase is independent of the two frequencies investigated. At the maximum voltages tested, a difference of 5 and 7 mN/m was measured between plate lengths of 15 cm and 2.5 cm for 14 kHz and 7 kHz, respectively. This corresponds to a ~20 % increase in measured thrust in both cases (Fig. 10). Such a large discrepancy could prove problematic when trying to compare between different researchers' results if the plate length was not specified.

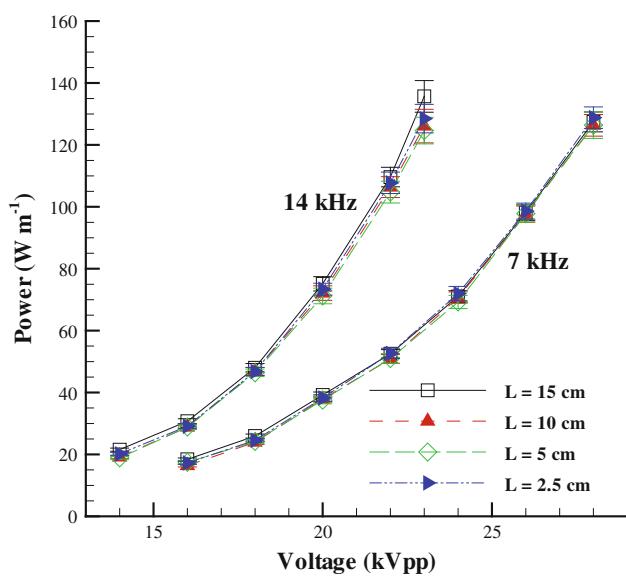

Because the viscous drag rapidly decreases in the downstream direction as the induced wall jet expands and dissipates, the difference in its integrated effect becomes less severe as the plate length is increased beyond a certain

Fig. 9 Force measurements over a range of input voltages with varying actuator plate lengths: **a** 14 kHz and **b** 7 kHz

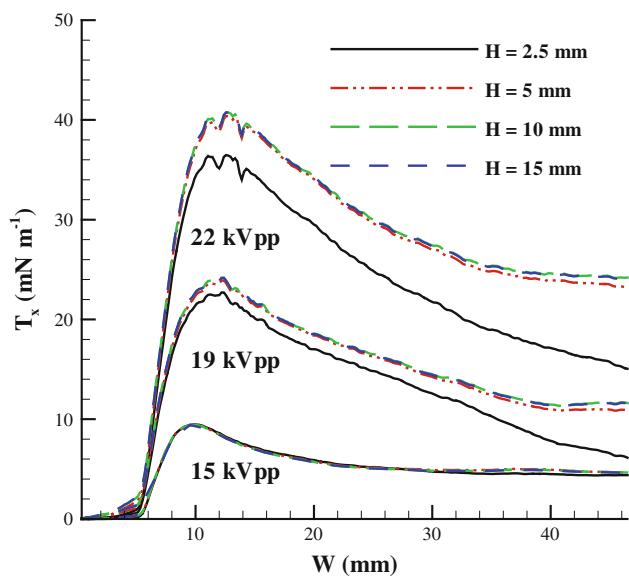


Fig. 10 Percentage increase in thrust between a plate length of 2.5 and 15 cm as a function of voltage

Fig. 11 Power dissipation as a function of voltage for different plate lengths

437 threshold (e.g. $L = 10$ cm). This results in nearly identical
438 (plate-independent) thrust values for the longer plate
439 lengths ($L = 10$ cm and 15 cm). For shorter plate lengths,
440 however, the impact of the viscous drag overall would be
441 significantly less than the longer plates, resulting in higher
442 recoverable thrust readings. It is also plausible that a
443 shortening of the dielectric plate affects the surface charge
444 accumulation and thus the electric field and induced force
445 on the fluid. A substantial surface charge has been shown to
446 persist several centimeters downstream of an actuator
447 (Opaits et al. 2008; Enloe et al. 2008a, b). Regardless of the

Fig. 12 Resultant tangential thrust component for a 15, 19, and 22 kVpp input voltage at 14 kHz as function of the width ($W = x - x_o$) for varying heights ($H = y - y_o$) of the control volume

exact mechanism, Fig. 11 verifies that the power consumption and thus power delivered to the plasma load remains constant regardless of the plate length, indicating a nominal constant body force is generated.

