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Modeling the motion of pyrolysis gas through charring
ablating material using Discontinuous Galerkin finite elements
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A series of efforts were made to solve a simple ablation problem with gas motion through the
porous media employing finite element based Galerkin and Discontinuous Galerkin methods.
First, one-dimensional solutions of Euler and magneto-hydrodynamics (MHD) equations are
presented for comparison with analytical results, to validate the code. The spurious oscillations
of standard Galerkin approach were mitigated using Discontinuous Galerkin method. We have
shown some preliminary results for the ablation problem using both explicit and implicit
Discontinuous Galerkin methods in the paper. However an unresolved exit velocity fluctuations
to pressure boundary condition, due to which we are not able to go to target time of 5 seconds for
this problem. We plan to resolve these issues, and take this code for application of ablation
problems in higher dimensions (2-D or 3-D), and bring in plasma application on the surface.
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Subscripts
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resin

-~ Q
mnnn

I.  Introduction
S pace vehicles enter earth’s (or other planet’s) atmosphere while returning from their interplanetary mission. They
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have blunt shaped bodies, which results in high drag force and strong deceleration that help them in landing. Due to high
drag, bow shock forms in front of the vehicle, which may be either attached to or detached away from the vehicle’s
leading surface. This bow shock may interact with viscous boundary layer on the surface, and lead to high viscous
dissipation on the surface®. This leads to high convection flux on the surface of the vehicle. The gas particles also may
get excited into dissociated states which may lead to high radiation flux to the surface. The exact details of this
phenomenon are part of hypersonic flow study, with appropriate models for associated chemical reactions. By
determining the relevant species, one can apply radiation models, like plane parallel approximation models, to calculate
net amount of radiation heat flux to the surface. It has been found that in some cases, radiation heat flux dominates net
convective heat flux to the surface’.

Heat flux to the surface of the vehicle is very high, resulting in temperature rise of several thousand Kelvin. Thermal
protective systems (TPS) are used to prevent any damage to the vehicle. These systems are designed to absorb high heat
flux, undergo chemical deposition and reject heat load at the surface itself. TPS are characterized into two types, ablative
and non-ablative systems®. Non-ablating TPS are usually used in reusable hypersonic vehicles, or in cases which do not
have very intense entry conditions. Ablative TPS are better, since they allow heat rejection through various mechanisms
like phase change, chemical reactions on the surface and inside leading to material removal through gasification.
Generation of pyrolysis gas leads to blowing phenomena, which is basically injection of pyrolysis gas into the boundary
layer. This helps in achieving convective and radiative blockage® reducing the percentage of net heat flux that reaches
the surface. The ratio of the TPS material relative to the payload weight plays a critical role in design optimization study
which is geared to minimize this ratio*®.

Initial efforts of studying ablation began using analytical ablation models, mainly concerned with melting surfaces
(ones in which a liquid layer flows over the surface)®’. Later on studies were also applied to direct gasification of solids.
Mathematical models were developed based on the understanding of the phenomena, with some simplifying
assumptions, like gasification at critical temperature or specifying kinetic mechanism for decomposition process®.
Second approach allows decomposition over a characteristic range of temperature. But, ablation itself is a complex
phenomenon too difficult to be modeled by analytical means. First numerical effort of dealing with ablation was done
through development of Charring Material Ablation (CMA) program®, which treated problem as quasi-one-dimensional,
i.e. heat flow was one dimensional, with variable area along the depth. According to [10], CMA considered the steady
state flow of pyrolysis gas. Such an assumption may not be a priori evident in steep entry angles conditions, which was
the case with Pioneer-Venus Probes™. Some studies identify the need for modeling of chemical non-equilibrium of
pyrolysis gases in char to correctly simulate their behavior'**®, Wakefield and Pitts** used CMA to numerically
reconstruct thermocouple data for day probe and night probe, and found their temperature values to rise to unrealistically
high values for both stagnation point and frustum edge. Governing equations, (1) — (4) were used by to numerically
simulate the motion of pyrolysis gas within the char. Interestingly, results obtained in [10] showed closer agreement to
flight data. These results were simulated with and without blockage effect and with Wakefield heating rate.

In many of earlier studies, in-depth thermal analyses were done decoupled from hypersonic flow conditions existing
outside the vehicle, without any interaction of ablating surface with the flow'. Boundary conditions in both the
computational fluid dynamics, (CFD) and computational solid mechanics (CSM) were treated in simplified manner, such
as constant temperature or heat flux and zero mass transfer. It was suggested in a review paper [15], that coupling both
CFD and CSM is essential for an in-depth thermal analysis within the material with appropriate chemical reactions. It
was assessed that for such multiphysics problem CFD was formulating non-equilibrium flows, multispecies kinetics,
radiation transport etc, but had primitive boundary conditions which prevented their use in TPS design, in a trajectory
based analysis. The heat flux at the surface of TPS may be provided as a function of space and time, but still it’s a strong
function of blowing parameter, which can only be determined through a coupled CFD and CSM analysis along with fully
involved surface chemistry. One of the early attempts requiring coupling of both was done in*®, which was to determine
the heat shield requirement for Mars Pathfinder, a precursor probe-lander for MESUR mission. It identified the need of
specifying empirical blowing parameter in CMA, which will lead to high uncertainties in estimated ablating surface heat
flux, and eventually inaccurate temperature histories. Consequently, in [16], Gauss-Seidel implicit aerothermodynamic
Navier-Stokes equations with thermochemical surface conditions (GIANTS), and CMA code were used in a loosely
coupled manner. Such loosely coupled approach also becomes useful in shape change prediction of a vehicle under
ablative conditions. One of the codes, TITAN (Two-dimensional Implicit Thermal Response and Ablation Program),
was 1L7Jsle8d along with GIANTS for multidimensional ablation and shape change simulation for graphite sphere-cone
TPS™" ™.

