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Local and bi-global stability methods have been employed to examine the effects of
flow-wise oriented dielectric barrier discharge actuators on a laminar, zero pressure gradi-
ent boundary layer. Both methods indicate that the Tollmien-Schlichting wave is stabilized
when plasma actuators are used to add momentum into the boundary layer. The general
behavior of boundary layer stabilization is consistent with experimental results. In addition
to examining the hydrodynamic stability properties explicitly, elementary flow characteri-
zation has also been performed. This flow characterization is performed in order to better
understand the changes to flow stability implicitly through the changes to shape factor and
boundary layer heights caused by the use of plasma actuation.

Nomenclature

u, v, w Flow velocities
p Pressure
ū, v̄, w̄ Mean flow velocities
p̄ Mean pressure
ũ, ṽ, w̃ Disturbance flow velocities
p̃ Disturbance pressure
u′, v′, w′ Complex disturbance flow velocities
p′ Complex disturbance pressure
u∞ Freestream velocity
up Induced velocity
α Complex spatial frequency in x
β Complex spatial frequency in z
ω Complex temporal frequency
δ99% Boundary layer height
δ∗ Displacement boundary layer height
θ Momentum boundary layer height
H Shape factor (H = δ∗/θ)
Re Reynolds number
γ Velocity ratio
F Dimensionless frequency, F = ωR/Re

Subscript
i direction
I Imaginary
R Real
S Inflection point value
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I. Introduction

The process of a flow’s transition from laminar to turbulent has long been a topic of study in fluid me-
chanics. Specifically, the flow over a flat plate with zero pressure gradient (ZPG) is particularly important,
as it shares many characteristics of other more complex flows. One instability present in this flow, char-
acterized as the Tollmien-Schlichting (TS) wave, was first theoretically explored by Tollmien in 19291 and
Schlichting in 1933,2 and later experimentally verified by Schubauer and Skramstead in the 1940’s.3 While
other instabilities and transition paths are known to exist and to also be of importance, the TS wave is the
instability that is most closely tied to the controlled transition of turbulence.

This study examines the effect of using flow-wise operated dielectric barrier discharge (DBD) actuators
on the stability of the ZPG boundary layer flow by modifying the TS wave. These devices are able to produce
charged particles and a sufficiently strong electric field, which introduces a localized electrohydrodynamic
body force that can be used to add or remove momentum from the nearby fluid.4–6 Furthermore, these
devices can be operated in a steady or duty-cycled manner, allowing them to be implemented as components
of active and passive flow control systems. This type of actuator has a number of beneficial properties. It
can be flush mounted on a surface. The response of the device is on electrical (not fluidic) time scales. These
actuators can be operated over a very wide range of frequencies, ranging from Hertz (with duty cycling) or
100’s of Hertz (without duty cycling) up to 10’s of kiloHertz. The primary downside of this type of actuator
is that it is only able to exert limited control authority, due to a weak plasma-flow coupling. The body force
has only been able to generate velocities of up to 8 to 10 m/s under quiescent conditions.

In recent years, a number of studies have illustrated that this type of plasma device is useful for transition
delay. Grundmann and Tropea7,8 used these devices in a pulsed manner as a method of active transition
delay as part of a closed loop control system to cancel oncoming TS waves. They found that DBD actuators
could be used to accurately inject momentum into the boundary layer, modifying the TS waves. Furthermore,
that group also used the actuators in a continuous manner in order to damp oncoming TS waves,8 which
they also had success with. Gibson9 used DBD devices in a passive manner in conjunction with boundary
layer suction to reduce the displacement and momentum deficit boundary layer heights and stabilize the
flow. Duchmann et al10 used these devices in a using continuous actuation and was able to capture the TS
wave with and without plasma actuation using particle image velocimetry.

Aside from experimentation, some theoretical work has also been performed describing how the momen-
tum addition using electrical devices modifies the boundary layer and its stability properties. Limited linear
stability theory (LST) was performed and verified numerically and experimentally by Duchmann et al11

when the actuator was placed within the transitional Reynolds number regime and operated continuously.
This study further confirmed that there are distinct changes in the flow stability near the plasma device,
but forgoes discussion a very in dept discussion of the effects.

