
 

 

American Institute of Aeronautics and Astronautics 
 

 

1

Pyrolysis gas flow in thermally ablating media using time-

implicit discontinuous Galerkin methods 

Ankush Bhatia
1
 and Subrata Roy

2
 

Applied Physics Research Group, Department of Mechanical and Aerospace Engineering, University of Florida, 

Gainesville, FL – 32611, USA 

Ryan Gosse
3
 

Center of Excellence, Air Force Research Laboratory, AFRL/RBAC, Bldg 146B, 2210 Eighth St., WPAFB, OH 

45433-7512, USA 

In this work, we apply time-implicit discontinuous Galerkin methods to the problem of 

thermal ablation, where we solve for the dynamics of flow of pyrolysis gas in a charring 

ablating media. We have benchmarked our results with the published data. The protective 

coating of thermal protection system over the space vehicle is of the order of a few 

centimeters, and high flow speed of gas and dominant source terms in the problem put very 

restrictive CFL limit necessitating the use of implicit time integration methods. Good 

convergence of these methods is ensured by use of #ewton method, where the required 

jacobians are calculated numerically for accurate evaluations. Analytical approach to 

evaluate the jacobians, especially for thermal ablation problems, is very cumbersome, and 

causes serious convergence issues. We have also tested our development of DG capability for 

2-D double Mach reflection problem for extending the code to 2-D thermal ablation in 

future.  

#omenclature 

α = maximum eigenvalue 

c = speed of sound 

Cpc = specific heat of char  

Cpr = specific heat of resin  

D = diffusion term for pyrolysis gas 

ec =  internal energy of char 

eg =  internal energy of gas 

er =  internal energy of resin 

ε = void fraction 

f = friction term 

hr
o
 = heat of formation of resin  

I = Inertia  

k = thermal conductivity  

Kg = permeability 

λ = eigenvalue  

µ = viscosity of gas  

ρ = density 

I. Introduction 

pace vehicles upon entry into a planet’s atmosphere typically experience high heat fluxes to their surface. 

Excessive heat flux results from combined effect of convective and radiative components. Chemical reactions of 
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the dissociated and ionized gas species (present in the shock layer, which is between the bow shock and boundary 

layer) also add on to the overall heating of the surface. Thus, role of a protective coating on the vehicle’s surface, 

called Thermal Protection System (TPS) is critical for the successful and safe entry of the space vehicle. Thermal 

ablation refers to the mechanism by which ablating TPS undergo degradation at high temperatures, and reject high 

heat-content material at the surface itself thus shielding the vehicle from the effect of immense surface heating. In 

addition, charring type ablators undergo thermal decomposition (of resin component) within and release mixture of 

gases called pyrolysis gas into the boundary layer. These gases provide further cooling of the medium both by 

absorbing the heat from the material and by pushing the incoming hot gases (from the flow over the vehicle) away 

from the surface, thus providing a reduction in overall convective heating.  

Problem of thermal ablation is crucial to the success of TPS design studies, where the goal is to accurately 

predict the response of TPS, to given flow conditions, to arrive at an optimum mass, size and shape for the TPS. 

Mass of TPS is directly linked to the launching cost of the vehicle, and its size and shape to the aerodynamic 

coefficients of lift and drag. Thermal ablation is a very complex, highly non-linear and fully coupled multi-physics 

problem. In addition to this, TPS for larger and more advanced payloads are no longer a simple geometry, single 

piece of material, but a complicated geometry and consists of layers of stacked and multiple materials. Most of the 

thermal response codes developed so far are based on finite difference and finite volume methods and are limited to 

simple geometries. Finite element method has so far been limited to only conduction part of the problem, where no 

ablation is considered. Also most of the codes neglect the flow of pyrolysis gas within ablating media missing on its 

effect on the overall response of TPS, as shown in various studies. Capability of finite element methods to 

accommodate complex geometries (by use of unstructured meshes), ability to conveniently apply difficult boundary 

conditions (typical of thermal ablation problem at the interface of solid and fluid domain) without any loss of 

accuracy at the boundary, and scalability for parallel architectures (due to its compact scheme even for higher order 

schemes) make it particularly suitable for thermal ablation problem.  

 Discontinuous Galerkin (DG) methods combine the advantages of both finite element and finite volume 

methods. They were formally developed for hyperbolic conservation laws by Cockburn and Shu [3-6] and later on 

applied to elliptic or convection-diffusion type of problems [7-10]. In work by Persson and Peraire, they have been 

applied to various problems of viscous flows, shocks, turbulent flows and computational aeroacoustics [11-15, 27] 

to make them practical for problems of practical interest. We extend the application of discontinuous Galerkin 

methods to the field of thermal ablation. As a first step, we solve an Arc jet case (a 1-D thermal ablation problem) 

given in Wakefield and Pitts, 1980 [20] and later on simulated by Ahn and Park in their two papers in 1998 and 

2002 [1, 2]. 

