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The stability of plasma actuated boundary layers is analyzed using linear stability the-
ory for flow wise (co-flow) and flow opposing (counter flow) operated plasma actuators.
The combined wall jet/boundary layer velocity profile is discussed, important parame-
ters are identified, and a simplified model of the base flow is proposed. This base flow is
then analyzed using one-dimensional linear stability theory. Neutral stability curves have
been calculated, and both stabilizing and destabilizing effects were found, which correlate
strongly with the existence of an inviscid instability. A hypothesized absolute instability
is also found to exist. The addition of a wall jet is found to have a profound impact on
the stability of the boundary layer profile, which is compared to existing data for other
boundary layer profiles. Considerations for flow control applications are discussed in order
to suggest the effects for real flows.

Nomenclature

ui Flow velocity in the ith direction
p Pressure
ūi Mean flow velocity in the ith direction
p̄ Mean pressure
ũi Disturbance flow velocity in the ith direction
p̃ Disturbance pressure
u′i Complex 1D disturbance flow velocity profile in the ith direction
p′ Complex 1D pressure profile
u∞ Freestream velocity
up Induced velocity
α Complex spatial frequency in x1
β Complex spatial frequency in x3
ω Complex temporal frequency
cp Complex phase velocity, cp = ω/α
cg Complex group velocity, cg = ∂ω/∂α
δ99% Boundary layer height where u = 0.99u∞
δ∗ Displacement boundary layer height
θ Momentum boundary layer height
Re Reynolds number
γ Velocity ratio
η Boundary layer height ratio
F Dimensionless frequency, F = ωR/Re
i

√
−1

Subscript
i direction
I Imaginary
R Real
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S Inflection point value
Blasius Corresponds to the Blasius boundary layer component of the velocity profile

I. Introduction

The process of a flow’s transition to turbulence has long been a topic of study in fluid mechanics.
Specifically, the flow over a flat plate with zero pressure gradient (ZPG) is particularly important, as it
shares many characteristics of other more complex flows. The instability present in this flow, characterized
as the Tollmien-Schlichting (TS) wave, was first theoretically explored by Tollmien1 and Schlichting,2 and
later experimentally verified by Schubauer and Skramstead.3

These early studies were dependent on the assumptions of a one dimensional, parallel flow. Under these
assumptions, disturbances are governed by linear equations and grow at exponential rates. One dimensional,
parallel, linear stability theory was later augmented by the effects of non-parallelism.4 A more comprehensive
method taking advantage of a parabolic form of the Navier-Stokes equations was also developed (parabolized
stability equations, PSE5), allowing for a more complete study of the boundary layer stability incorporating
non-parallel and non-linear effects simultaneously. However, these methods, while not requiring as strong
of assumptions about the flow, have not shown a significant difference in results for simple, nearly parallel
flows such as that of the ZPG boundary layer. As such, one dimensional, parallel flow assumptions should
be sufficient for the simple, nearly parallel flows examined in this study.

Using these assumptions along with linear stability theory (LST), this study examines the effect of flow-
wise (co-flow) and flow opposing (counter flow) operated dielectric barrier discharge (DBD) actuators on
the stability of the ZPG boundary layer flow. These devices are able to produce charged particles and a
sufficiently strong electric field, which introduces a localized electrical body force that can be used to add
or remove momentum from the nearby fluid.6–8 Furthermore, these devices can be operated in a steady
or duty-cycled manner, allowing them to be implemented as components of active and passive flow control
systems.

Grundmann and Tropea used these devices as a method of active transition delay. They applied DBD
actuators as part of a closed loop control system to cancel oncoming TS waves.9,10 They found that DBD
actuators could be used to accurately inject momentum into the boundary layer, modifying the TS waves.
Gibson et al used DBD devices in a passive manner in conjunction with boundary layer suction to reduce
the displacement and momentum deficit boundary layer heights and stabilize the flow.11

Aside from experimentation, some theoretical work has also been performed describing the momentum
addition using electrical devices modifies the boundary layer and its stability properties. Albrecht et al12 used
LST and direct numerical simulation on a Lorentz force induced actuation in a boundary layer flow, which
showed that with a well distributed body force mimicking wall suction, the transition can be significantly
delayed. However, due to the more localized nature of the DBD actuator relative to the Lorentz force
actuator, the predicted global increase in stability may or may not be physically realizable. Limited LST was
performed and verified numerically and experimentally by Duchmann et al13 for a single condition where the
actuator was placed within the transitional Reynolds number regime, Rex ≈ 270, 000 (Reδ∗ ≈ 800). While
two operation modes for the plasma actuator were performed, only one was examined using LST. That study
also shows that there are distinct changes in the flow stability near the plasma device, but forgoes discussion
of the effects.