Riherd and Roy12 examined the various effects that could occur for an approximated boundary layer
velocity profile, for both co-flow and counter flow operation of the plasma actuator. In their one-dimensional
stability analysis, they discovered two previously undocumented boundary layer instabilities, though it did
leave open certain questions with regard to potential bi-global stability modes and the accuracy of certain
assumptions.

For the slowly developing, nearly parallel boundary layer, simple local stability analysis have been suc-
cessful in predicting the linear stability properties of the flow. Methods using a parabolized form of the
Navier-Stokes equations,13 or direct numerical simulation14 have produced similar results as the local sta-
bility analysis. This result suggests that a local stability analysis should work for the present boundary
layer flow as well. However, in the region directly around the flow control actuator, the assumptions of a
slowly developing, parallel flow are not be strictly satisfied, and there may be significant variations between
properties of the local and global stability modes. In order to discern any potential two dimensional effects
in the region of the flow control actuator, both local and bi-global stability analyses have been performed
on the flow.

The goal of this study is to better understand the effects of implementing plasma actuation in a laminar
boundary layer. For the local stability analysis, boundary layer profiles and flow fields are taken directly
from simulated flows. Furthermore, the effects of a fully two dimensional flow field are examined, allowing
for a better understanding of any localized effects. The results indicate that as the magnitude of the plasma
actuation is increased, the boundary layer is stabilized. Based on the modifications to the base flow, two
mechanisms are suspected to be causing this stabilization. The first of which is the addition of momentum
into the boundary layer, reducing the boundary layer heights. The second is modifications to the boundary
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layer velocity profile, which implicitly change the shape factor and the onset of instabilities.
In order to quantify the modifications of the boundary layer’s stability, both local and bi-global stability

methods have been employed. For moderate levels of plasma actuation, local stability analysis predicts
that the critical Reynolds number of the Tollmien-Schlichting wave is increased from Rex,crit ≈ 92, 500
(Reδ∗,crit ≈ 520) to Rex,crit. > 160, 000 (Reδ∗,crit. > 700). Stabilization of the TS wave is also predicted
when bi-global stability methods are employed. Using bi-global stability methods, changes to the shape and
reduction in the peak velocity magnitude of the TS wave are predicted.

II. Baseline Flow Modification

As a starting point for the stability analysis, the effect of the DBD actuation on the ZPG boundary
layer have been simulated numerically. This is done using the Implicit Large Eddy Simulation (LES) Navier-
Stokes solver FDL3DI.15 A fine two dimensional mesh (801 × 151) is used, which resolved the near wall
boundary layer, the effects of a sharp leading edge, and the steady addition of momentum through a body
force term. At the location of plasma actuation, there are 62 points in the boundary layer (δ99%) for the
Reynolds number tested as part of this study. This mesh is finer than required and is able to capture the
flow adequately near regions of high gradients, particularly for the thin boundary layer near the plate leading
edge. The mesh is geometrically stretched near the boundaries in order to prevent the effects of reflections
that could potentially bounce off of the far field boundaries and interfere with the flow. A schematic of the
domain used can be seen in Fig. 1.

Figure 1. (a) The two dimensional domain used for the baseline flow modifications and (b) a close up of the
x-component of body force injected into the boundary layer. Every fourth grid point is shown.

The plasma actuation is modeled using an approximate body force distribution based on first principle
simulations of the plasma discharge16 (Fig. 1 b) in a manner consistent with the description in Rizzetta et
al.15 While this model does lack some of the physical behavior that is better captured by first principle
models,17 it is not subject to the more rigorous computational demands or the very high frequency unsteady
behavior that is normally damped out by the boundary layer. The magnitude of the body force required
to produce a wall jet under quiescent conditions of a specified velocity was determined a priori. The same
set up was used with no slip conditions (u = v = 0) for the left, right, and bottom boundaries and a no
shear condition on the upper boundary, leading to a quiescent condition over a majority of the domain. The
plasma actuator is run at various magnitudes with quiescent initial and a mix of no slip/no shear boundary
conditions. The effect of the actuation on the flow is then characterized by the maximum velocity seen in
the wall jet (up, shown in Fig. 2). A linear interpolation was then used to control the body force for the
simulation under non-quiescent conditions. The magnitude of the implemented force is characterized by the
non-dimensional parameter

γ =
up
u∞

(1)

This parameter is selected in order to focus solely on the fluid dynamic effect of the plasma actuation and
its influence on the flow stability, ignoring the electrical inputs such as voltage, frequency and the waveform
driving the device. The values of γ are calibrated for the Reynolds number tested as part of this study.
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(a) (b)

Figure 2. (a) Values of up used to calibrate Dc. (b) Velocity profiles at a location downstream of the plasma
actuation for various values of Dc.