As pointed out in [1] and [2], numerical codes for solving thermal ablation problem assumes the flow of 

pyrolysis gas generated upon decomposition of resin material to be steady state. Such an assumption is valid for high 

heating rate environment and high pressure, wherein the gas leaves the system as soon as it is generated. Thus, there 

is no need to solve for the flow of pyrolysis gas within the porous media. However such an assumption is not valid 

in moderate to low heating environments. The governing equations of the flow for such environment are as given in 

[2], 
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In the above equations, Eq. (1) defines the decomposition of resin material. Here ρr is resin density and R is 

decomposition rate dependent on temperature, T and the resin density, ρr, given in Eq. (6). The Eq. (2) solves for 

conservation of mass for gas density, here ε is void fraction and is given by Eq. (5). Here, εmax is maximum void 

fraction that happens in char state, and ρp is intrinsic density of resin and both their values are equal to 0.1788 and 

1763.6 kg/m3. Opposite signs for R in first two equations (1) and (2) indicates that resin decomposes to release 

pyrolysis gas. Second term, D on right hand side of Eq. (2) is the diffusion term that represents the rate of change of 

gas density due to the spatial variation of pressure, and is given by Eq. (7). In this expression, Kg is the permeability 

of gas, and µ is gas viscosity. Eq. (3) governs the momentum conservation of the gas. Flow of the gas is pressure 

driven. Here u is the gas velocity and ερgu is the gas momentum. Since the gas is flowing through the porous media, 

the resistance to gas motion are given through f, friction and I, Inertia terms given in equations (8) and (9) 

respectively. The Eq. (4) solves for combined energy conservation of both solid (resin + char) and gas. First term in 

Eq. (4) gives unsteady variation of total energy, E, of the system. eg, ec, and er are internal energies of the gas, char 

and resin material respectively. Second term in Eq. (4) is derivative of energy flux, similar to Euler equations, where 

the flux is decided by internal and kinetic energy and pressure flow energy of gas. These terms were neglected in 

most thermal response codes since the gas was supposed to leave the material as soon as it was generated. Last term 

in energy equation is heat conduction within the material, through which we also apply net heat flux boundary 

condition at the surface. The terms, ec and er, are evaluated using specific heats of both materials (char and resin) 

and are given as, 

                                                                              C C pc
e C Tρ=               (10) 

                                             
o

r r pr r re C T hρ ρ= +                   (11) 

Specific heat for solid carbon char, Cpc used in Eq. (10) is given as,  

         
4 3 2

1 2 3 4 5( )
.

pc

J
C T c z c z c z c z c

Kg K
= + + + +              (12) 

Here, z = log10T, c1 = -6.5, c2 = -143.7, c3 = 706.7, c4 = 1835 and c5 = -5700. Specific heat for resin material, Cpr 

is assumed to stay at constant value of 1174 W/m-K. This value wasn’t provided in [1, 2]. We consider two cases for 

above given governing equations, as done in [1] and [2]. The differences between both cases are highlighted in 

Table 1. Papers, [1] and [2] use two different models for friction term, f, which have different magnitudes. It was 
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Figure 1. Schematic of 1-D thermal ablation 

problem (material is carbon phenolic) 

found that the friction term in [1] is two orders of magnitude higher than friction term in [2]. Both use two different 

values of thermal conductivity and there’s no Inertia term considered in [1]. Also, Diffusion term, D, is missing in 

the equations given in [1]. All these major differences in two papers are summarized in Table 1. This table lists 

friction, f, conductivity, k, Inertia, I and diffusion coefficient, D.  

 

Table 1: Differences in modeling terms in [1] and [2] 

Difference # 1998 paper, [1] 2002 paper, [2] 

1 f = 7.8 X 10
7
(T/300)

0.75
(ε/0.1788)u f = 2.58 X 10

5
(T/500)

.769
(ε.381

)u 

2 Log10k(T) = -6.343X10
-9

T
2 
+ 3.97X10

-4
T -0.193 Log10k(T) = -6.5X10

-8
T

2 
+ 5X10

-4
T - 0.1 

3 I = 0  I = (1.222/Kg
0.5

)ρgu
2
 

4 D = 0 D = (Kg/µ)(ερg)ε∂
2
P/∂x

2
 

 

  The work in these papers was a reasonable starting point for us to test our DG formulation anchored in MIG, 

Multi-scale Ionized Gas flow Code, which is a family of our in-house finite element modules, and has been used to 

solve problems in plasma dynamics like low pressure Hall thruster, high pressure RF induced optical glow 

discharges, and microthrusters, microchannel and nanopore flows etc.
16-19

 We have also worked in building a 2-D 

DG capability to use them later on in 2-D Thermal Ablation problems.  