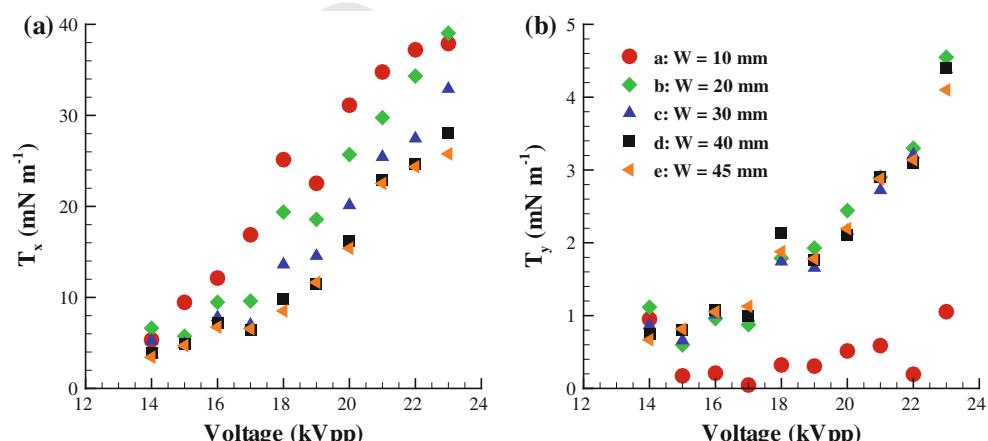
4.2 Control volume extracted forces

In order to extract the reaction thrusts on the control volume, the integrals on the right-hand side of Eq. 4a and b were numerically integrated in Matlab using the time-averaged PIV data. A composite trapezoidal rule was used for the integration scheme. It was found that the starting x-location, x_o , in the integrals had little influence on the resultant thrust calculated as long as it was chosen behind the edge of the exposed electrode (i.e. $x_o < x = 0$, referring to Fig. 8). The starting y-location, y_o , was chosen arbitrarily below the dielectric material such that $y_o < 0$ (Fig. 8). The starting locations used were -5.0 and -0.1 mm corresponding to x_o and y_o , respectively. Also, it is pertinent to note that a constant air density (ρ) is assumed. This assumption was also made by Hoskinson et al. (2008) based on prior experimental data from Enloe et al. (2006). In this prior work, it was estimated that the density fluctuations near the actuator were less than 2 % of ambient. Again, the air density was taken as 1.184 kg m^{-3} .

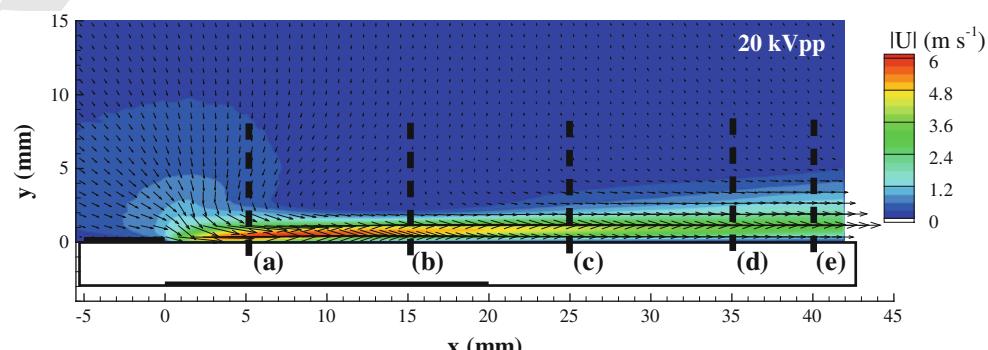
Figure 12 depicts typical plots of the inferred tangential thrust component, T_x , and how it varies with the width ($W = x - x_o$) and the height ($H = y - y_o$) of the control volume (referring to Fig. 8) for various voltages. The plot indicates that the thrust is independent of the control volume's height beyond a given point (10 mm for all cases

investigated). This point corresponds to the total encapsulation of the induced wall jet's "boundary layer". The boundary layer created by the jet increases with both applied voltage and downstream location. However, for the range of voltages investigated, the boundary layer was less than 10-mm thick for the given field of view. More important than the height of the control volume is its width, as Fig. 12 reveals. The calculated net thrust is highly dependent on the point at which the control volume ends. If the width is too small, the thrust may be grossly overpredicted as compared to a much wider control volume.

