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Modeling the motion of pyrolysis gas through charring 
ablating material using Discontinuous Galerkin finite elements
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A series of efforts were made to solve a simple ablation problem with gas motion through the 
porous media employing finite element based Galerkin and Discontinuous Galerkin methods.
First, one-dimensional solutions of Euler and magneto-hydrodynamics (MHD) equations are 
presented for comparison with analytical results, to validate the code. The spurious oscillations 
of standard Galerkin approach were mitigated using Discontinuous Galerkin method. We have 
shown some preliminary results for the ablation problem using both explicit and implicit
Discontinuous Galerkin methods in the paper. However an unresolved exit velocity fluctuations 
to pressure boundary condition, due to which we are not able to go to target time of 5 seconds for 
this problem. We plan to resolve these issues, and take this code for application of ablation 
problems in higher dimensions (2-D or 3-D), and bring in plasma application on the surface.

Nomenclature
B = activation energy 
Cp
D = diffusion term

= specific heat

e = internal energy
E = total energy
f = friction force per unit volume
K = permeability
P = pressure
R = pyrolysis rate
T = temperature
u = velocity

= void fraction
K = thermal conductivity

viscosity
= density

t = time

Subscripts

c = char
g = pyrolysis gas
r = resin

I. Introduction
pace vehicles enter earth’s (or other planet’s) atmosphere while returning from their interplanetary mission. They 
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have blunt shaped bodies, which results in high drag force and strong deceleration that help them in landing. Due to high 
drag, bow shock forms in front of the vehicle, which may be either attached to or detached away from the vehicle’s 
leading surface. This bow shock may interact with viscous boundary layer on the surface, and lead to high viscous 
dissipation on the surface1. This leads to high convection flux on the surface of the vehicle. The gas particles also may 
get excited into dissociated states which may lead to high radiation flux to the surface. The exact details of this 
phenomenon are part of hypersonic flow study, with appropriate models for associated chemical reactions. By 
determining the relevant species, one can apply radiation models, like plane parallel approximation models, to calculate 
net amount of radiation heat flux to the surface. It has been found that in some cases, radiation heat flux dominates net 
convective heat flux to the surface2

Heat flux to the surface of the vehicle is very high, resulting in temperature rise of several thousand Kelvin. Thermal 
protective systems (TPS) are used to prevent any damage to the vehicle. These systems are designed to absorb high heat 
flux, undergo chemical deposition and reject heat load at the surface itself. TPS are characterized into two types, ablative 
and non-ablative systems

.

1. Non-ablating TPS are usually used in reusable hypersonic vehicles, or in cases which do not 
have very intense entry conditions. Ablative TPS are better, since they allow heat rejection through various mechanisms
like phase change, chemical reactions on the surface and inside leading to material removal through gasification.
Generation of pyrolysis gas leads to blowing phenomena, which is basically injection of pyrolysis gas into the boundary 
layer. This helps in achieving convective and radiative blockage3 reducing the percentage of net heat flux that reaches 
the surface. The ratio of the TPS material relative to the payload weight plays a critical role in design optimization study 
which is geared to minimize this ratio4,5

Initial efforts of studying ablation began using analytical ablation models, mainly concerned with melting surfaces 
(ones in which a liquid layer flows over the surface)

.

6,7. Later on studies were also applied to direct gasification of solids. 
Mathematical models were developed based on the understanding of the phenomena, with some simplifying 
assumptions, like gasification at critical temperature or specifying kinetic mechanism for decomposition process8.
Second approach allows decomposition over a characteristic range of temperature. But, ablation itself is a complex 
phenomenon too difficult to be modeled by analytical means. First numerical effort of dealing with ablation was done 
through development of Charring Material Ablation (CMA) program9, which treated problem as quasi-one-dimensional, 
i.e. heat flow was one dimensional, with variable area along the depth. According to [10], CMA considered the steady 
state flow of pyrolysis gas. Such an assumption may not be a priori evident in steep entry angles conditions, which was 
the case with Pioneer-Venus Probes11. Some studies identify the need for modeling of chemical non-equilibrium of 
pyrolysis gases in char to correctly simulate their behavior12,13. Wakefield and Pitts14

In many of earlier studies, in-depth thermal analyses were done decoupled from hypersonic flow conditions existing 
outside the vehicle, without any interaction of ablating surface with the flow

used CMA to numerically 
reconstruct thermocouple data for day probe and night probe, and found their temperature values to rise to unrealistically 
high values for both stagnation point and frustum edge. Governing equations, (1) – (4) were used by to numerically 
simulate the motion of pyrolysis gas within the char. Interestingly, results obtained in [10] showed closer agreement to 
flight data. These results were simulated with and without blockage effect and with Wakefield heating rate.

15. Boundary conditions in both the 
computational fluid dynamics, (CFD) and computational solid mechanics (CSM) were treated in simplified manner, such 
as constant temperature or heat flux and zero mass transfer. It was suggested in a review paper [15], that coupling both 
CFD and CSM is essential for an in-depth thermal analysis within the material with appropriate chemical reactions. It 
was assessed that for such multiphysics problem CFD was formulating non-equilibrium flows, multispecies kinetics, 
radiation transport etc, but had primitive boundary conditions which prevented their use in TPS design, in a trajectory 
based analysis. The heat flux at the surface of TPS may be provided as a function of space and time, but still it’s a strong 
function of blowing parameter, which can only be determined through a coupled CFD and CSM analysis along with fully 
involved surface chemistry. One of the early attempts requiring coupling of both was done in16, which was to determine 
the heat shield requirement for Mars Pathfinder, a precursor probe-lander for MESUR mission. It identified the need of 
specifying empirical blowing parameter in CMA, which will lead to high uncertainties in estimated ablating surface heat 
flux, and eventually inaccurate temperature histories. Consequently, in [16], Gauss-Seidel implicit aerothermodynamic 
Navier-Stokes equations with thermochemical surface conditions (GIANTS), and CMA code were used in a loosely 
coupled manner. Such loosely coupled approach also becomes useful in shape change prediction of a vehicle under 
ablative conditions. One of the codes, TITAN (Two-dimensional Implicit Thermal Response and Ablation Program), 
was used along with GIANTS for multidimensional ablation and shape change simulation for graphite sphere-cone 
TPS17, 18

For modeling of chemical reactions in the char material or in gases, there have been several attempts, e.g. ACE
.