II. Full Model Description 

We consider an Arc-jet problem simulated by 

Wakefield and Pitts
20

 and Ahn and Park
1, 2

. The TPS is 

exposed to a heat flux of 1400 W/cm
2
. The problem is 1-

D with domain thickness of 1 cm. As the heat flux 

transfers into the material through thermal conduction, 

the resin material undergoes decomposition and 

produces a mixture of gases, known as pyrolysis gas. 14 

gas species are considered, C, CH, CH2, CH3, CH4, CO, 

CO2, C2, C3, H, HO, H2O, O, and O2. These are taken to 

be at thermal equilibrium at the temperature of the solid 

material and pressure of the gas inside the porous media. 

Equilibrium properties of the gas mixture, like molecular 

weight, internal energy and pressure are evaluated using an external thermo-chemical solver, CANTERA
21

. The 

properties are expressed as a function of temperature and gas density. Further details on thermo-chemical modeling 

used in CANTERA were already discussed in 

our earlier paper, [24]. We have used two 

curve fits for internal energy, eg (see Fig. 2). 

First curve fit, (green curve) is a single 

exponential curve for the complete range of 

temperature between 200 K and 3400 K. This 

curve under predicts internal energy for 

temperature range from 2400 K to 3000 K and 

over predicts from 3000 K to 3400 K. For 

temperature range below 3000 K, this under-

prediction of internal energy is significant, 

and results in lower prediction of cooling 

provided by the flow of gas. Therefore for 

more accurate prediction we pick second 

curve as shown in Fig. 2. This curve is blue 

exponential curve from 200 K to 2800 K and 

black exponential curve from 2800 K to 3400 

K. The expressions of both internal energy, eg 

and molecular weight, MW are given as, 

      

              
( )1 2 3expge AT A A= + −

           (13) 

 
 

Figure 2. Plot of internal energy, eg, with Temperature, T, for 

pyrolysis gas, comparing two curve fits, #1 and #2. Out of both 

curve fit – 2 is more accurate. 
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( ) ( ) ( ) ( )1 2 3 4exp exp exp expMW B y B x B x y B= + + +

          (14) 

    Here, A1 = 1.869e-03, A2 = 1.198exp+01 and A3 = 1.156exp+07. For Eq. (14), x and y depend on temperature 

and gas density respectively as, x = (T/1000)
2
 and y = LOG10(ρg), and constants are B1 = 1.7981exp-04, B2 = -

1.333exp-06, B3 = 2.0159exp-07, and B4 = 1.678exp-02. 

Due to gas generation and increase in temperature, the pressure of gas rises within the domain which causes the 

gas to leak out to the atmosphere. This gas as shown in the results section leaks out to the atmosphere with velocities 

of order of 100 m/s, and within the material domain they have velocities close to 20 – 40 m/s, which causes 

sufficient cooling within the material domain, while it is ablating. This effect is neglected in other numerical works 

in thermal ablation.  

III. #umerical Scheme (Discontinuous Galerkin Method) 

We initially attempted the above described thermal ablation problem with Galerkin based finite element method. 

This method develops spurious oscillations in the solution and is unable to capture solutions with high gas 

velocities. Discontinuous Galerkin method allows for the solution to be discontinuous across element boundary and 

thus can accommodate for solutions with steep gradients and high gas velocities. The in-built dissipation mechanism 

of DG methods results from the use of approximate numerical fluxes for the inviscid fluxes. This in-built dissipation 

is proportional to the jump in the solution across solution variable. Hence DG methods are suitable to treat flows 

with high speeds. DG methods were developed by Cockburn and Shu, as a class of explicit methods, called TVD 

Runge-Kutta Discontinuous Galerkin method (TVD RKDG), in their series of papers from 1989 – 2001
3–6

. They 

have been applied to various problems like Compressible flow, Navier Stokes, electro-hydrodynamics, 

computational aeroacoustics, turbulent flows, flapping wings etc
7, 11-15

. Persson and Peraire have worked on applying 

time-implicit DG methods to more practical and real world problems, and some of their work include areas like 

development of Compact Discontinuous Galerkin (CDG) scheme, preconditioners for time-efficient solution of 

matrix-systems obtained from application of DG methods, sub-cell shock capturing by artificial dissipation for 

capturing flows with shock, and using high order DG methods to capture shock within one element etc [11 – 15]. 