The goal of this study is to develop a more general understanding of how the wall jet effects seen in
previous studies can be used to stabilize and destabilize a boundary layer. An extended range of parameters
is considered relative to previous work. This study also intends to examine effects not seen in other studies,
particularly that of the counter-flow operated plasma actuator, which has received little attention from a
theoretical point of view.

II. Model of a plasma actuated flow

The presence of a DBD actuator in a boundary layer flow is known to create wall jet like effects near the
surface.8 This wall jet is created by the introduction of a body force into the fluid by the plasma actuator.
This body force imparts momentum into a volume of fluid. In turn, a wall jet develops with a specific amount
of momentum and a maximum velocity near the surface of the actuator.

Consider a model of the modified boundary layer where a wall jet is simply superimposed onto a boundary
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layer profile (Fig. 1). While this combined profile is not a solution to the Navier-Stokes equations, it should
approximate the boundary layer/wall jet velocity profile seen in other numerical and experimental studies.
For the present study, a Glauert wall jet is selected as the wall jet profile,14 and the Blasius boundary layer
is selected as the boundary layer profile.15 These two components are selected as they are both analytical
solutions to the Navier-Stokes equations. Under quiescent conditions, DBD actuation will even produce
a Glauert wall jet sufficiently far downstream of the body force.16 However, it should be noted, that the
similarity variables for each of these components are not the same. The superposition of these two analytical
solutions is not an analytical solution of the Navier-Stokes equations, only an approximation done in order
to mimic the actual flow.

In order to manipulate this model, scaling parameters are necessary. The maximum velocity of the wall
jet presents itself as an important parameter. The normalized momentum injected into the boundary layer
can be described as a length scale such that,

δ∗plasma =

∫ ∞
0

uplasma (y)

uplasma,max
dy (1)

The boundary layer displacement height, which measures the momentum missing in the boundary layer, can
be described as a comparable length scale such that

δ∗Blasius =

∫ ∞
0

1− uBlasius (y)

u∞
dy (2)

Comparing these two parameters with the velocity and length scales of the boundary layer, two non-
dimensional parameters are arrived at.

γ =
uplasma,max

u∞
(3)

η =
δ∗plasma
δ∗Blasius

(4)

where positive values of γ indicate a co-flow operated actuator and negative values of γ indicate a counter-
flow operated actuator. Using these two parameters, the velocity and vertical extent of the wall jet can easily
be scaled, as can be seen in Fig. 1.

(a) (b) (c)

Figure 1. (a) Components of the baseline flow model and examples of the model for (b) η = 0.5 and (c) η = 1.0.

III. Linear Stability Analysis

A. Numerical model of the eigenvalue problem

Linear stability theory can be used to predict the existence and growth rates of instabilities that may manifest
in the boundary layer. Though temporal instabilities are examined here, using the Gaster transformation
spatial instabilities could be similarly approximated.17

ui = ūi + ũi, p = p̄+ p̃ (5)
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∂ũi
∂xi

= 0 (6)

∂ũi
∂t

+ ūj
ũi
∂xj

+ ũj
ūi
∂xj

+
∂p̃

∂xi
− 1

Reδ∗0

∂2ũi
∂x2j

≈ 0 (7)

It should be noted that the non-dimensionalization here is based on δ∗0 , which is the boundary layer height
of the non-actuated case at a given location in x1.

The problem can be further simplified if several assumptions are made. First, assume that all of the
disturbance quantities are wavelike in nature and can be split into the product of a disturbance profile in x2
and a wave travelling in x1 and x3 such that

φ̃ = φ′(x2) exp (i (αx1 + βx3 − ωt)) (8)

where α, β, and ω are the angular wave numbers in x1, x3, and time. From this point onward, let i =
√
−1.