19, 20

(Aerotherm Chemical Equilibrium) code, which solved thermodynamic chemical equilibrium or nonequilibrium kinetics 
equations between TPS and atmosphere, and then tables were generated which were solved along with fluid dynamics 
equations. But, ACE did not have good prediction for materials with more than one element with dissimilar ablation 



3
American Institute of Aeronautics and Astronautics

behavior21. Consequently a general purpose code, Multicomponent Ablation Thermochemistry was developed in [21].
But, this also generates dimensionless ablation tables. There are many papers that give the details of chemical reactions 
to consider for a given problem, like Keenan22, Keenan and Candler23, Park and Ahn24 and Suzuki et al.25

For more effective designs of future spacecrafts and concepts of aerobraking, it becomes important to accurately 
model and simulate ablation process. In [26], chemical ablating flows are modeled and relative importance of chemical 
ablation to thermal ablation is demonstrated. Effect of ionization processes is also shown. There are basically three 
phenomena by which heat is lost, namely thermal, chemical and mechanical ablation processes. At higher altitudes, 
where continuum assumption of the working gas breaks down, and rarefied and transition flows are required to model, 
particle-based DSMC model is used. The modeling effort on ablation is divided into two domains, chemically reacting 
flows, and thermo-chemically ablating TPS. The work of chemically reacting flows is restricted to either finite volume or 
finite difference. Our interest is to try and test the capability of finite element methods in this area, since it had already 
been used to solve for thermally ablating material. We made a series of efforts of solving Euler equations, MHD 
equations, and then ablation equations with standard Galerkin based Finite element code (details are given below). Due 
to convergence issues related to Galerkin based FEM; we had to look for methods like Discontinuous Galerkin to solve 
the current Ablation problem, which considers gas motion inside the ablating material. 

.

Discontinuous Galerkin methods were first applied by Reed and Hill33 in 1973, to neutron transport problem. They 
were developed by Cockburn and Shu in a series of papers34-37

Bassi and Rebay were first to apply Discontinuous Galerkin methods to solving of compressible Navier stokes 
equations

, as Total variation diminishing (TVD) Runge Kutta time 
discretization and DG in space methods to solve nonlinear hyperbolic methods. Discontinuous Galerkin method, in 
comparison to Galerkin finite element, uses shape functions that are continuous only within the domain of the element
and discontinuous across the element’s edge. The method uses approximate Riemann solvers (e.g. Godunov or Local 
Lax-Friedrichs solvers) to evaluate numerical fluxes at to handle discontinuities at cell interfaces. The order of the DG 
method can be increased by increasing the order of shape function used, and upwind mechanism comes from 
approximation of inviscid fluxes. 

38. This was later further developed as Discontinuous Galerkin methods for convection-diffusion problems by 
Cockburn and Shu39. Their method was called ‘Local Discontinuous Galerkin’ (LDG) methods. Penalty methods 
developed in 1970s, for purely elliptic problems were brought into unified DG by Arnold et al.40

Discontinuous Galerkin method has been applied to different fields like gas dynamics, compressible and 
incompressible flows, Magnetohydrodynamics, granular flows etc. Their main advantages are high order accuracy, 
nonlinear stability, and high order parallelizability. In addition they can be used for complex geometries using 
unstructured meshes, can capture shock without producing spurious oscillations, and are especially built for solving 
nonlinear hyperbolic problems. We have added a Discontinuous Galerkin module to our in-house code Multi-scale 
Ionized Gas (MIG) code, and intend to go from current 1-D ablation problem to higher dimensional problems for 
Ablation. Also, since the code has been tested for flow simulation with DBD plasma actuators in 2-D and 3-D

For problems with 
shocks, one needs to either add artificial dissipation to eliminate spurious oscillations, or one needs to use slope limiters
to enforce nonlinear stability. 

41, 42

II. Problem Description

, an 
application of plasma to Ablation is possible in this code, being extensible to higher dimensions.

In the present work, we consider the arc-jet problem simulated by Wakefield and Pitts14, and Ahn and Park10. The 
material in consideration is carbon phenolic, being exposed to 1400 W/cm2

The produced gas’s pressure will increase due to temperature rise and continued pyrolysis, which will result in gas 
leaking out to atmosphere through the porous material. As a result there will be high velocity (velocity of order of 100 
m/s) gas leaking out from the surface, which will provide the essential blockage mechanism to the incoming heat flux, 
and also help in pushing the shock layer away from the vehicle’s surface. The purpose of current work is to study the 
thermal ablation response of the material for the chosen problem.

of heat influx from its right end. The whole 
problem is considered as 1-D.  Thickness of the model is taken to be 1 cm. As the surface on right end ablates due to 
high temperature rise, resin material pyrolates and decomposes to produce a mixture of gases, denoted as pyrolysis gas.  
The motion of this gas through the material is not considered in steady state but we solve for the motion of pyrolysis gas 
through the material, using governing equations (1) – (4). 
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III. Governing equations