Their work is very relevant to us in the development of implicit DG method for thermal ablation problems.  

A. 1-D Discontinuous Galerkin method 

As a first step, we developed explicit RKDG and DG methods. Such explicit schemes are insufficient for thermal 

ablation problems as they pose heavy restrictions on CFL number. For example, for the 1-D thermal ablation, 

maximum time-step that could be used for the explicit DG methods was 1.0×10
-08

 sec. Total run time for thermal 

ablation problems is however usually on the order of few seconds. Therefore explicit schemes are highly insufficient 

for solving thermal ablation problems, even for a 1-D case. The situation worsens for higher dimensions. The 

severity of restriction on CFL numbers increases as the domain size decreases, and net amount of gas flow velocity 

and source terms increase in the problem. Implicit DG methods allow for higher time-steps, e.g. in our current 1-D 

thermal ablation problem we were able to use time step as high as 1.0×10
-03

 sec, which corresponds to a CFL 

number of around 1000. Since source terms are very large, we also get a highly ill conditioned matrix, which needs 

to be solved using preconditioners. A brief derivation of the weak form of discontinuous Galerkin methods with 

implicit time integration for a general governing equation in Eq. (15) follows below. 

        

( ) ( ) ( )
,vF U F U UU

G U
t x x

∂ ∂ ∇∂
+ + =

∂ ∂ ∂           (15) 

Here, U is solution vector, F (U) is inviscid flux vector, Fv (U,  ∇U) is viscous flux vector, and G (U) is source 

vector. Approximation of solution vector U is written in terms of basis function, φl
j and degree of freedoms U

i
j as 

written in Eq. (16). Substituting Eq. (16) in Eq. (15) and multiplying resultant equation by a test function φl
j gives us 

a weak form. Upon integration by parts to both the inviscid and viscous flux terms, the weak form is given by Eq. 

(17). The coefficient of the first term in Eq. (17), is the mass matrix, M given in Eq. (18).  

           0

k
l l

j j j
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U U Uφ
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We have used Legendre polynomials for the basis functions, which leads to a diagonal mass matrix. Overall 

Jacobian matrix obtained is structured in block-wise fashion and thus is amenable to parallelization for faster 

computations. This task shall be taken up in the future work. For approximation of numerical fluxes we have used 

Local Lax Friedrichs (LLF) flux for inviscid fluxes and BR-1 (Bassi Rebay – 1) for viscous fluxes in equations 19 

and 20. As a standard practice, we use auxiliary equations to deal with viscous terms in DG method.   

( ) ( ) ( ) ( )( )

( ) ( )
( )

min , max ,

1
,

2

max

LLF

a b s a b

H a b F a F b b a

F
s

U

α

α
≤ ≤

= + − −

∂
=

∂
               (19) 

        

 
( ) ( ) ( )( )1

,
2

v v v
H a b F a F b= +

   
                (20) 

 Since problem is non-linearly coupled, we 

use Newton’s method to solve the implicit 

system and fast convergence of the method 

depends on the accurate evaluation of Jacobian. 

Our initial attempt was at getting the analytical 

expressions of the Jacobians. We have already 

demonstrated complexity and limitations that 

abound analytical approach to evaluate jacobians 

in [24] and [28]. To summarize, approach of 

evaluating analytical expressions is very 

cumbersome, and has convergence and stability 

problems for thermal ablation. It’s also not generalized and typically requires a lot of work for a new given problem. 

For any new problem, new analytical expressions need to be found, and such expressions become large and difficult 

to handle. This approach is also more prone to errors. Also, Jacobian evaluation at the boundary is crucial, e.g. if a 

variable at the boundary is fixed, then while calculating Jacobian, it should be treated as constant when 

differentiating w. r. t. other variables; and differentiation w. r. t. the fixed variable should not be considered. Due to 

all the above reasons we took to numerical approach to evaluate these jacobians, which proved to be much more 

accurate, effective and convenient to use. This approach is also not dependent on the given system of equations and 

is thus general in application. We don’t need to change this part of code for any system of equations. For numerical 

approach of evaluating jacobians, we perturb a solution variable and then calculate the change in flux term that it 

produces. By applying simple finite difference we get a first order approximation to the Jacobian, which is accurate 

enough if the perturbation is sufficiently small. Due to coupling between elements (through derivatives of F
+
 and F

-
), 

and numerical evaluation, we were able to achieve near quadratic convergence for thermal ablation problems as 

shown in Fig. 3. 