Also assume that a slow developing flow can be approximated as a 1D mean flow (u2 = u3 = ∂(·)
∂x1

= ∂(·)
∂x3

= 0).
Doing this, the problem can be formulated as the following generalized eigenvalue problem:

iαu′1 +
∂u′2
∂x2

+ iβu′3 = 0 (9)

iαū1u
′
1 + u′2

∂ū1
∂x2

+ iαp′ − 1

Re

(
−α2u′1 +

∂2u′1
∂x22

− β2u1

)
= iωu′1 (10)

iαū1u
′
2 +

∂p′

∂x2
− 1

Re

(
−α2u′2 +

∂2u′2
∂x22

− β2u2

)
= iωu′2 (11)

iαū1u
′
3 + iβp′ − 1

Re

(
−α2u′3 +

∂2u′3
∂x22

− β2u3

)
= iωu′3 (12)

This set of equations (Eqns. 9 - 12) was then discretized onto a uniform staggered mesh.18 A 4th order
accurate, centered finite difference stencil was used for the differencing over a majority of the domain. A 2nd

order accurate, centered finite difference scheme was used near the boundaries. Boundary layer profiles from
model flow were interpolated onto the uniform mesh with 200 points spread over a domain of 4δ99% based
on the Blasius component of the combined velocity profile. The eigenvalues were then calculated using the
inverse Rayleigh iteration method.

The code was benchmarked against that of the Poisseuille flow as discussed by Orzag.19 The Reynolds
number of this case is Re = 10, 000. The wavenumbers are α = 1 and β = 0. The single unstable eigenvalue
is ω = 0.23752649 + i0.00373967, and is considered accurate to within 8 significant digits. The calculated
value of this eigenvalue was used to determine the order of accuracy of the present code. The order of
accuracy of the code has been found to be somewhere between 2 and 4 (Fig. 2). The asymptotic region is
reached relatively quickly for this problem. The right most point corresponds to 26 grid points, the left most
corresponds to 801 grid points.

At this point it is important to note that the one dimensional linear stability theory applied here is
convenient and relatively inexpensive from a computational standpoint. However, plasma actuation is known
to be a localized effect. Due to the local effects, the assumptions of a slowly developing, nearly parallel flow
become questionable. These assumptions should still be valid, as long as the wavelength of the disturbance
(i.e. 2π/α) is shorter than the length scales of the developing flow. The assumptions of a nearly parallel
flow are likely to be valid for a majority of the flow profiles examined here. However, for significant levels of
counter flow actuation, the parallel flow assumption is likely to be violated. While the authors understand
that the assumptions made may be weaker than what is desired, the results should still have some relevance
to the physics involved.

B. Co-flow operated plasma actuation

Previous work11 has shown that with the use of co-flow operated plasma actuators, it was possible to stabilize
a boundary layer flow using plasma actuation. The physical mechanism identified in this study showed that
plasma actuation was able to inject momentum back into the flow that had been lost by surface friction. In
turn, the boundary layer heights and associated Reynolds number fell, and the flow was stabilized.
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Figure 2. Grid convergence of the numerical method as compared to Orzag19 for Poisseuille flow. Re =
10, 000, α = 1, β = 0, ω = 0.23752649 + i0.00373967.

As part of this study, the baseline model of the flow is analyzed for wall jets of varying magnitude with
a boundary layer height ratio of η = 1. Stability diagrams are shown in Fig. 3.

It can be seen that when a very small level of actuation is applied inducing only weak wall jet effects, the
flow can be stabilized more than an order of magnitude higher than that of the baseline Blasius boundary
layer profile. Furthermore, as the wall jet becomes stronger and stronger, flow stability is lost, and actually
decreases below that of the baseline flow. These destabilizing effects can likely be attributed to an inviscid
instability, which is discussed later in subsection E.