The ablation problem is considered as one dimensional, and recession is not taken into account at all, for the
preliminary efforts. As in [10], temperature of pyrolysis gas is taken to be same as the temperature of solid ablative 
material. The variables being solved for are, r, resin density, g, gas density, u, gas velocity, T, temperature of the solid 
material, and P, pressure of the pyrolysis gas within the material. 4 governing equations, for r, g, u, and T are resin 
mass, gas mass, gas momentum and overall energy (solid + gas) conservation equations (Equations, 1 – 4)

r R
t

(1)

g gu
R D

t x
(2)

2
gg u Pu

f I
t x

(3)

- 2 21 1
2 2c c r r g g g g g g
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e e e u u e u P k

t x x x
(4)

Here represents void fraction in the ablative material, and is given by (5), where p specifies intrinsic density of 
resin, which is equal to 1763.6 kg/m3

max /r p

. Source terms in above equations, namely R, D, f, and I stand respectively for 
pyrolysis rate due to decomposition of the material, diffusion that expresses rate of change of pyrolysis gas density due 
to spatial varying pressure, derived from negative of divergence of flux given by Darcy’s law [10], friction to the flow 
due to porosity of the medium (less porosity, i.e. low , will mean high frictional resistance on the gas flow) and Inertial 
force that accounts for deviation from Darcy’s law, when velocity of diffusing gas is high. These source terms are given 
in equations (6) – (9), as reported in [10]. 
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In (5) – (9), K and stand for gas permeability and viscosity, and their expressions and for all other variables in (5) 
– (9) are given in [10], and reader is referred to this paper for further formulation details. Ref. [10] gives values for k, 
thermal conductivity of carbon-phenolic material and CpC, specific heat of solid carbon char as a function of 
Temperature, but value of Cpr was not reported, which was taken to be a constant value of 1174 W/m.K for this work. 
Pyrolysis Gas is a species of 14 gas components, C, CH, CH2, CH3, CH4, CO, CO2, C2, C3, H, HO, H2O, O, and O2
taken to be at equilibrium at the temperature of the solid material. Pressure of the gas was obtained through use of 
chemical solver, CANTERA27, in which initial composition were given as, C: 1.3527, H: 6.4557, O: 1, being 
composition of resin. The input to CANTERA for all thermodynamic calculations is through a CTI file, and properties 
like specific heat, enthalpy, and entropy are specified as functions of temperature, in terms of NASA polynomials, for 
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each of the components of the pyrolysis gas. For non-equilibrium analyses, reactions and their rates (in Arrhenius 
coefficients) can also be specified in this CTI file. The equilibrium properties like internal energy, pressure, enthalpy, 
temperature etc. can be found by specifying initial composition (by mol fraction) of the mixture, and equilibrium criteria 
at constant temperature and pressure. 
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Figure 1: Above Plot shows variation of internal energy (J/kg) of pyrolysis gas with Temperature of the gas (in 
K). Line in red, with red dots shows data collected from CANTERA, and line in green shows exponential fit 
evaluated using TECPLOT. As we see above, the fit is useful only up to temperature of nearly 3000 K.

Thus, we got eg, internal energy of gas and MW, the molecular weight of the gas for different Temperature and 
density of gas. The data points for both, eg and MW were exponentially fitted to get a plot that grows monotonically, and 
to avoid any discontinuity in the gradients of these properties. The expression of eg, was obtained using TECPLOT, 
while 3D data for MW (in terms of temperature and density) was curve fitted using an online software, ZunZun.com28.
Their expressions are given below. We used second order polynomial in logarithm (of base 10) in density and fourth 
order polynomial in Temperature. X-axis is from 2.952 to 9.288, which stands for Temperature, Y-axis is from -2.2 to 
2.2, which stands for Log10( g) and Z – axis is from 4.872e-3 to 1.8317e-2, which is for Molecular weight of gas in 
Kg/mol. The plot of the curve fitted can be seen in figure 2, which was plotted using VRMLview32. CANTERA is seen 
as a potential source for future for including effects of chemical reactions in the flow solver. It will be compared in 
coming future, for its performance, ease of implementation and solution accuracy compared to current ways of solving 
chemically reacting flows and results. 

1 2 3expge AT A A (10)

1 2 3 4exp exp exp expMW B y B x B x y B (11)

Where, the constants for equation (10), are given as A1 = 1.869e-03, A2 = 1.198exp+01 and A3 = 1.156exp+07. For 
equation (11), x and y depend on temperature and gas density respectively as, x = (T/1000)2 and y = LOG10( g), and 
constants are given by, B1 = 1.7981exp-04, B2 = -1.333exp-06, B3 = 2.0159exp-07, and B4

IV. Numerical Scheme

= 1.678exp-02. Prior to 
above exponential fits, polynomials curves were fitted through the data, and it was found that the resulting plots had non-
monotonic behavior, which can cause issues in simulation, like pressure gradient might shift signs from positive to 
negative, and that can affect solution accuracy.

A. Galerkin Finite Element Method with Sub-Grid Embedding scheme

Our In-house Multi-scale Ionized Gas flow code; MIG was used to solve the ablation problem. The discretization 
scheme employed in the code is Standard Galerkin based Finite element. Local element stiffness matrices are built in the 
‘element_library’ subroutine, which are assembled into global matrix. For time stepping, we use -implicit approach, and 
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for fully implicit time integration, we use = 1.0. Newton Raphson scheme is used for solving highly non-linear 
problems. The assembled global matrix is solved using generalized minimal residual method, GMRES, an iterative way 
for solving a system of linear equations. The governing equations, are converted from conservative to a non-conservative 
form, and then integrated with the basis function to obtain the discretized weak form. A simple example of burger’s 
equation with a given source term, is shown just to demonstrate the discritizing process. 