The tangential and normal thrust components are plotted in Fig. 13a and b, respectively, over the range of input voltages investigated. At each voltage, the thrust was extracted for five different control volume widths from data similar to Fig. 14. The vertical dashed lines in Fig. 14 correspond to control volume widths of 10, 20, 30, 40, and 45 mm. The height of the control volume chosen was 10 mm, which is a suitable choice for reasons previously discussed. Over the range of supplied voltages, the calculated tangential thrust shows a strong dependency on the width of the control volume. This dependency becomes more pronounced at higher voltages. The calculated thrusts do begin to plateau as the downstream extent of the control volume is increased. This is a result of the asymptotic


nature of the curves shown in Fig. 12. We note that the thrust does continually decrease as the downstream extent is increased due the perpetual addition of viscous drag. However, the rate of this decrease begins to slow as the wall jet expands and dissipates.

The normal thrust component deviates from this trend with its values remaining approximately constant as the width of the control volume is increased (Fig. 13b). The exception, however, to this observation is the smallest control volume plotted ($W = 10$ mm). Regardless, the magnitude of the normal component is significantly less than that of the tangential. The large disparity between the normal and tangential components is in line with other reports (Cheong et al. 2011).


4.3 Comparison between the two measurement methods

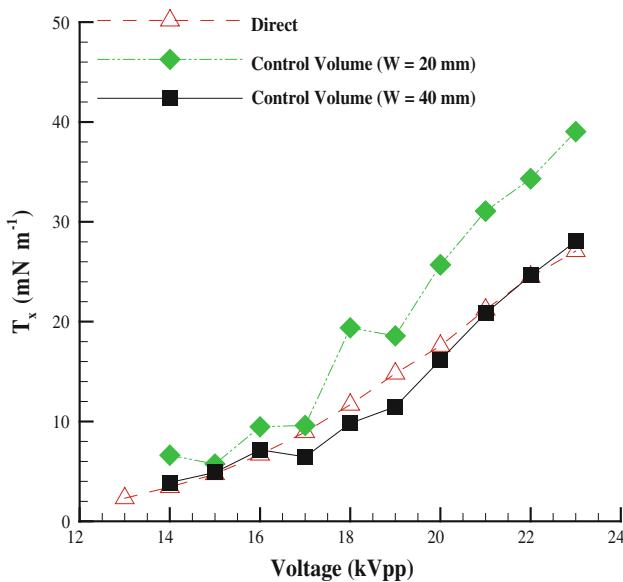

A comparison between the control volume analysis and the direct thrust measurement is shown in Fig. 15. Two different control volume widths ($W = 20$ and 40 mm) are presented, as well as the plate-independent direct thrust measurements ($L = 10$ cm). Results indicate that the measured and inferred thrusts are in good agreement over the entire voltage range for the wider ($W = 40$ mm) control

Fig. 13 Forces calculated from a control volume analysis as a function of voltage for various widths ($W = x - x_o$) of the control volume (14 kHz): **a** tangential component of force (T_x) and **b** normal component of force (T_y)

Fig. 14 Velocity magnitude contour for 20 kVpp input driven at 14 kHz. The dashed lines labeled (a) through (e) correspond to control volume widths ($W = x - x_o = x - (-5)$ mm) of 10, 20, 30, 40, and 45 mm, respectively