(a) (b)

Figure 3. Nuetral stability curves for positive values of γ, where η = 1.0. Scaled by Reδ∗,Blasius. Data is shown
for (a) linear and (b) logarithmic axis.
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C. Counter-flow operated plasma actuation

To the knowledge of the authors, no work has previously been done calculating the growth rates or mapping
the neutral stability curves of counter flow operated plasma actuators in a boundary layer flow. Similar
parameters as the co-flow examination are performed, only with negative values of γ instead. In can be seen
in the figure below that the addition of counter flow actuation is highly destabilizing, as the critical Reynolds
numbers can be seen to drop 2 orders of magnitude as actuation strength is increased. Again, this instability
can be linked back to a potential inviscid instability, and will be discussed in subsection E.

(a) (b)

Figure 4. Neutral stability curves of the counter-flow actuated flows where η = 1.0.(a) scaled byReδ∗,Blasius
and (b) Reδ∗ .

In examining the velocity profiles of Fig. 1, it can be seen that for high enough values of the velocity ratio
and low enough values of the boundary layer height ratio, flow reversal occurs. While this flow reversal is not
an explicit requirement of an absolute instability, it does suggest that absolute instabilities may be present.
Examining the phase speeds for the case of γ = −1.0 and η = 1.0 (Fig. 5a), there do exist eigenvalues with
real phase velocities equal to zero. Examining ωI for the same points where cp,R = (ω/α)R = 0, it can be
seen that as the Reynolds number is increased, ωI moves from the stable (ωI < 0) to unstable (ωI > 0)
domains. Once ωI > 0, indicating that there are temporal modes which grow in place, providing further
evidence for an absolute instability.

The requirements for an absolute instability as defined by Briggs20 and Bers21 are that:

1. There exists a dispersion relationship connecting ω and α, D (ω, α) = 0. In the complex domains of ω
and α, there must be saddle points where ∂ω/∂α = 0, i.e. the group velocity equals zero.

2. The saddle points must be pinch points of an upstream and downstream travelling mode.

3. The saddle point must also be unstable. That is, ωI > 0 at the saddle point.

Constructing a ’net map’ allows for the visualization of the dispersion relationship (which is a function of the
velocity profile and Reynolds number) in terms of the complex values of α and ω (Fig. 6). A saddle point is
immediately visible. It can be seen that as the Reynolds number is increased, the value of ωI at this point
increases from negative to positive, which satisfies the third requirement for an absolutely instability. It
can be seen that above a certain critical Reynolds number, Reδ∗,abs.crit, the previously convective instability
becomes an absolute instability.

While net maps are helpful in determining the existence of absolute instabilities, they are computationally
expensive to construct. Even so, net maps were constructed for the case of γ = −0.75 in addition to
γ = −1.00. From these net maps, the onset of the absolute instability was measured. Less computationally
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(a) (b)

Figure 5. (a) Real components of the phase velocity for selected Reynolds numbers for γ = −1.0 and η = 1.0.
(b) Imaginary components of the eigenvalues, ωI , at the same Reynolds numbers, γ, and η.

(a) (b) (c)

Figure 6. Net maps for (a) Reδ∗,Blasius = 26, which is absolutely stable , (b) Reδ∗,Blasius = 30, which is
convectively unstable, and (c) Reδ∗,Blasius = 32, which is absolutely unstable for γ = −1.0 and η = 1.0. Solid
lines indicate the contours of ωR. Dashed lines indicate the contours of ωI . The values of ω at the pinch points
are ω = 0.0926214 − i0.046581, ω = 0.0885969 − i0.010166, and ω = 0.0867067 + i0.00496014, which are marked by the
black squares.

expensive, but approximate methods of examining the absolute instability are also examined. Values of the
critical Reynolds number for zero real phase velocity and zero real group velocity from the purely temporal
stability analysis are also shown in Table 1. This data shows that while the absolute instability does not
exactly line up with either value, the phase velocity does give an approximate location, though the error
involved is not negligible.

D. Comparison with other boundary layer profiles

It can be seen in the previous sections that co-flow and counter-flow operation of the plasma actuators has
a profound effect on the boundary layer stability. However, other boundary layer profiles can be seen to
have an equally strong effect on the flow stability. It is thought that there is a certain ’universal correlation’
between the flow stability and the shape factor.22 It can be seen in Fig. 7 that the critical Reynolds numbers
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γ Reδ∗,critical,Blasius

Net map cp,R = 0 cg,R = 0

−0.750 40.7 48.2 114.0

−1.000 31.3 29.4 68.3

Table 1. Critical Reynolds numbers (based on Reδ∗,Blasius) of the absolute instability for two cases with
reversed flow.

reached as part of this study mimic the critical stability (of the convective instability) of other boundary
layer when compared via the shape factor, H = δ∗/θ. It can be seen that the destabilizing effects of the
counter-flow actuation are in line with that of Faulkner-Skan profiles.