2
1 0
2

UU
t x

                                                     0U U
U

t x

(Conservative form)             (Non-conservative form)

.
U U

V U dx V G dx
t x

(12)

Both, U and V are approximated by Uh and Vh

T
h jU N U

, and then written in terms of their nodal values and Lagrange shape 
functions (denoted by N), 

(13)

T
h jV N V (14)

Final weak form for the equations is given by,

1
11{ } { }

{ } .
Tn n

T nj j n
j

U U DN
N N dx N U U dx N G dx

t DX
(15)

Where, {N}{N}T denotes mass matrix, and {N}{U}{DN/Dx}T

Successful solving of Euler equations and MHD equations using Galerkin Finite element, requires use of artificial 
dissipation. Sub-Grid Embedding (SGM) developed by Roy et al.

is hyper matrix, where U is just evaluated at the 
required location in the integration. If {G} depends on {U}, then the expression is placed into element stiffness matrix, 
by using Newton’s method, else it just sits as a source vector on right hand.

29

Ablation problem was also solved with MIG code, but it results in oscillations in the solution, as discussed in results
section. Since paper [10], uses a loosely coupled formulation for solving equations (1), (4) and (2), (3) as two separate 
sets, we also implemented this into our system, to see if it resulted in any improvement for solution. This however didn’t 
help in getting rid of oscillations.

was employed as an artificial dissipation mechanism, 
which enabled successful solution of both the equations. 

Seeing inevitable oscillations in the solution, and incapability of SGM, artificial dissipation scheme, to overcome 
these oscillations, we decided for implementing upwind based finite element procedures into our framework, and 
Discontinuous Galerkin scheme seemed to have most attractive features, due to its high order accuracy, simple 
implementation, and easy extension to higher dimensions, which seemed promising for our future goals to extend the 
Ablation problem to 3-D. We built 3 codes for Discontinuous Galerkin method. 

1) Explicit Runge Kutta Discontinuous Galerkin method
2) Explicit Discontinuous Galerkin module in MIG
3) Implicit Discontinuous Galerkin module in MIG

B. Explicit Runge Kutta Discontinuous Galerkin method

Explicit Runge Kutta Discontinuous Galerkin Method was developed by Cockburn and Shu in their series of papers,
[34] – [37] and some sample problems as mentioned in [43], like Advection equation, Burger equation, and heat 
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conduction problem were tested using this code. The basic DG formulation is given as follows. By use of Legendre
polynomials as basis function, we are able to decouple the resulting system of equations into totally explicit equations, 
by which we can solve equations node by node. This makes the system suitable for parallelization, an advantage that 
offsets the increased degree of freedoms in DG method. For time integration for resulting ODE’s, we use a 3rd

,vF U F U UU
G U

t x x

order 
Runge Kutta time integration scheme. 

(16)

U represents vector of solution variable that we are interested in solving for. F and Fv

1/ 2 1/ 2,j j jI x x

are Inviscid and viscous flux 
vectors and G is the source vector. Above system of equations are multiplied by arbitrary smooth functions, V and then 
integrated over an element, with interval . Integration by parts to the resulting system of equations and 

approximating U by Uh and V by Vh

1/ 21/ 2

1/ 2 1/ 21/ 2 1/ 2

1/ 21/ 2

, ,

, , ,

, , 0

j j

j

j

h h h h h h jjI I

h h j v h h h v h h h jj jI

v h h h j h hj I

U x t V x dx F U x t V x dx H U t V x
t x

H U t V x F U x t S V x d x H U S t V x
x

H U S t V x G U x t V x dx

, leads to following system of equations,  

(17)

Uh and Vh are written in terms of basis function (Legendre polynomials are used here) , and we obtain following 
system of equations, 

0

k
l

h j l
l

U U x (18)

            2 /l l j jx P x x (19)

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1 1 1, , , ,
2 1

1 1, 1

1 , 1 , 0

j j

j

l
j h l v h h lI I

j j

l
h l h j h jI

j j

l
v h j h j v h j h j

j

U t F U x t x d x F U x t S x t x d x
l t x x

G U x t x d x H U x t H U x t

H U x S x t H U x S x t

(20)

j is the length of interval Ij U. An auxiliary variable, S is introduced to replace , with an additional auxiliary 
equation for S. For more details on how to apply DG for viscous fluxes, please refer to [43]. H and H are numerical
fluxes that depend on solution variable on both sides of the node in the subscript. For Inviscid fluxes, both Godunov flux, 
and Local Lax-Friedrichs flux have been used. Godunov flux is well-known due to its smallest amount of artificial 
viscosity that is introduced into the scheme. Local lax Friedrichs produces more artificial viscosity than Godunov flux, 
and is suitable when f is complicated, as in our case. For viscous fluxes, BR-1 scheme is used, which is simple averaging 
of flux values from both sides of the node, (xj-1/2 or xj+1/2).
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min ,
,

max ,

a u b
G

a u b

F u if a b
H a b

F u otherwise
(21)

min , max ,

1,
2

max

LLF

a b s a b

H a b F a F b b a

F
s

U

(22)

1,
2v v vH a b F a F b (23)

Resulting system of equations, are ODEs which are integrated in time, using Runge Kutta time discretization 
method. We have used 3rd

C. Explicit Discontinuous Galerkin Module in MIG

order Runge Kutta time discretization for this part. Please refer to [43] for details on Runge 
Kutta time discretization. 

Being limited by very small time step for Explicit Runge Kutta Discontinuous Galerkin method, we decided on 
implementing Implicit Discontinuous Galerkin scheme into MIG as a separate module. This formulation requires use of 
matrices, and due to inbuilt structure of implicit solver in MIG, it seemed lucrative and time efficient to use the 
framework built in MIG. Since MIG has been implemented for 2-D and 3-D problems in plasma, this module can also be 
easily extended to higher dimensions. As a first step therefore, Explicit Discontinuous Galerkin method using matrix 
system (rather than decoupled equations in Explicit RKDG above) was implemented to check its working with already 
developed and fully tested Runge Kutta Explicit DG code. The formulation for Explicit DG code, as different from 
Explicit RKDG, is as follows.

| . | | . |
l

T j
v v

U
dx F dx F F dx F G dx

t x x
(24)

The term in square brackets (with unsteady term) is a diagonal mass matrix since the basis functions are Legendre
polynomials. Applying forward Euler time integration for unsteady terms, we get final form of system of equations to be 
solved.