In the simulations, the body force was placed at a position corresponding to Rex = 100, 000 (Reδ∗ = 543)
in a boundary layer flow. This actuator location is the transitional regime, which is useful for understanding
how the momentum addition modifies the laminar to turbulent transition in the critical domain.

The first thing that should be noticed is that the addition of momentum into the boundary layer modifies
the boundary layer profiles. Slightly upstream of the actuator, the flow is pulled downwards into the wall as
if there were boundary layer suction present (Fig. 3 a and d). Immediately downstream of the device, the
boundary layer profile shows several inflection points, which suggests that inviscid instabilities may become
important (Fig. 3 b and e), as they satisfy Fjørtoft’s criteria.18 Further downstream of this, the profiles
return to something resembling the Blasius profile, though thinner than that of the initial flow (Fig. 3 c and
f).

(a) u, x = 0.99 (b) u, x = 1.01 (c) u, x = 1.10 (d) v, x = 0.99 (e) v, x = 1.01 (f) v, x = 1.10

Figure 3. Boundary layer velocity profiles as a function of the velocity ratio, γ at locations upstream (a,d),
directly downstream (b,e) and downstream (c,f) of the actuator. The rapid development of suction and wall
jet effects and the gradual diffusion of momentum in the boundary layer can be seen to increase in magnitude
as the value of γ is increased.

As the boundary layer velocity profiles are modified due to actuation, the displacement and momentum
deficit of the boundary layer should be altered as well. It can be seen in Fig. 4 that there is a monotonic
response of the boundary layer heights to the magnitude of the body force. There are some localized effects
near the boundary layer, in which the boundary layer height may rise (δ99%, θ) due to modifications very near
to or away from the wall or fall (δ∗) due to a reduction in the boundary layer momentum deficit. Overall,
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there is a drop in the boundary layer heights downstream with the addition of momentum into the boundary
layer.

Figure 4. Boundary layer heights as a function of the velocity ratio, γ, for values ranging from 0 to 0.35, with
a spacing of 0.05 - (a) δ99%, (b) δ∗, (c) θ, and (d) the shape factor, H = δ∗/θ, along with a comparison to the
analytical solution for the case of React = 100, 000. Inlays show a zoomed in view near the actuator location.

All of these effects suggest that there are 3 different locations important to the stability of these devices.
There is the region upstream of the devices (I), which may now be slightly more stable due to boundary
layer suction. There is the region over and immediately downstream of the device (II), which shows signs of
inviscid instability due to Fjørtofts criteria. Finally, there is the region far downstream of the device (III),
which should be more stable due to a reduced boundary layer height caused by the injection of momentum
into the boundary layer by the plasma actuator. These simulations of the plasma actuation in the co-flow
orientation show that there are a number of different spatial regions within the flow field.

III. Local Linear Stability Theory

A. Numerical model of the eigenvalue problem

Linear stability theory can be used to predict the existence and growth rates of instabilities that may manifest
themselves in the boundary layer. For this local stability analysis, temporal instabilities are examined, though
with the Gaster transformation, the spatial instabilities could also be examined.19

In order to perform this type of analysis, it must be assumed that the flow is slowly developing and
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parallel to the surface. Two metrics have been developed by Riherd, Roy and Balachandar,20 E‖ and Ed,
which quantify the validity of these assumptions. These metrics are defined as

E‖ = tan−1
(

max
y∈(0,∞)

∣∣∣ v̄
ū

∣∣∣) (2)

and

Ed = max
y∈(0,∞)

∣∣∣∣∂ū∂x
∣∣∣∣ (3)

and quantify the parallel flow and slowly developing assumptions, respectively. These assumptions are
quantified in Fig. 5. This flow, while it does exhibit some rapid spatial changes and non-parallel behavior
near the actuator, can be considered a slowly developing, parallel flow over the remainder of the domain.
As such, one dimensional linear stability theory can be applied, except for near the actuator. In order to
understand the effects near the actuator, a bi-global stability method is employed, the results of which are
discussed in section IV.