For small levels of actuation, the stability limits are in line with those other boundary layer profiles.
However, as larger levels of plasma actuation are examined, it can be seen that they deviate from the
behavior seen in other boundary layer profiles. This effect is likely due to the wall jet component of the
velocity profile overpowering the boundary layer component, and transforming the flow in such a way that
it cannot be compared to other boundary layers. Data is presented for the critical Reynolds number scaled
by both δ∗Blasius and the calculated value of δ∗ for the velocity profile. The Reynolds number scaling does
seem to make some difference in matching the current results to the universal correlation. However, once the
velocity profile allows for significant wall jet like effects to develop, its stability diverges from that of more
traditional boundary layers.

Figure 7. Comparison of current results to other boundary layer profiles.

E. Inviscid Instabilities

Up to this point, only viscous stability theory has been discussed. However, examining the velocity profiles
presented in Fig. 1, it can be seen that there are instances where inflection points may occur in the
profile. The presence of inflection points is typically indicative of an inviscid instability.23 In order to better
understand if the inflection points do pose a threat as far as allowing for inviscid instabilities, Fjørtoft’s
criterion is employed, where

∂2u

∂x22
(uS − u) < 0 (13)

indicates that an inviscid instability may exist for that boundary layer profile.
A wide range of combined wall jet/boundary layer profiles were created and analyzed by using Fjørtoft’s

criterion (Fig. 8) over 307,680 samples. It can be seen that an inviscid instability is nearly always predicted
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for counter-flow actuation. Similarly, a majority of co-flow actuation also presents itself as being vulnerable
to inviscid instabilities. Only when γ = 0, is the boundary layer certain to be viscidly stable. However, this
is a trivial result, as γ = 0 corresponds to the Blasius boundary layer, which is known to be viscidly stable.

In spite of the possibility of creating an inviscid instability by pushing a wall jet in either direction, there
is a significant region in γ and η where the flow is inviscidly stable (Fig. 8). As the wall jet is placed higher
and higher in the boundary layer, the effects of the inflection points induced by the addition of the wall
jet become less profound relative to the natural curvature of the boundary layer profile. Furthermore, the
inflection point velocity, uS is increased, and it is less likely that Fjørtoft’s criterion will be met.

Figure 8. Fjørtoft’s criterion applied to a wide range of wall jet/boundary layer velocity profiles.

Figure 9. Critical Reynolds number for varying γ and η = 1. The shaded region is satisfied by Fjørtoft’s
criterion.

Comparing this map of the inviscid instability to the viscous analysis performed, it can be seen that
the flow stability is augmented only when Fjørtoft’s criterion is not satisfied (Fig. 9). When the inviscid
instability is possible, viscous stability theory shows that the flow stability is diminished relative to that of
the non-actuated boundary layer profile.

IV. Application to flow control

All of the analysis up to this point has been performed to determine how a plasma actuator can be
used to modify the stability of a boundary layer. An understanding has been developed that low levels of
actuation operated in the flow wise direction can be stabilizing. However, too much flow-wise actuation or
even small amounts of counter-flow actuation can quickly destabilize the flow (Fig. 9). This indicates that
there is a narrow range of control for flow stabilization, and moving outside of this range can easily lead to
destabilization.
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Numerical simulations have been performed using an Implicit Large Eddy Simulation (ILES) method24

using the code FDL3DI. The flow over a flat plate was simulated with the addition of a plasma actuator. Two
separate flow conditions were examined, with a single actuator placed in the flow. Under the two conditions,
the actuator was placed at either a subcritical (Rex = 50, 000) or at an unstable (Rex = 100, 000) position
along the length of the boundary layer. The actuation was oriented in a co-flow manner. A fine two
dimensional mesh (801 × 151) was used which resolved the near wall boundary layer, the effects of a sharp
leading edge, and the steady addition of momentum through a body force term. At the location of plasma
actuation, there were 82 and 62 points in the boundary layer (δ99%) for the lower and higher Reynolds
number cases. The plasma actuation is modeled using a phenomenological model25 of the body force in a
method consistent with the description in.24 The magnitude of the actuation was calibrated under quiescent
conditions to acheive a particular value of γ immediately downstream of the actuator.