1

| . | . | . | .
n nl l

j j
v v

U U
M F dx F F dx F G dx

t x x
(25)

M denotes mass matrix, and right hand side above is known at previous time step. Note for auxiliary equations the 

term in bracket with [M], will change to simply
1nl

jU .

Here also, both Godunov and Local Lax-Friedrichs flux was used for approximation of numerical fluxes of Inviscid 

flux vector, F. For LLF, is maximum eigenvalue of Jacobian matrix
F
U

. For Euler and Ablation equations, Jacobian 

matrix and eigenvalues are given below.

Euler equations 
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2

3 2

0 1 0
3

3 1
2

31 1
2

F
u u

U

u uE E u u

(26)

1,2,3 , ,u u c u c (27)

is ratio of specific heats, and c is the speed of sound. 

Ablation equations

0 0 0 0 0 0
0 0 1 0 0 0

0 0
* * 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A B D FF
u A C E u FU

(28)

Expressions for A, B, C, D, E, F is given in appendix.

1
2

g2 2 2

2 2

1,2,3 mod
g

de

2
0, 0,

de
*

g r pr c pc g r pr

g c pc g r pr c pc

g r pr c pc g

P C C C P
dT

C P C P C
u u c

C C
dT

(29)

cmod

D. Implicit Discontinuous Galerkin Module in MIG

is denoted as modified speed of sound, since the structure of eigenvalues resembles that of Euler equations. 

Formulation for Implicit DG, will be same as (), but the right hand side now is dependent on solution vector, U and 
at current time step. Since RHS is also unknown, this is a linear problem and requires use of Newton’s method to solve 
system of equations. For Newton’s method, we require evaluation of Jacobian, i.e. derivates of Inviscid flux, viscous flux 
and source vectors need to be computed. Resulting Jacobian for system of equations (), is thus given as, 

. . . . . . .v v vF F FF F F S
J M t dx dx dx

x U U U x U U U U
(30)
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The derivatives for F, F F, and G are given below for Ablation equations. and F depend on U from element at j 
and the neighboring element (j+1 or j-1), hence their derivatives w.r.t. Uj and Uj+1 or Uj-1

F
(depending on if we have 

or F ) need to be evaluated and placed accordingly in the global matrix assembly. For implementation, of Implicit 
Discontinuous Galerkin to MIG, for both Euler equations, and Ablation equations, only Local Lax-Friedrichs flux was 
found to work. We found that Jacobian of Godunov flux didn’t satisfy linearization check, as explained in appendix.

1

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0

0 0

g g
g

v
cond

r g g

r g g

K K
S

F
k

U
P P P P

u E

T T T T
u E

(31)

2 / 0 0 0 0 0
2 / 0 0 0 0 0

2.444
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

r

r

g g g g

R
R

uf I
S

K K
U

(32)

Implicit method requires rigorous check of the linearization of jacobians, and jacobians need to be modified for 
F and F at the boundary nodes. Same has to be done for viscous flux vectors. Derivatives for F and F in general 
for interior nodes is given as, 

'1
2 ij U ij

U U

F F
u U U U

U U
(33)

'1
2 ij U ij

U U

F F
u U U U

U U
(34)

if U belongs to element at j, and since F and F also depend on U from adjacent element, their derivatives w.r.t. 
U needs to be placed in the same row for element at j, but columns for elements at j+1 or j-1, whichever is applicable. 
Derivatives of F and F w.r.t. U from neighboring elements is given as,

'1
2 ij U ij

U U

F F
u U U U

U U
(35)

for U belonging to element on right, and,
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'1
2 ij U ij

U U

F F
u U U U

U U
(36)

for U belonging to element on left
is maximum eigenvalue given in equation (29), therefore its derivative w.r.t. U is, 

2
g

2

mod g

g

de 12
2 1

22 deg

de
1

de

g r r c cg

r r c c g g r r c c

gg

g
r r c c g

u
Cp Cpe

dT
P Cp Cp Cp Cp

u
c

dT

Cp Cp
dT

(37)

mod

2 0

.1
12
2

gg
g g g r r

u c
u E e u h

(38)

mod

2 012
2g g g r r

c
E E e u h

(39)

Positive and minus signs in above expressions are selected based on whether maximum eigenvalue chosen in (29) is 
(u + cmod) or (u – cmod

V. Boundary & Initial Conditions

). 

Total grid size is taken to be 1 cm, and the inner boundary is fixed at x = 0 cm and outer boundary at x = 1 cm. Boundary 
conditions are as follows. No boundary conditions are needed for equation (1), since it’s a pure unsteady differential 
equation. For (2), g no boundary conditions are specified at x = 0 cm. At x = 1 cm, g is found by solving the state 
equation, i.e. MW as a function of g

At x = 1.0 cm, equation (1), as mentioned, doesn’t need a boundary condition, (2)’s boundary condition has already 
been specified above. No boundary condition is applied on velocity at x = 1 cm. For temperature, an incoming heat flux 
(in negative X direction) of 1400 W/cm

and T, which basically relates Pressure, gas density and Temperature. Pressure at x 
= 1 cm, is given to be 0.22 atm (Arc jet test data in [10]), and Temperature will be known by solid’s temperature. For (3), 
u is taken to be 0 m/s and adiabatic boundary condition for Temperature (equation (4)) at x = 0 cm.