B. 2-D Discontinuous Galerkin method 
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Figure 3. Residual convergence plot for a test case designed for 

thermal ablation problem and time-step of 1.0e-06 sec. Plot 

shows near quadratic convergence of the scheme. 
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For the time integration of 2-D Discontinuous Galerkin method, we use implicit scheme. 2-D model problem is 

given by Eq. 21, where F and Fv have x and y components. Multiplying Eq. 21 by a test function and integrating 

over domain (along with integration by parts for viscous and inviscid flux terms) gives us weak form in Eq. 22. 

        

( ) ( )v. . ,i

U
F U F U U G

t

∂
+ ∇ − ∇ ∇ =

∂          (21) 

. . . . 0v v
E E E E E E

U
v d vF nd v Fd vF nd v F d vGd

t
σ σ

∂ ∂

∂  Ω + − ∇ Ω − + ∇ Ω − Ω = ∂ ∫ ∫ ∫ ∫ ∫ ∫
r r

� �
  (22) 

Basis functions chosen for the above formulation are Jacobi polynomials, and are given in Table 2 below. These 

basis functions were taken from [25]. Here, coordinates x and y are given for a reference square element, which can 

be transformed to a general quadrilateral in the physical space using bilinear mapping. These basis functions are 

orthogonal, and thus the mass matrix will be diagonal, but since we allow general quadrilaterals whose opposite 

sides may not be parallel, therefore the Jacobian of transformation will no longer be independent of position within 

the reference element, and hence we will have a mass matrix that will no longer be diagonal, but symmetric.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Results and Discussions 

We present results for 1-D thermal ablation problem that was described in section III and also demonstrate our 

development of 2-D discontinuous Galerkin methods and its application to a double mach reflection problem. 

Before presenting these results and the discussion that follows, we validate our DG code for a 1-D Sod’s shock tube 

problem, comparing results with the analytical solution.  

A. Validation case for discontinuous Galerkin method  

We validate results for a shock tube problem with a test case from Toro [29]. Sod’s shock tube is a well known 

problem and its analytical solution is also available for test of accuracy and convergence. Total domain length is 1 

m, and is divided into two chambers, left and right at x = 0.5 m. Initial values for density and pressure in left 

chamber are both 1 in SI units, and in right chamber are 0.125 and 0.1 respectively. Velocity is initialized to a zero 

value. The solutions are plotted at total time of 0.2 sec.  

This case is run using implicit DG code with time-steps of 1.0×10
-3

 and 1.0×10
-4 

sec. We use local Lax-

Friedrichs for numerical fluxes, and show comparison of solutions of order of accuracy up to 4 (LLF 01-04) for the 

code with the exact solution in Fig. 4. Solution accuracy is definitely improved at a lower time-step. Implicit time-

integration scheme has also has its own dissipation mechanism, which can be seen in smearing of solution and 

oscillation peaks with time step of 1.0×10
-3

 sec. We also provide close-ups of three regions namely, expansion fan, 

 

Table 2: Basis functions expressions based on their orders. Here x and y are coordinates for the 

reference geometry which maps to a generalized quadrilateral.  

Basis/Order 1 2 3 4 

1 1 1 1 1 

2  -1+2x -1+2x -1+2x 

3 -1+2y -1+2y -1+2y 

4  1-6x+6x
2
 1-6x+6x

2
 

5 1-2y-2x+2xy 1-2y-2x+4xy 

6 1-6y+6y
2
 1-6y+6y

2
 

7  -1+12x-30x
2
+20x

3
 

8 -1+2y+6x-12xy-6y
2
+12xy

2
 

9 -1+6y-6y
2
+2x-12xy+12yx

2
 

10 -1+12y-20y
2
+20y

3
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contact discontinuity and shocks to give a better idea of how solution approximations improve with order of 

accuracy at each of these zones. These results are shown in Fig. 5 for time-step of 1.0×10
-4

 sec. 

B. 1-D thermal ablation using discontinuous Galerkin method  

An Arc-jet wind tunnel experiment was conducted in [20] with a carbon-phenolic sample that was exposed to a 

heat flux of 1400 W/cm
2
. Experiment results were compared with simulation results from Charring Material 

Ablation code or CMA. Later on, these results were also published in [1] and [2]. Total run time for this problem is 

5 sec, and surface pressure and enthalpy at the exit are 0.22 atm and 23300 J/g. Total thickness of the test sample is 

1 cm.  