Results of these simulations were analyzed and values of γ and η were extracted for the two cases. It can
be seen in Fig. 10a,d, that even though the initial value of γ may be high, it quickly decays at an exponential
rate. This is good for flow stabilization. This initial decay of the velocity ratio moves the boundary layer
profile away from the less stable regions of high γ and towards the more stable regions. However, as one
moves downstream and the value of γ continues to decay to zero, the velocity profile eventually returns
to the Blasius profile, and the gains in stability are lost. Examining the values of η, it can be seen that
initially, a wall jet buried deep in the boundary layer will moves outwards. This is likely due to the stronger
viscous effects near the wall removing the momentum in that region, as well as the slight wall normal velocity
component of the boundary layer convecting the wall jet outwards. Again, this is a beneficial effect for flow
stabilization. If one compares this to the location of potential inviscid instabilities shown in Fig. 8, the data
shown here moves out of an inviscidly unstable region (high γ, low η) to a more inviscidly stable region (low
γ, high η). Farther downstream, the boundary layer height ratio continues to move, but the wall jet is very
weak and largely out of the boundary layer, so effects here are assumed to be negligible.

(a) γ,React = 50, 000 (b) η,React = 50, 000 (c) ηγ,React = 50, 000

(d) γ,React = 100, 000 (e) η,React = 100, 000 (f) ηγ,React = 100, 000

Figure 10. Extracted values of γ and η from simulated flows.
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For counter flow operation of the plasma actuators, it can be assumed that the flow will quickly be
destabilized, and transition augmented. However, this effect is not certain to happen. The flow reversal seen
with counter flow actuation is only significant near the plasma actuator. Furthermore, these effects can also
be assumed to quickly dissipate downstream of the actuator. So while the flow may be locally destabilized,
global flow destabilization is not a definite effect.

This method of counter-flow actuation for flow destabilization has been used previously as a boundary
layer trip.26 However, in order to take advantage of plasma actuation as a trip for the flow, the Reynolds
number of the boundary layer must be large enough to support unsteady and unstable effects, otherwise any
instabilities that grow due to the operation of a counter flow oriented actuator will be lost.

V. Conclusions

The stability of a combined wall jet/boundary layer flow has been explored and analyzed using linear
stability theory. Parameters classifying and a model of the velocity profile have been developed. The stability
of the velocity profile has been formulated as an eigenvalue problem, and a parametric study performed
calculating the neutral stability curves for various velocity profiles corresponding to higher and lower levels
of plasma actuation.

In examining co-flow actuation, it was seen that the addition of plasma actuation stabilizes the flow up
to a point. Beyond that point, the stability of the flow begins to decrease again, and the critical Reynolds
number can be reduced to below that of the baseline boundary layer profile. While the destabilizing behavior
is still in a viscous mode, the region of destabilizing behavior correlates well with the presence of an inviscid
instability.

When counter flow actuation is performed, the addition of a wall jet is found to be highly destabilizing.
Again, interactions with an inviscid instability are suggested to be of importance. It is also found that when
the levels of actuation are high enough, the flow can be reversed. As the plasma actuation is further increased,
absolute instabilities can develop, further showing the versatility of these devices for the manipulation of
flow stability.

The effects of these devices have also been compared to the ’universal’ correlation between the shape
factor and boundary layer stability. It was found that strong agreement exists for relatively low levels of
co-flow and up to strong levels of counter flow actuation. However, when the boundary layer begins to show
distinct wall jet like effects, the stability diverges from that of the universal correlation.

The application of these devices for flow control applications has been discussed. The stabilization
and destabilization effects hold significant potential and could be used to promote or delay boundary layer
transition in a relatively simple manner.

Acknowledgments

The authors would like to acknowledge Dr. S. Balachandar for numerous helpful conversations while
working on this study. The first author was supported by the University of Florida Graduate School Fellow-
ship Award.

References
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