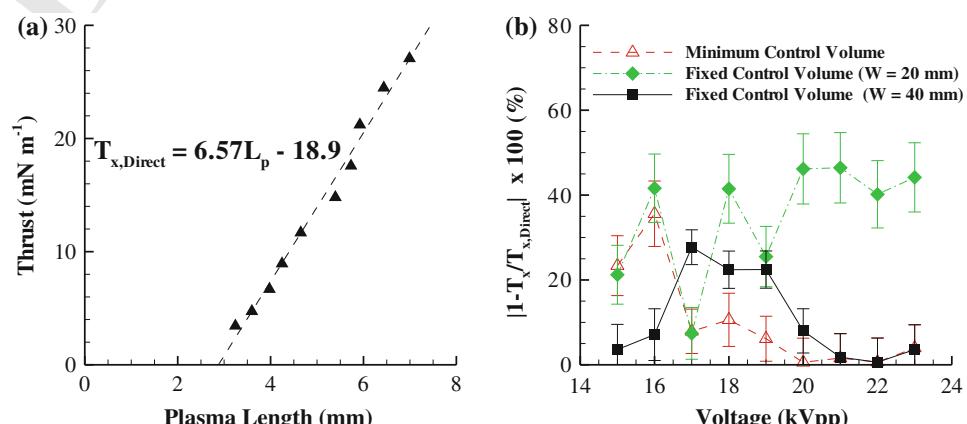
Fig. 15 Comparison between direct thrust measurements and those inferred from a control volume analysis. The driving frequency was 14 kHz

volume. It is also evident that if the control volume is of insufficient size, the thrust may be over-predicted and eludes that there is a minimum length downstream of the actuator that the control volume needs to consider. That length, however, is directly tied to the applied voltage as there is a decent agreement for the smaller control volume width at lower input voltages. Based on these results, a downstream extension of ~ 35 mm is recommended.

Identifying the plate-independent direct thrust with a single parameter could be useful for practical purposes. A non-invasive parameter of choice, as suggested by Kriegseis et al. 2011b, is the plasma length (L_p) which results from the combination of geometric and electrical inputs. The plasma length was determined from photographs obtained using a Nikon D90 digital camera fitted with a 105-mm lens (8-s exposure, f/7.1). The color images were first converted to grayscale, then binarized using a

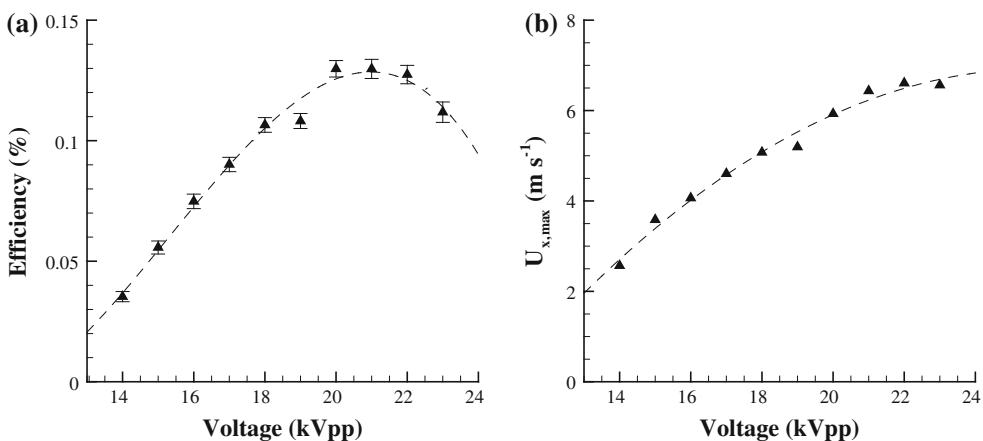
threshold value of 0.08. A tracing algorithm then mapped out the plasma, and an average value was determined. This value is plotted in Fig. 16a against the plate-independent direct thrust measurements for $L = 10$ cm presented in Fig. 15. A linear relationship was found between the direct thrust data ($T_{x,Direct}$) in mN m^{-1} and the plasma length (L_p) in mm.

$$T_{x,Direct} = 6.57L_p - 18.9 \quad (5a)$$


To determine the minimum threshold for the control volume size for reasonably predicting thrust, the same scaling metric (L_p) was studied. A linear relation of the form

$$x_{min} = 7.12L_p - 11.1 \quad (5b)$$

was obtained for the minimum control volume's downstream extent ($x_{min} = W_{min} + x_o$). This relation was found by matching the direct thrust data from Fig. 15 ($L = 10$ cm) with PIV inferred thrust data, represented in Fig. 12, for given voltages. The difference between the inferred thrust using the minimum control volume extension and the direct measurements are provided in Fig. 16b on a percentage basis. As a comparison, the percentage difference in using a fixed control volume is also shown. In general (with exception of the lower voltages), using the minimum control volume extent yields better or similar results to that of the fixed width volume for $W = 40$ mm. Furthermore, the plot also emphasizes the over-prediction of the thrust when using a control volume of insufficient size (in this case $W = 20$ mm).