Here we consider two cases, as taken in [1] and [2]. Differences in both these cases were noted in the 

introduction section. To compare the effect of diffusion term modeling between both the cases, we use friction term 

and thermal conductivity from [2] in both the cases. First we present results obtained for the case with D = 0, which 

was considered in [1]. In Fig. 6 a) and b), we show spatial distribution of solution variables at a time of 4 sec. It can 

be seen from plot of resin density, ρr that pyrolysis zone extends from 2 mm to 4 mm. Other 2 zones, i.e. virgin 

plastic (ρr = 250 kg/m
3
) and char zone (ρr = 0 kg/m

3
) can also be identified from this plot. Pressure varies from a 

value of nearly 8 atm in the region of virgin plastic, where it is flat, to a low 0.22 atm at the right side of domain. 

High pressure gradient of the gas is observed within the pyrolysis zone. The gas flow is actually driven by the 

gradient of the product of the gas pressure, P and void fraction, ε. This is seen in the jump of velocity magnitude in 

the pyrolysis zone, and higher velocities are attained at the right boundary due to a steeper gradient of εP. We also 

observe some numerical artifacts in the solution of gas momentum, possibly due to dominant friction term in Eq. (3). 

Cooling effect of pyrolysis gas can also be seen from these plots.  
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     a) ∆∆∆∆t = 1.0×10-03 sec         b) ∆∆∆∆t = 1.0×10-04 sec 

Figure 4. Validation cases for shock tube problem for two time steps, a) 1.0e-03 sec and b) 1.0e-04 sec. 

Solution from DG simulations for high order accuracy is compared to exact solution, and higher accuracy

gives closer solution.  
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Figure 5. Close ups of three regions in shock-tube, a) expansion wave, b) contact discontinuity and c) 

shock wave. Time step for above simulations is 1.0×10
-4

 sec. Higher polynomial approximations lead to 

more accurate results. 
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Temperature distribution within the material has steeper gradient at the pyrolysis front, seen at around 2 mm in 

Fig. 6b), as compared to elsewhere in domain. There are two heating mechanisms in the domain, thermal conduction 

and convection cooling. In beginning of pyrolysis zone, we expect thermal conduction to be the dominant 

phenomena, whereas at other places in the char we expect both convection cooling and conduction to play an 

equally important role. This explains the observed temperature distribution and the trend of thermal response (at 

different times) that can be seen in Fig. 6c), where a steep rise in temperature is slowed down by the convection 

cooling of the exiting pyrolysis gas. Based on our calculations, we find that temporal increase in pyrolysis gas 

density in the virgin plastic zone (region to the left of pyrolysis zone) is due to resin decomposition rate, R, which 

also leads to corresponding gas generation. The temperature in the virgin zone is 300 K, so value of R should be 

very close to zero, which is not the case with the model for R given in [1] and [2]. Based on these calculations, we 

come to conclusion that all the gas that is generated during pyrolysis (in the pyrolysis zone) primarily leaves out to 

the atmosphere. Both friction and inertia terms in [2] provide resistance to the flow of gas. Higher values for friction 

term in [1] results in higher resistance to the flow and hence larger gas density values are observed within the virgin 

plastic domain. This would result in higher pressure to be observed for [1] as compared to [2]. This difference was 

noted in the pressure results reported in [1] and [2]. Gas pressure for the day probe in the virgin plastic domain is 

nearly 75.67 atm for [1] and 30 atm for [2] at a flight time of 27 sec. We are investigating this difference in two 

models between 2 papers. We will note here that we have used friction model from [2] for both the cases that we 

ran, to compare the effect of Diffusion term alone between both the cases.  

In Fig. 7, we compare our results for temporal variation of surface temperature (on the right side of domain 

shown in Fig. 1). We provide results for our simulation for both curve fit – 1 and curve fit – 2 for internal energy, eg. 

As we have already mentioned that curve fit – 2 is more accurate than curve 1, we find that our results match the 
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  a) Gas density, gas momentum and pressure   b) Gas velocity, resin density and temperature 

          
x, location (m)

T
(K

)

0 0.002 0.004 0.006 0.008 0.01
0

500

1000

1500

2000

2500

3000

 
   c) Temperature distribution at different times 

 

Figure 6. Top two plots a) and b) show all solution variables for Arc-jet case with D = 0 at time = 4 sec. a) 

shows gas density, ερερερερg, gas momentum, ερερερερgu and pressure, P; b) shows gas velocity, u, resin density, ρρρρr, and 

temperature, T; and c) shows temperature distribution within the domain at times = 0.1, 1, 2, 3, 4, and 5 sec. 
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experimental results for initial 1 sec, and after that due to high gas velocity, there’s no further rise in temperature 

observed. High gas velocity leads to high cooling at the surface, which exactly balances out net heat influx to the 

surface and thermal conduction.  