Figure 5. Evaluation of (a) E‖ and (b) Ed for the flow fields calculated in section II for velocity ratios of γ = 0
to γ = 0.35.

The formulation of the present local stability analysis begins with the linearized Navier-Stokes equations,

ui = ūi + ũi, p = p̄+ p̃ (4)

∂ũi
∂xi

= 0 (5a)

∂ũi
∂t

+ ūj
ũi
∂xj

+ ũj
ūi
∂xj

+
∂p̃

∂xi
− 1

Reδ∗0

∂2ũi
∂x2j

≈ 0 (5b)

It should be noted that the non-dimensionalization here is now based on δ∗0 , which is the boundary layer
height of the non-actuated case at a given location in x rather than xact as it was done in the previous
section.

The problem can be further simplified if several assumptions are made. First, assume that all of the
disturbance quantities are wavelike in nature and can be split into the produce of a disturbance profile
normal to the surface (y) and a wave travelling in the streamwise (x) and spanwise (z) directions such that

φ̃ = φ′(y) exp (i (αx+ βz − ωt)) (6)

where α, β, and ω are the angular wave numbers in x, z, and time. From this point onward, let i =
√
−1.

Also assume that a slow developing flow can be approximated as a 1D mean flow (v = w = ∂(·)
∂x = ∂(·)

∂z = 0).
With these assumptions, the problem can be formulated as the following generalized eigenvalue problem:

iαu′ +
∂v′

∂y
+ iβw′ = 0 (7a)
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iαūu′ + v′
∂ū

∂y
+ iαp′ − 1

Re

(
−α2u′ +

∂2u′

∂y2
− β2u′

)
= iωu′ (7b)

iαūv′ +
∂p′

∂y
− 1

Re

(
−α2v′ +

∂2v′

∂y2
− β2v′

)
= iωv′ (7c)

iαūw′ + iβp′ − 1

Re

(
−α2w′ +

∂2w′

∂y2
− β2w′

)
= iωw′ (7d)

This set of equations (Eqns. 7a - 7d) was then discretized onto a uniform staggered mesh. The velocity
data was stored at and the momentum equations evaluated at the points coincident with the boundary
layer. The pressure data was stored at and the continuity equation evaluated at the intermediate points.
A 4th order accurate, centered finite difference stencil was used for the differencing over a majority of the
domain. A 2nd order accurate, centered finite difference scheme was used at the boundaries. Boundary layer
profiles from the simulations in Section II were interpolated onto the uniform mesh. The eigenvalues and
eigenvectors were then calculated using MATLAB’s eig function.21

B. Co-Flow Actuation

Velocity profiles from Section II were extracted from 160 points in the flow (0 < Rex < 4React) and examined
using the eigenvalue analysis as provided. Only the non-oblique modes have been examined (β = 0).
Sufficiently far upstream of the flow modification, the stability properties are unchanged. However, the
stability is modified in the regions near and downstream of the body force. The extracted eigenvalues for the
case of React = 100, 000 at Rex = 120, 000 can be seen in Fig. 6. The critical eigenvalue moves monotonically
from unstable to stable as γ increases (Fig. 6b). Stability diagrams are shown in Fig. 7 for the different
values of γ examined. Again, a monotonic behavior is found to exist, where the higher levels of actuation
have a more profound effect on the stability characteristics (either stabilizing or destabilizing depending on
the specific eigenmode). It can be seen that as the value of γ and amount of momentum transfer is increased,
the ‘thumb’ region typically associated with instabilities in the ZPG boundary layer is moved farther and
farther downstream. This indicates that the boundary layer stability is successfully being reinforced by the
use of DBD actuation.

(a) Computed eigensprecta (b) Close-up of the critical eigenvalue

Figure 6. Computed eigenvalues for the case of React = 100, 000 at Rex = 120, 000, α = 0.3 (a). A close-up of the
TS wave eigenvalue is also shown (b).