2 is specified. Initial conditions are uniform throughout the domain for all 4 
variables; r is 250 kg/m3, g is 6.05e-3 kg/m3

V. Results and Discussions

(evaluated @ P = 0.22 atm, and T = 300.0 K), u is 0 m/s and T is 300.0 K. 

Since Gas equations in equations (1) – (4), are similar in form to Euler equations, an initial test for the MIG code 
was done for 1-D Euler equations, and 1-D MHD equations. Subsequently for development of Discontinuous Galerkin 
scheme, Euler equations were used as test problems to check working of the DG code. The results are shown below. 
Sub-grid embedding (SGM)29 was used to control the oscillations in the solution that generally appear with a convection 
term in the Galerkin framework. 
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A. Euler equations and MHD equations with Galerkin FEM

First problem tried on MIG, is Sod’s Shock tube case30

With 1001 nodes for shock tube problem, we got close results with SGM. Shock’s position in numerical solution 
came out to be 0.837 m, as compared to 0.8501 m for exact solution. Density, left to contact discontinuity, is 0.42568 
kg/m3 (numerical) and that to left of shock is 0.26524 kg/m3. The exact values at these locations respectively are 0.42 
kg/m3 and 0.26 kg/m3 (Get exact values at this location). Velocity is very close to exact value of 0.92 m/s. Pressure ratio 
across the shock is obtained as 3.084, as compared to exact value of 3.025. When the solution was run with 101 nodes, 
we noticed that curbing of oscillations by use of SGM, was more difficult, but still the solution was close to the exact as 
shown in figures. It is easier to curb out high frequency oscillations with selective diffusion scheme, than to curb out 
lower frequency oscillations. Higher diffusion to curb out oscillations near discontinuity will result in smearing of the 
shock profile more across mesh elements. The effect of SGM on oscillations can be seen in figure 4, which are shown for 
a 100 nodes mesh, where solution for and u shows exact solution, and numerical result with and without SGM. We can 
clearly see the dissipation of the oscillations, without much smearing of the solution in the whole domain. 

. The domain is from x = 0 m to 1 m, and boundary 
conditions are = 1.0 kg/m3, u = 0.0 m/s, P = 1.0 Pa at x = 0 m, and = 0.125 kg/m3, u = 0.0 m/s, P = 0.1 Pa at x = 1 m.
Initial solution was a sharp discontinuity in both Pressure and density profiles with discontinuity at x = 0.5 m. The 
solution was solved with SGM, an artificial diffusion approach that minimizes all oscillations, which can propagate in 
the solution domain and destroy the solution. The results are compared with exact solution available in any standard 
textbook on numerical computations of fluid flows, like [30]. The solution was run with t = 1.0e-4 sec up till t = 0.2 
sec, and the results are shown for both 1001 and 101 nodes in figures 2 and 3 respectively. The initial discontinuity 
basically represents state of perfect gas, in shock tube, where a diaphragm in center separates gas in both chambers (left 
and right) at two different conditions. At t = 0 sec, this chamber is broken, and this leads to travelling shock in the right
chamber, and travelling expansion wave in the left chamber. The travelling shock is accompanied by a contact 
discontinuity, which moves at lower speed to the right chamber. 

Fig. 2: Comparison of numerically obtained results , u, P, with exact solutions for 1001 nodes in mesh. SGM was 
employed for selective artificial diffusion. Red color for , u indicates exact solution and green color indicates 
numerical solution. Pressure was compared by shock’s location and ratio of pressure on to left of shock to its 

right end.

Fig. 3: Comparison of numerically obtained results , u, P, with exact solutions for 101 nodes in mesh. SGM was 
employed for selective artificial diffusion. Red color indicates numerical solution and other color indicates exact 
solution. 
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Fig. 4: Blue color indicates solution without SGM, and red with SGM. Black color indicates exact solution. We see 
the effect of SGM in reducing oscillations without much of smearing of the solution.

Second problem solved by MIG was 1-D MHD compound shock-wave problem. MHD equations are fluid dynamics 
equations coupled with Maxwell’s electrodynamics equations, which describe the flow of conducting fluid in a magnetic 
field31. By making some assumptions, like neglecting displacement current, viscosity, resistivity etc. we get “ideal” 
MHD equations. A simplified 1-D form of MHD equations is given below along with the boundary conditions. The 
results are also shown, both with and without SGM in figure 5. Again we see the effect of SGM in curbing all 
oscillations, without smearing or destroying of the overall solution. for this problem was chosen to be 2, to compare the 
results with [31]. The given system of MHD equations is non-convex as well as not-strictly hyperbolic for reasons 
described in [31]. The domain size is from x = 0 m to x = 800 m, x = 1 m, and t = 0.2 sec, and solution is ran up till 80 
sec of total time. Initial solution has discontinuity in Density, Magnetic field in y-direction, and Pressure at x = 400 m. 
Magnetic field in x-direction is held constant at a value of 2.66 T. The solution of MHD equations shows fast rarefaction
wave moving to the left, and a slow compound wave next to it. The waves moving to right are contact discontinuity in 
middle, slow shock wave next to it and fast rarefaction to the extreme right. 
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Fig. 5 : Results obtained with MIG Code for 1-D MHD Problem for , u, v, By, P. Plots show again comparison 
between solutions without SGM and with SGM for u and v equations, in two forms for the factor used. The above 

solution shows close resemblance to exact solution. 

(40)

B. Ablation problem with Galerkin FEM

After above two attempts at solving Shock tube problem and MHD compound shock problem, ablation problem was 
attempted in its entirety. But, due to difficulty in convergence, some simplifications were attempted to observe the effect 
of simplifications on our ability to solve the ablation problem. What follows is a series of efforts to simplify the ablation
problem, and obtained results are reported with standard Galerkin approach. 