4.4 Energy conversion efficiency

The device characterization of an actuator tested in quiescent conditions is not complete without an understanding of its energy conversion efficiency, η , which is defined as (Zito et al. 2012) the ratio of thrust (T_x) and induced maximum velocity ($U_{x, max}$) to that of the delivered power (P):

Fig. 16 **a** Thrust as a function plasma length and **b** the percent difference between direct and control volume inferred forces using a fixed and scaled control volume

Fig. 17 **a** Energy conversion efficiency and **b** peak-induced velocity of a DBD actuator made from a 3-mm-thick acrylic plate operating at 14 kHz

$$\eta = \frac{T_x U_{x,\max}}{P} \quad (6)$$

578 The calculated efficiency for the actuator geometry used
 579 in this text for a driving frequency of 14 kHz is plotted as a
 580 function of the applied voltage in Fig. 17a, with the
 581 maximum velocity extracted from collected PIV data
 582 shown in Fig. 17b. While the efficiency of the DBD
 583 actuator is less than 0.15 %, the results show a peak
 584 efficiency region for the device. As the voltage is further
 585 increased, the induced velocity saturates and the efficiency
 586 drops implying more power loss in dielectric heating and/
 587 or streamer formation.

5 Conclusion

589 The effect of varying the plate length upon which the
 590 plasma-induced wall jet acted was investigated using a
 591 direct force balance. At the upper range of the voltages
 592 investigated, an increase in thrust was observed as the plate
 593 length was decreased. The thrust was nearly identical for
 594 10- and 15-cm length, but an increase in thrust of 20 % was
 595 observed as the plate length was reduced to 2.5 cm (a four
 596 to six times reduction). Based on these findings, the plate's
 597 length is an important consideration for making compari-
 598 sons between various reported experimental data. PIV
 599 measurements were also made on a single actuator plate for
 600 various voltages. These measurements provided time-
 601 averaged data sets of the induced flow field. The velocity
 602 fields were then subjected to a control volume analysis to
 603 infer the resultant thrusts acting on the rectangular volume.
 604 The results of the analysis indicated a strong dependency
 605 on the size of the considered volume with a particular
 606 emphasis on the width of it. When compared with the
 607 direct thrust measurements, the calculated tangential thrust
 608 agreed well regardless of input voltage if the control vol-
 609 ume extended far enough downstream. Also, the discharge
 610 length was optically measured using visible light emission.

A linear correlation was found between the plasma length and the measured thrust for the actuator configurations studied. A suitable control volume size was also recommended based on the plasma length. Finally, to complete the device characterization, the energy conversion efficiency curve for a representative actuator is also plotted.

Acknowledgments This work was sponsored in part under Air Force Office of Scientific Research Grants #FA9550-09-1-0372 and #FA9550-09-1-0615 monitored by Dr. Doug Smith and Charles Suchomel.