It can be seen that LST predicts increased flow stabilization in terms of Rex (Fig. 8) as well as Reδ∗ in
the neutral stability curves (Fig. 7). Furthermore, this flow stabilization extends beyond the near actuator
region, to points where the assumptions required for the one-dimensional stability analysis are valid. The
reasons for this flow stabilization are likely to be due to two different effects, both of which are coupled to
each other and the addition of momentum into the boundary layer. The addition of momentum into the
boundary layer is shown to reduce the boundary layer displacement height (as shown in Fig. 4 b). In turn,
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(a) γ = 0.00 (b) γ = 0.05 (c) γ = 0.10

(d) γ = 0.15 (e) γ = 0.20 (f) Neutral stability curve

Figure 7. Stability diagrams of the flows when the actuator is placed at Rex = 100, 000. In (a)-(e), the line of
neutral stability is marked. F = Real (ω) /Reδ∗ . (f) Neutral stability curves for values of γ ranging from 0.00 to
0.35 with a spacing of 0.05

this reduces the local boundary layer Reynolds number, which delays the onset of perturbation growth in
the boundary layer. The second source of stabilization results from the momentum addition modifying the
boundary layer velocity profiles (as shown in Fig. 3). By modifying the boundary layer profiles, the shape
factor (H = δ∗/θ) is modified. This parameter has been shown to be very important in identifying the onset
of the perturbation growth in boundary layers through a ”universal correlation,22” where a decreased shape
factor implies transition delay of the TS wave. Fortunately, the manner in which momentum is added into
the boundary layer reduces the shape factor, thus delaying the critical onset of the TS wave’s growth.

IV. Bi-Global Stability Theory

The set of assumptions required for these one-dimensional calculations are not strictly satisfied by the
flow fields generated, particularly the assumptions of a fully developed and a parallel flow field (Fig.5).
In order avoid the restrictions imposed by these assumptions, the fully two-dimensional flow field can be
considered instead, though not without significant computational expense.

Bi-global stability starts with the same linearized Navier-Stokes equations as the local stability theory,
but the perturbation takes the more general form of

φ̃ = φ′(x, y) exp (i (βz − ωt)) (8)

Substituting this form of the perturbation into the linearized incompressible Navier-Stokes equations, the
following system of equations is arrived at

∂u′

∂x
+
∂v′

∂y
+ iβw′ = 0 (9a)
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Figure 8. Critical values of Rex for the actuated flow.

ū
∂u′

∂x
+ v̄

∂u′

∂y
+ w̄iβu′ + u′

∂ū

∂x
+ v′

∂ū

∂y
+
∂p′

∂x
− 1

Re

(
∂2u′

∂x2
+
∂2u′

∂y2
− β2u′

)
= iωu′ (9b)

ū
∂v′

∂x
+ v̄

∂v′

∂y
+ w̄iβv′ + u′

∂v̄

∂x
+ v′

∂v̄

∂y
+
∂p′

∂y
− 1

Re

(
∂2v′

∂x2
+
∂2v′

∂y2
− β2v′

)
= iωv′ (9c)

ū
∂w′

∂x
+ v̄

∂w′

∂y
+ w̄iβw′ + u′

∂w̄′

∂x
+ v′

∂w̄′

∂y
+ iβp′ − 1

Re

(
∂2w′

∂x2
+
∂2w′

∂y2
− β2w′

)
= iωw′ (9d)

If the system is driven by an external forcing, such as free stream turbulence or oscillations on the surface
of the plate, then it can be reduced to

∂u

∂t
= Au + f (10)

where f contains the information regarding the external perturbations. Assuming a periodic solution, this
can be reduced to

(iωB−A) u = f (11)

In this form, the effect of specific perturbations on the flow can be examined.

A. Numerical method and boundary conditions

The system of equation for the bi-global stability analysis was solved on a half-staggered mesh. The momen-
tum equations are solved and velocity data stored on a mesh of points that is coincident with the boundaries
of the domain. The continuity equation and pressure data are stored on intermediate points. This con-
figuration allows for boundary conditions for pressure to be neglected, as the pressure is only necessary to
ensure that the continuity equation is enforced for incompressible flows, and is not solved at the boundaries
at present.