Fig. 6 : Solution of Ablation equations some simplifications, like neglecting terms like D and I, and taking 
constant value of eg and er.

First attempt was to treat some of the terms appearing in the equations as constant. For example, first case was 
eliminating D and I from equations (2) and (3). These are basically driving terms for gas flow, apart from Pressure 
gradient in equation (3). With constant values of eg and er at 1.141e07 J/kg and 2.20e06 J/kg. The solution was run for 
total time of 1 sec, and obtained results are shown in figure 6. This shows a negative velocity profile. The velocity is 
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mainly driven by Pressure gradient (only being restrained by friction), which depends on the gradients of both 
Temperature and gas density. So, Pressure gradient being dependent on T and g

C. Loosely coupled approach for Ablation problem with Galerkin FEM

, has a maxima in the solution domain 
and hence drives the gas in two directions, as seen in the solution. General shape of Temperature, resin density and gas 
density make sense, since Heat flux from right hand side, leads to increase in temperature on right end, and then through 
heat conduction, there’s a resultant rise in temperature inside the material, which leads to pyrolysis in that zone, due to 
high temperature, which leads to production of gases. Gas density profile shows that the gas accumulates on the left side 
of the domain. But, net mass of gas close to left end depends both on void fraction and density, and void fraction is very 
low close to the left end, since there’s no pyrolysis currently at this location. We get information that the pyrolysis is 
between x = 0.6 cm and 1.0 cm. 

Since, the solution had convergence issues due presence of oscillations upon including the terms, which were 
neglected in above simplification, we tried to solve two sets of equations, i.e. (1), (4) and (2), (3) separately in a loosely 
coupled fashion, in which the in-house finite element based code, MIG was modified to solve given sets of equations in a 
loosely coupled manner in a generic way. The advantages of this approach lies in being able to selectively identify the 
root cause of problem of convergence issue and also in solving different equations sets in their respective time scales.
The modified code was then tested for given set of Euler equations, to test its running, and results showed were very 
close to earlier obtained results. See figure 7 for comparison. This helped us in identifying the root cause of problem in 
the gas equations, and then the focus was shifted to solving Gas equations, (i.e. equations, (2) and (3)) separately given a 
temperature and resin density profile.

Fig. 7: Solution obtained for Euler equations by modifying MIG into solving separate sets of equations in loosely 
coupled fashion. Red solution shows, Euler equations solved all together, and green solution shows Euler 

equations solved in loosely coupled fashion.

We also tried solving Euler equations in a smaller domain and with higher pressure gradients in the solution, since 
actual problem faces higher pressure gradients in smaller domain, and this becomes more challenging due to high 
velocities that are generated in the solution, which means stronger oscillations, and this brings in difficulties of 
convergence issues which were faced. Figures (8 – 10) below, shows some of the results with Euler equations in a 
domain size of 1 cm, and higher pressure gradients. First result (Figure 8) is comparison of Euler equations solution with 
all boundary conditions as applied in earlier problems, but smaller domain. A stronger diffusion was required to lead to 
convergence, and shown solution appears little diffused, because the characteristics have not yet fully developed. Time-
step for this simulation is 1.0e-3 sec, and total run time for the solution is 2.0e-3 sec. The comparison is made with the 
figure on the left, which shows Euler equations solution (solved on a bigger domain of 1 m, with same boundary 
conditions). Here also we see the solution characteristic has not yet developed at t = 2.0e-3 sec, but both the solutions 
share same behavior. Another set, was run for lower boundary conditions for density (figure 9) on both ends, since we 
actually have lower densities of order of 1.0e-02 in the beginning solution. The solution is again compared with the 
bigger domain’s solution and both have reasonable agreement. A third case was run with Pressure values of 1.0e05 Pa 
and 1.0e03 Pa on left and right sides respectively, with bigger domain, (since this was difficult to converge, the problems 
will only increase with a smaller domain) and solution is shown in figure 10.
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Fig. 8: Comparison of Euler equations solution in a domain of 0.01 m at t = 2.0e-03 sec. Both the above results 
show quite a good resemblance

Fig. 9: Comparison of solution of Euler equations with smaller domain and smaller density boundary conditions. 
Above three plots show, r, u, and P for bigger domain, (of size 1 m), and bottom 3 plots show r, u and P for 

smaller domain at 7.2e-4 sec. Again we see close resemblance to have some faith on smaller domain solution.

Fig. 10: Above plot shows solution of Euler equations with Pressure boundary conditions, as P = 1.0e05 Pa @ x = 
0 m and 1.0e03 @ x = 10.0 m. In spite of using SGM, we still see oscillations in the solution. 
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After this, a preliminary solution of ablation with all terms in equations (1) – (4) included was attempted with a 
moderate temperature and density profile as shown. As we cranked up temperature, oscillations became more prominent, 
and it became difficult to curb them with SGM. 

D. Euler equations and Ablation problem with Explicit Runge Kutta Discontinuous Galerkin method

As a very simple test for Explicit Runge Kutta Discontinuous Galerkin method, we verified the case of advection of 
sine wave, and square wave through the domain 0,1x through a total time of 100 sec. No limiters were used in the 
simulation, and the obtained results showed it best to use at least k = 2 polynomial order for Legendre polynomials. For 
lower order solutions were too dissipative. We used Godunov flux only, with Explicit Runge Kutta discontinuous 
Galerkin scheme. 
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Fig. 11: Advection of a sine wave (a – c) and square wave (e – f), using explicit RKDG method. Green line denotes 

solution after 100 s, and red line denotes initial solution

Results for Euler equations, for the shock tube problem, are given below,
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Fig. 12: Solution for Shock tube problem (Euler equations), using Explicit RKDG method, and Godunov flux. We 
show density, velocity and pressure profile at t = 2.28 sec
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The result is compared with the exact solution. The shock location is predicted to be at 4 m, which is exact solution. 
There are some oscillations with the shock, but they are never allowed to grow, due to TVD nature of RKDG scheme. 
The result of Euler equations for Sod’s shock tube was compared with that of MIG (using SGM), and we found RKDG 
to predict correct shock speed as compared to MIG code, which has some error in prediction of shock’s speed. 
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Fig. 13: Density result for shock tube problem compared for explicit RKDG method and Galerkin finite element 
using SGM. Above result of density is at t = 0.2 sec