Second case that we present is with nonzero diffusion term (D≠0) in Eq. 2. This case is exactly similar to [2]. 

Shown below in Fig. 8, are results for solution variables at time of 4 seconds. We now highlight the differences in 

both the cases, with and without diffusion term. Diffusion term in momentum equation is related to the second 

derivative of gas pressure, and results in more diffused profile for gas density. Pressure is related to gas density and 

temperature, and both are more diffused out, which causes a lower pressure (actually εP) gradient that drives the 

flow, and therefore we get lower gas momentum near exit, as compared to case D = 0. Therefore we find these 

results are consistent with basic gas dynamics.  

Due to diffusion term, gas velocity at the point of gas generation is lower, and hence gas density is higher 

compared to case with D = 0 in the pyrolysis zone. Larger gas density absorbs more heat from the material, and 

hence temperatures at pyrolysis zone are lower for this case. This in turn affects the decomposition of resin material 

and we see a broader pyrolysis zone in this case, which extends roughly from 3 mm to 7 mm. This diffusion 

mechanism is in general better for the vehicle’s body since it provides for more time that the vehicle gets before its 

temperature starts to increase. For example, temperatures above 500 K are observed at location of 2.25 mm for 

earlier case (D = 0) and for this case at location of 3.17 mm at time of 4 sec. There’s no significant difference in 

pressure for both cases, pressure in this case is approximately 0.5 atm higher than that of case – 1. Velocities in the 

domain for this case are lower as compared to case with D = 0, therefore we have lower cooling within the domain, 

and since heat conduction is a diffusion mechanism, we observe more diffused profiles of temperature. So, from 

looking at temperature profile we can tell which effect is dominant, conduction or convective cooling.  

We also show comparison of results obtained for both D = 0 and D ≠ 0 at final time of 5 sec below in Fig. 10, 

and we can easily see that lesser amount of resin material is used for the case with D ≠ 0 (top left plot in Fig. 10). 

The pyrolysis zone is identified from 0.002 m to 0.006 m for non-zero diffusion case, and that for zero diffusion 

from 0.0005 m to 0.0025 m; therefore pyrolysis zone is twice wide for non-zero diffusion case. Also, the pyrolysis 

front for non-zero diffusion case travels at lower speed than case with zero diffusion. Since temperatures around the 

pyrolysis zone are lower for non-zero diffusion than temperatures around pyrolysis zone for zero diffusion, net 

decomposition rate for non-zero diffusion case is lower, hence speed of pyrolysis front is slower. Lower speeds for 

exiting gas within the domain can be seen in Fig. 10 for non-zero diffusion and hence larger gas densities, which 

means more absorption of heat from the material and that is the reason why we observe lower and more diffused 

temperature plots. 

Temporal variation of surface temperature with simulation results by [2] and experimental results by [20] are 

given in Fig. 9. Again we plot the results for both curve fits – 1 & 2 for internal energy. Our surface temperature 
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Figure 7. Temporal variation of surface temperature for DG simulation with D = 0, and comparison with 

1998 paper and experimental results. 
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shoots to higher value at later time than experimental results. Reason for this as already explained is lower cooling 

for this case. (Given our lack of clarity about some aspects of their model, our plot is close to experiment results)  
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   a) Gas density, gas momentum and pressure   b) Gas velocity, resin density and temperature 
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Figure 8. Top two plots a) and b) show all solution variables for Arc-jet case with non-zero diffusion term at time 

= 4 sec. a) shows gas density, ερερερερg, gas momentum, ερερερερgu and pressure, P; b) shows gas velocity, u, resin density, ρρρρr, 

and temperature, T; and c) shows temperature distribution within the domain at times = 0.1, 1, 2, 3, 4, and 5 sec. 
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    c) Gas density          d) Gas velocity 

Figure 10. Comparison plots for cases with zero and non-zero diffusion coefficients for a) resin density, b) 

temperature, c) gas density and d) gas velocity at time, t = 5 sec. We can notice for same heat in-flux and total 

time, lesser material is used with non-zero diffusion case than with zero diffusion case. 
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C. 2-D Discontinuous Galerkin application to Double Mach Reflection Problem 

In our attempt to develop 2-D capability for discontinuity Galerkin method, we applied this code to problems of 

advection and Burgers equations and double mach reflection problem. For time-integration we have used implicit 

method (BDF -1 or Backward Difference Formula). 