For many bi-global stability applications (especially those involving eigen-spectra or optimal perturba-
tions), the size of the differentiation matrix can determine whether or not the method is computationally
feasible, even with large scale computational resources. In order to minimize the size of the differentiation
matrix (i.e. A and B), higher order, higher resolution methods have been implemented. In the x-direction,

4th order accurate, centered stencils were used, except for the ū∂(·)∂x term, which used a 3rd order accurate,
upwind biased stencil. Due to the outlet boundary condition, some reflections are able to propagate back
upstream (using interpolation or a Gaster type outlet condition). This leads to error waves being generated
in the flow field. These waves are damped out with the use of the upwind stencil, which includes a small
amount of artificial dissipation at higher spatial frequencies. In the y-direction, a Chebyshev collocation
method is employed for the differentiation and interpolation.

For the outlet boundary conditions and the free stream boundary conditions, a low order interpolation
is employed. This interpolation allows for the perturbation to flow more freely out of the domain without
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sending spurious waves upstream. The form of this low order interpolation is

φN = uN−1 +
∂φ

∂x

∣∣∣∣
xN−1

(xN − xN−1) (12)

In addition to this, a region of low order upwinding is used in the final 1/8 of the domain. This upwinded
region forms a buffer region at the exit of the domain, which further prevents reflections from propagating
upstream from the outlet.

For the boundary conditions, a TS wave is enforced at the inlet. As the frequency (ωR) is varied, so is
the shape of the wave. This boundary condition is generated using the one-dimensional stability analysis
described in section III for each frequency tested. The resulting eigenmode from the local stability analysis
is then interpolated onto the collocation mesh. This boundary condition is the one that drives the flow and
is implemented through the forcing term f in Eqn. 11.

B. Influence of domain length

Calculations of the system response with no actuation indicate that the incoming TS wave propagates
downstream, growing and decaying in the magnitude of the perturbation, as well as becoming taller as the
boundary layer thickens. However, it does appear that the length of the domain matters in determining
the growth of the perturbations. Three different domain lengths have been examined, the lengths and grid
spacings of which are shown in Table 1. The grid spacing is not constant, though the variations in ∆x are
less than 20%. It can be seen in Fig. 9 that there are variations in the response depending on the domain
length. However, for the longest length, which stretches approximately 531 inlet displacement boundary
layer heights, the results should be independent enough of the length to make reasonable comparisons with
other results.

Case Reδ∗,in Reδ∗,out Lx nx ∆x ∆yw

Small 300 450 126.6 257 0.495 0.0308

Medium 300 600 303.9 513 0.594 0.0308

Large 300 750 531.9 1025 0.519 0.0308

Table 1. Comparison of domain and grid parameters for three test cases involving the Blasius boundary layer.

C. Blasius Boundary Layer

In order to evaluate the accuracy of the method, the results from the Large domain have been examined.
The results indicate that in spite of the efforts to minimize reflections and oscillations, some do still exist,
and their presence can be seen in the unsmoothed neutral stability curve and growth rates (Fig. 10a). The
results of these calculations do not match perfectly with traditional 1D, but are more comparable to those
of developing boundary layer flows, such as the results of Gaster.23

D. Plasma Modified Boundary Layers

Knowing that the present bi-global stability code provides approximately correct results, plasma modified
boundary layers can now be examined. The region of plasma actuation is shown in Fig. 11. These flow
fields and their velocity gradients are then interpolated onto a coarser mesh for the stability calculations.
The resolution of this flow field may be a weak point in the calculations. The sharper gradients in the
base flow may not be reflected in the response due to insufficient resolution. However, with 1025 points in
the x-direction, and 41 collocation point (using spectral differencing) in the y-direction, the program uses
upwards of 6 GB of memory for the calculations. To work with a higher resolution than this is simply not
possible at the current time.