We attempted Explicit RKDG code for Ablation problem. Time step for solution was 1.0e-08 sec. Due to pressure at 
right boundary being fixed at 0.22 atm, and temperature (hence pressure) rising inside the domain, we saw fluctuations in 
velocity, these fluctuations were strong, and with larger time steps will cause solution to blow up. At this slow time, in 
the beginning of simulations, no significant pyrolysis is observed, and so all the effect seen is due to thermodynamics of 
pressure rising with temperature. Below shown is one of simulations, (with pressure boundary condition applied), and 
total time of 5.14 ms. We see that pyrolysis has hardly begun, from resin density plot. Gas density falls on right end of 
the domain, and has just begun to increase. Gas velocity being governed by only thermodynamics and not due to gas 
generation by pyrolysis is up to 4 m/s, and temperature at right end is nearly 790 K. Total number of elements used are 
200. 
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d)

Fig. 14: Thermal Ablation solution with Explicit RKDG method, and total time of 5.14 ms. Pressure at right 
boundary is fixed at 0.22 atm, that causes high fluctuations in velocity, and causes simulation eventually to blow 

up. 

Another simulation with no pressure boundary condition on right end of domain, and with only 20 elements, run 
with time step of 1.0e-08 sec, and up till total time of 17 ms. Gas velocity goes to a maximum of 110 m/s, at around 8.5 
ms. Temperature goes to 2085 K at right end of the domain, at 17 ms. In plot of resin density we can also see the 
pyrolysis region near the right end of the domain. Right end has almost reached to the point of zero resin density, i.e. 
material has completely charred over there.
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Fig. 15: Simulation for Ablation problem, with no pressure boundary condition at 17 ms (using explicit RKDG 
method)

Another set of results that were obtained for total time of 56.11 ms. While running animation of results, we see that 
gas density is undergoing a cycle of increase and decrease, on the left side of domain. Its maximum value inside the 
domain is 0.18 Kg/m3. Gas velocity has oscillations in the data by this time. Temperature profile hits a 2281 K at around 
20 ms, after which its increase is less compared to before 20 ms. 
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Fig. 16: Solution for thermal ablation problem at 56.11 ms. Solution shows oscillatory behavior in velocity. 
(Obtained using explicit RKDG)

E. Euler equations and Ablation equations result with Explicit DG method in MIG
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Fig. 17: Results obtained for shock tube problem using Explicit DG method into MIG (using Godunov flux solver, 
a) – c), and LLF solver d) – f)). Lesser oscillations are observed with LLF. Time step = 1.0e-4 s, total time = 0.2 s

Ablation problem was attempted with Explicit DG method using LLF, and similar issues of velocity fluctuations 
were faced with this case. Given below are results obtained at time of 0.25 ms. At this early stage pyrolysis has not 
begun significantly, therefore resin density is nearly constant throughout the domain. 
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Fig. 18: Results with Explicit DG method for Ablation problem (using LLF), at a total time of 0.25 ms

F. Euler equations and Ablation equations result with Implicit DG formulation in MIG

Here the role of Jacobian is very crucial and as seen, only LLF worked to solve for Euler equations. There’s a 
Jacobian linearization check that should be verified prior to use of the Jacobian, for good convergence. Results obtained 
with Euler equations are as follows. As compared with explicit DG cases, we see the oscillations in the solution are 
suppressed due to additional artificial dissipation due to time integration scheme. Higher the time step for integration, 
more the dissipation of oscillations. Coupling of jacobians from adjacent elements is also crucial, for good convergence.
Results for Euler equations, at time step of 10-4 s, and a total time of 0.2 s are shown below. 
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Fig. 19: Results for Euler equations with Implicit DG method at time step of 10-4 sec, for a total time of 0.2 s. 

Only Local Lax-Friedrichs flux was successful with Implicit DG
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Ablation problem with Implicit DG method took significantly large number of iterations to converge, and have yet 
to be resolved for their convergence, by working on Jacobians involved in this problem. Below shows results with 
Implicit DG method at total time of 0.032 ms, run with time step of 1.0e-06 s. 
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Fig. 20: Result of Ablation problem with Implicit DG method at t = 0.032 ms

VI. Conclusion

Various attempts were made to get solution using Galerkin based Finite element method, using SGM for selective 
diffusion. But as the pressure gradient that drives the flow increases we see that solution develops oscillations which 
becomes difficult to curb through use of SGM. This was observed when Euler equations were solved with higher 
pressure on the boundary conditions. The next step is to try Discontinuous Galerkin based Finite element methods, since 
they employ approaches similar to flux splitting, which have been successfully used in the area of finite difference and 
finite volume. Special focus will be on Runge Kutta Discontinuous Galerkin method.

Appendix

Expressions in Matrix of Jacobian of Inviscid Flux

The expressions for A, B, C, D, E and F in matrix are given by,

0.
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Linearization check for a Jacobian used for implicit time integration method

Jacobian formed by a derivative of a flux vector w.r.t. the solution vector, must be verified especially for DG 
formulation, where we have F+, and F-, which depend on some maximum or absolute value, for Linearization check. 
The procedure for this is,

1) Introduce a small perturbation U in U, the solution vector
2) Calculate F|U+ U – F|
3) This should equal J|

U

U
A good convergence is usually likely with above criteria met for the implicit method. 
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