References

Abe T, Takizawa Y, Sato S, Kimura N (2008) Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. *AIAA J* 46(9):2248–2256
 622
 623
 624
 Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge
 625
 626
 Baughn JW, Porter CO, Peterson BL, McLaughlin TE, Enloe CL, Font GI, Baird C (2006) Momentum transfer for an aerodynamic plasma actuator with an imposed boundary layer. In: 44th AIAA aerospace sciences meeting. AIAA 2006-168
 627
 628
 629
 630
 Borghi CA, Carraro MR, Cristofolini A, Neretti G (2008) Electro-
 631
 632
 633
 hydrodynamic interaction induced by a dielectric barrier discharge. *J Appl Phys* 103(6):063304
 Cheong M, Greig A, Gibson B, Arjomandi M (2011) An investigation
 634
 635
 636
 into the effect of electric field on the performance of dielectric barrier discharge plasma actuators. *Exp Therm Fluid Sci* 35(8):1600–1607
 637
 Corke TC, Post ML, Orlov DM (2007) Sdbd plasma enhanced aerodynamics: concepts, optimization and applications. *Prog Aerosp Sci* 43(7–8):193–217
 638
 639
 640
 Debien A, Benard N, David L, Moreau E (2012) Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. *Appl Phys Lett* 100(1):013901. doi:
 10.1063/1.3674308
 641
 642
 643
 644
 Enloe CL, McLaughlin TE, Vandyken RD, Kachner KD, Jumper EJ, Corke TC (2004) Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. *AIAA J* 42(3):589–594
 645
 646
 647
 648
 Enloe CL, McLaughlin TE, Font GI, Baughn JW (2006) Parameter-
 649
 650
 651
 ization of temporal structure in the single-dielectric-barrier aerodynamic plasma actuator. *AIAA J* 44(6):1127–1136