The response of the system (Fig. 12) shows that the incoming TS wave is changed by the plasma
actuation. There are localized effects near the plasma actuator, but the incoming TS wave does not show
any dramatic changes as it passes over the actuator. The shape of the wave is skewed, but it can still be
reasonably referred to as a TS wave, and not some new instability mode. It can be seen in Fig. 12 that as
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Figure 9. Comparison of the real portion of the u-velocity for the (a) short, (b) medium, and (c) long domains
examined for the frequency of ωr = 0.0445

(
F × 106 = 148.3

)

(a) Bi-global (b) Local

Figure 10. The neutral stability regions as calculated by the (a) bi-global stability method, and using the
growth of the maximum streamwise velocity in the streamwise direction and (b) for the local stability method,
using the imaginary part of the eigenvalue. The unstable region is colored by the growth rates (i.e. negative
values of αi for the bi-global method and positive values of ωi for the local method).

the magnitude of the plasma actuation (i.e. the value of the velocity ratio) is increased, the T. S. wave is
lengthened. This lengthening of the TS wave indicates that the phase speed of the wave is increased, which
is consistent with previous experimental results10 and with the momentum addition increasing the average
velocity in the boundary layer. Of greater importance, is the observation that the maximum value of the
streamwise velcocity component is reduced. This indicates that the plasma actuation is locally stabilizing
the boundary layer (Fig. 13). Based on the maximum streamwise velocity component, at certain frequencies,
the TS wave can be reduced in magnitude by up to 50%.
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(a) γ = 0.00 (b) γ = 0.05

(c) γ = 0.10 (d) γ = 0.15

(e) γ = 0.20 (f) γ = 0.25

Figure 11. Flow fields near the plasma actuator for varying values of γ. The black line indicates where
u = 0.99u∞.

V. Conclusions

The effects of using co-flow oriented DBD plasma actuators in a zero pressure gradient boundary layer
on the laminar to turbulent transition process have been examined using local and bi-global stability tools.
Focus of these stability analyses centers around the TS wave, which is the transition path most closely
associated with the controlled boundary layer transition, though other transition paths are known to exist
and to be of importance in many aerospace applications.

Simulations have been performed which model the introduction of momentum into the boundary layer
using plasma actuation. Because of this momentum addition, the boundary layer may be stabilized for two
different reasons. The momentum addition reduces the boundary layer heights, which in turn reduces the
relevant Reynolds number of the boundary layer (Reδ∗). In addition to changing the boundary layer heights,
the shape factor of the boundary layer is also reduced (though only locally). Reduction of the shape factor
implies an increase in the critical Reynolds number, further delaying the onset of perturbation growth in the
boundary layer.22

Both of the stability tools used as part of this study predict that co-flow DBD actuation stabilized the
boundary layer with respect to the TS wave. Neutral stability curves have been calculated using local
stability analysis. Using the bi-global stability analysis, localized modifications to the TS wave have been
found to exist and become more pronounced as the magnitude of the plasma actuation is increased.

While computational difficulties have been encountered in the use of bi-global stability analysis, the
present results indicate that there are relatively rapid changes (over less than a single wavelength) in the
shape of the TS wave. This result could not be achieved using a local stability analysis. While these
computational difficulties must be overcome before high quality data for comparisons to experiments can be
achieved, the present results seem promising and should lead to those results.

Future work in understanding the boundary layer transition control using this manner of plasma based
control should focus on identifying the additional instability modes that have been hypothesized12,20 along
with progresses in the understanding, measuring, and controlling the present and more complex paths to
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(a) γ = 0.00 (b) γ = 0.05

(c) γ = 0.10 (d) γ = 0.15

(e) γ = 0.20 (f) γ = 0.25

Figure 12. Response of the flow field to an incoming TS wave at the frequency ωr = 0.0445
(
F × 106 = 148.3

)
for

various values of γ. Note that the x and y scales are not the same.

Figure 13. Relative amplitudes of the maximum value of u for a frequency of ωR = 0.0694
(
F × 106 = 231.3

)
.

Values are normalized by the maximum value of u at the inlet for various values of γ.

transition. Additional numerical and/or experimental work should be performed in order validate the present
calculations or the similar flow conditions examined experimentally by Tropea and his co-workers.7,8, 10,11

Work of this manner may helpful in identifying exactly what sub-domain of the flow require bi-global stability
analysis and which domains local stability analysis is sufficiently accurate. In addition to the presently
examined two dimensional TS wave, evaluating the control authority of plasma actuation with respect to
the most amplified perturbations24 would be of significant importance. This second path to turbulence is
more closely related to transition under low disturbance conditions and control of it would be beneficial for
many aerospace applications.
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