Here we only present results for double mach 

reflection. This is a well known problem, and has 

been attempted analytically, experimentally and 

numerically. In the field of DG methods, it was 

solved in [6]. We try this problem, as a first step into 

building a 2-D DG capability in our in-house code, 

MIG.  Schematic of this problem (taken from [26]) 

is given in Fig. 11.  

Here supersonic flow meets the ramp (horizontal 

line in Fig. 11) at an angle of α, due to which the 

incoming shock is reflected from this compressive 

ramp, and this interaction is referred to as double 

mach reflection. For boundary conditions, and 

domain information please refer to [26]. Since this 

problem has a strong shock and due to absence of 

an external artificial dissipation mechanism in our 

scheme, we get overshoots and undershoots across 

the shock; this causes the density and total energy to 

take negative values near shock. In our code, we 

limit values of density and total energy to their 

minimum physically possible values. By this we 

have been able to get results for k = 1 (linear 

polynomial approximation) for DG method. For 

higher k (>= 2), the jumps across shock become 

steeper and we get convergence issues, so we 

haven’t been able to get solutions for full run time 

for higher k. In order to resolve these issues, we are 

working on implementing artificial dissipation 

scheme for removing these oscillations and as 

shown in [12], with higher k, we should expect 

more accurate solutions.  

Fig. 12 shows density contours for gas density at 

t = 0.2 sec. For these simulations we use time-step 

of 1.0e-4 sec, and the results are shown for 40 X 10, 

80 X 20, and 160 X 40 mesh and k = 1, i.e. linear 

polynomial approximation.  The domain 

dimensions are 4 m in x-direction and 1 m in y-

direction. Initial location of shock is at (1/6, 0), and 

aligned at 60
o
 to x-axis. We can easily notice that 

solution quality clearly improves with refined mesh, 

but due to lack of artificial dissipation for this 

problem, the jumps across the shock become more 

severe and hence solution becomes difficult to 

converge. The solution contours are comparable to other published results of this problem, but with higher mesh we 

can observe oscillatory nature of density contours. At very coarse mesh, this is not observed, but many fine flow 

features become visible with finer mesh. Also with k = 2, i.e. quadratic polynomial approximation jumps become 

more severe and simulations hard to converge. 

Convergence results for double mach reflection problem are also shown in figure given below, in Fig. 13. Data 

points for both L2 and L∞ norm of density are plotted for all the three meshes considered above, along with their 

linear fit, and it can be seen easily that the simulations converge to a fixed solution with the given three meshes. 

Norms are plotted against mesh measure, which is the uniform edge thickness of the meshes used, which are same 

for x and y axis. 

   
Figure 11. Schematic of 2-D double mach reflection 

problem (taken from [26])  

 

Figure 12. Density contours obtained for 40 X 10, 80 X 

20, and 160 X 40 mesh (arranged from top to bottom) 

and k = 1 (linear polynomial approximations), time-step 

for above simulations is 1.0e-04 sec, and results are 

shown at t = 0.2 sec 
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V. Conclusion & Future Work 

An implicit discontinuous Galerkin method to solve thermal ablation is introduced and the results are 

benchmarked with the previously reported results. We are able to achieve near quadratic convergence using 

numerically evaluated jacobians in Newton Raphson scheme. Two cases with and without the diffusion term were 

compared and it was found that the modeling of the dynamics of pyrolysis gas does affect the net thermal response 

of the TPS. The case with D ≠ 0 has more diffused profiles for pressure, density and temperature and hence the 

pyrolysis front travels at a slower speed in this case than for D = 0. Consequently, lower amount of resin material is 

used up with D ≠ 0. Hence, neglecting the diffusion term will lead to over prediction of TPS mass, which means 

increased fuel cost for the space mission. So, we see that modeling of motion of pyrolysis gas is very crucial in 

accurately deciding the net response of TPS, and this is neglected in many numerical codes on in-depth thermal 

ablation. Pyrolysis gas was considered to be in thermal equilibrium in current work, and we will explore avenues for 

considering finite rate reaction in our future work. Some modeling inconsistencies in between [1] and [2] are also 

noted and this will be further investigated. To extend our current work to higher dimensions, we are building a 2-D 

DG capability, and as a part of our ongoing work in this area, we have shown results for double mach reflection 

problem. As a next step, we plan to apply artificial dissipation to this 2-D double mach reflection problem, which 

will solve the problem of capturing shock, without spurious oscillations of jumps (overshoots and undershoots at 

discontinuities).  
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