652 Enloe CL, Font GI, McLaughlin TE, Orlov DM (2008a) Surface
653 potential and longitudinal electric field measurements in the
654 aerodynamic plasma actuator. *AIAA J* 46(11):2730–2740
655
656 Enloe CL, McHarg MG, McLaughlin TE (2008b) Time-correlated
657 force production measurements of the dielectric barrier dis-
658 charge plasma aerodynamic actuator. *J Appl Phys* 103(7):073302
659
660 Enloe CL, McHarg MG, Font GI, McLaughlin TE (2009) Plasma-
661 induced force and self-induced drag in the dielectric barrier
662 discharge aerodynamic plasma actuator. In: 47th AIAA aero-
663 space sciences meeting including the new horizons forum and
664 aerospace exposition. AIAA 2009-1622
665
666 Font GI, Enloe CL, McLaughlin TE (2010) Plasma volumetric effects
667 on the force production of a plasma actuator. *AIAA J*
668 48(9):1869–1874. doi:[10.2514/1.51660](https://doi.org/10.2514/1.51660)
669
670 Font GI, Enloe CL, Newcomb JY, Teague AL, Vasso AR,
671 McLaughlin TE (2011) Effects of oxygen content on dielectric
672 barrier discharge plasma actuator behavior. *AIAA J*
673 49(7):1366–1373. doi:[10.2514/1.55031](https://doi.org/10.2514/1.55031)
674
675 Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M
676 (2007) Optimization of a dielectric barrier discharge actuator by
677 stationary and non-stationary measurements of the induced flow
678 velocity: application to airflow control. *Exp Fluids* 43:917–928.
679 doi:[10.1007/s00348-007-0362-7](https://doi.org/10.1007/s00348-007-0362-7)
680
681 Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier
682 discharges in gas gaps and on surfaces. *J Phys D Appl Phys*
683 33(20):2618
684 Gibson BA, Arjomandi M, Kelso RM (2012) The response of a flat
685 plate boundary layer to an orthogonally arranged dielectric
686 barrier discharge actuator. *J Phys D Appl Phys* 45(2):025202
687
688 Grundmann Sven, Tropea Cameron (2009) Experimental damping of
689 boundary-layer oscillations using dbd plasma actuators. *Int J*
690 *Heat Fluid Flow* 30(3):394–402
691
692 Hoskinson AR, Hershkowitz N (2010) Differences between dielectric
693 barrier discharge plasma actuators with cylindrical and rectangular
694 exposed electrodes. *J Phys D Appl Phys* 43(6):065205
695
696 Hoskinson AR, Hershkowitz N, Ashpis DE (2008) Force measure-
697 ments of single and double barrier dbd plasma actuators in
698 quiescent air. *J Phys D Appl Phys* 41(24):245209
699
700 Jolibois J, Moreau E (2009) Enhancement of the electromechanical
701 performances of a single dielectric barrier discharge actuator.
702 *Dielectr Electr Insulation IEEE Trans* 16(3):758–767
703
704 Jukes TN, Choi K-S (2009) Long lasting modifications to vortex
705 shedding using a short plasma excitation. *Phys Rev Lett*
706 102:254501
707
708 Kogelschatz U (2003) Dielectric-barrier discharges: their history,
709 discharge physics, and industrial applications. *Plasma Chem
710 Plasma Process* 23:1–46. doi:[10.1023/A:1022470901385](https://doi.org/10.1023/A:1022470901385)
711
712 Kotsonis M, Ghaemi S, Veldhuis L, Scarano F (2011) Measurement
713 of the body force field of plasma actuators. *J Phys D Appl Phys*
714 44(4):045204
715
716 Kriegseis J (2011a) Performance characterization and quantification
717 of dielectric barrier discharge plasma actuators. Ph.D thesis, TU
718 Darmstadt
719
720 Kriegseis J, Grundmann S, Tropea C (2011b) Power consumption,
721 discharge capacitance and light emission as measures for thrust
722 production of dielectric barrier discharge plasma actuators.
723 *J Appl Phys* 110(1):013305
724
725 Labergue A, Moreau E, Zouzou N, Touchard G (2007) Separation
726 control using plasma actuators: application to a free turbulent jet.
727 *J Phys D Appl Phys* 40(3):674
728
729 Little Jesse, Nishihara Munetake, Adamovich Igor, Samimy Mo
730 (2010) High-lift airfoil trailing edge separation control using a
731 single dielectric barrier discharge plasma actuator. *Exp Fluids*
732 48:521–537. doi:[10.1007/s00348-009-0755-x](https://doi.org/10.1007/s00348-009-0755-x)
733
734 Opaits DF, Shneider MN, Miles RB, Likhanskii AV, Macheret SO
735 (2008) Surface charge in dielectric barrier discharge plasma
736 actuators. *Phys Plasmas* 15(7):073505
737
738 Post ML, Corke TC (2004) Separation control on high angle of attack
739 airfoil using plasma actuators. *AIAA J* 42(11):2177–2184
740
741 Ramakumar K, Jacob JD (2005) Flow control and lift enhancement
742 using plasma actuators. In: 35th AIAA fluid dynamics confer-
743 ence and exhibit. AIAA 2005-4635
744
745 Rizzetta DonaldP, Visbal MiguelR (2008) Plasma-based flow-control
746 strategies for transitional highly loaded low-pressure turbines.
747 *J Fluids Eng* 130(4):041104
748
749 Roth JR, Dai X (2006) Optimization of the aerodynamic plasma
750 actuator as an electrohydrodynamic (ehd) electrical device. In:
751 44th AIAA aerospace sciences meeting and exhibit. AIAA
752 2006-1203
753
754 Roth JR, Sherman DM, Wilkinson SP (2000) Electrohydrodynamic
755 flow control with a glow-discharge surface plasma. *AIAA J*
756 38(7):1166–1172
757
758 Schatzman DM, Thomas FO (2010) Turbulent boundary-layer
759 separation control with single dielectric barrier discharge plasma
760 actuators. *AIAA J* 48(8):1620–1634
761
762 Thomas FO, Kozlov A, Corke TC (2005) Plasma actuators for landing
763 gear noise reduction. In: 11th AIAA/CEAS aeroacoustics
764 conference (26th AIAA Aeroacoustics Conference). AIAA
765 2005-3010
766
767 Thomas FO, Kozlov A, Corke TC (2008) Plasma actuators for
768 cylinder flow control and noise reduction. *AIAA J*
769 46(8):1921–1931
770
771 Thomas F, Corke T, Iqbal M, Kozlov A, Schatzman D (2009)
772 Optimization of dielectric barrier discharge plasma actuators for
773 active aerodynamic flow control. *AIAA J* 47(9):2169–2178
774
775 TSI (2000) Model 9302 atomizer, instruction manual. TSI Inc., St.
776 Paul, MN
777
778 Westerweel J (1994) Efficient detection of spurious vectors in particle
779 image velocimetry data. *Exp Fluids* 16:236–247. doi:
780 10.1007/BF00206543
781
782 Xu X (2001) Dielectric barrier discharge—properties and applica-
783 tions. *Thin Solid Films* 390(1–2):237–242
784
785 Zito J, Durscher R, Soni J, Roy S, Arnold D (2012) Flow and force
786 inducement using micro size dielectric barrier discharge actuators.
787 *Appl Phys Lett* 100:193502