For modeling of chemical reactions in the char material or in gases, there have been several attempts, e.g. AC
(Aerotherm Chemical Equilibrium) code, which solved thermodynamic chemical equilibrium or nonequilibrium kinetics
equations between TPS and atmosphere, and then tables were generated which were solved along with fluid dynamics
equations. But, ACE did not have good prediction for materials with more than one element with dissimilar ablation
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behavior?. Consequently a general purpose code, Multicomponent Ablation Thermochemistry was developed in [21].
But, this also generates dimensionless ablation tables. There are many papers that give the details of chemical reactions
to consider for a given problem, like Keenan?, Keenan and Candler?, Park and Ahn? and Suzuki et al.>.

For more effective designs of future spacecrafts and concepts of aerobraking, it becomes important to accurately
model and simulate ablation process. In [26], chemical ablating flows are modeled and relative importance of chemical
ablation to thermal ablation is demonstrated. Effect of ionization processes is also shown. There are basically three
phenomena by which heat is lost, namely thermal, chemical and mechanical ablation processes. At higher altitudes,
where continuum assumption of the working gas breaks down, and rarefied and transition flows are required to model,
particle-based DSMC model is used. The modeling effort on ablation is divided into two domains, chemically reacting
flows, and thermo-chemically ablating TPS. The work of chemically reacting flows is restricted to either finite volume or
finite difference. Our interest is to try and test the capability of finite element methods in this area, since it had already
been used to solve for thermally ablating material. We made a series of efforts of solving Euler equations, MHD
equations, and then ablation equations with standard Galerkin based Finite element code (details are given below). Due
to convergence issues related to Galerkin based FEM; we had to look for methods like Discontinuous Galerkin to solve
the current Ablation problem, which considers gas motion inside the ablating material.

Discontinuous Galerkin methods were first applied by Reed and Hill* in 1973, to neutron transport problem. They
were developed by Cockburn and Shu in a series of papers®*®, as Total variation diminishing (TVD) Runge Kutta time
discretization and DG in space methods to solve nonlinear hyperbolic methods. Discontinuous Galerkin method, in
comparison to Galerkin finite element, uses shape functions that are continuous only within the domain of the element
and discontinuous across the element’s edge. The method uses approximate Riemann solvers (e.g. Godunov or Local
Lax-Friedrichs solvers) to evaluate numerical fluxes at to handle discontinuities at cell interfaces. The order of the DG
method can be increased by increasing the order of shape function used, and upwind mechanism comes from
approximation of inviscid fluxes.

Bassi and Rebay were first to apply Discontinuous Galerkin methods to solving of compressible Navier stokes
equations®. This was later further developed as Discontinuous Galerkin methods for convection-diffusion problems by
Cockburn and Shu®. Their method was called ‘Local Discontinuous Galerkin’ (LDG) methods. Penalty methods
developed in 1970s, for purely elliptic problems were brought into unified DG by Arnold et al.“ For problems with
shocks, one needs to either add artificial dissipation to eliminate spurious oscillations, or one needs to use slope limiters
to enforce nonlinear stability.

Discontinuous Galerkin method has been applied to different fields like gas dynamics, compressible and
incompressible flows, Magnetohydrodynamics, granular flows etc. Their main advantages are high order accuracy,
nonlinear stability, and high order parallelizability. In addition they can be used for complex geometries using
unstructured meshes, can capture shock without producing spurious oscillations, and are especially built for solving
nonlinear hyperbolic problems. We have added a Discontinuous Galerkin module to our in-house code Multi-scale
lonized Gas (MIG) code, and intend to go from current 1-D ablation problem to higher dimensional problems for
Ablation. Also, since the code has been tested for flow simulation with DBD plasma actuators in 2-D and 3-D*" *?, an
application of plasma to Ablation is possible in this code, being extensible to higher dimensions.

I1.  Problem Description

In the present work, we consider the arc-jet problem simulated by Wakefield and Pitts'*, and Ahn and Park™. The
material in consideration is carbon phenolic, being exposed to 1400 W/cm? of heat influx from its right end. The whole
problem is considered as 1-D. Thickness of the model is taken to be 1 cm. As the surface on right end ablates due to
high temperature rise, resin material pyrolates and decomposes to produce a mixture of gases, denoted as pyrolysis gas.
The motion of this gas through the material is not considered in steady state but we solve for the motion of pyrolysis gas
through the material, using governing equations (1) — (4).

The produced gas’s pressure will increase due to temperature rise and continued pyrolysis, which will result in gas
leaking out to atmosphere through the porous material. As a result there will be high velocity (velocity of order of 100
m/s) gas leaking out from the surface, which will provide the essential blockage mechanism to the incoming heat flux,
and also help in pushing the shock layer away from the vehicle’s surface. The purpose of current work is to study the
thermal ablation response of the material for the chosen problem.
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I11.  Governing equations

The ablation problem is considered as one dimensional, and recession is not taken into account at all, for the
preliminary efforts. As in [10], temperature of pyrolysis gas is taken to be same as the temperature of solid ablative
material. The variables being solved for are, p,, resin density, pgy, gas density, u, gas velocity, T, temperature of the solid
material, and P, pressure of the pyrolysis gas within the material. 4 governing equations, for p;, pg, U, and T are resin
mass, gas mass, gas momentum and overall energy (solid + gas) conservation equations (Equations, 1 — 4)

op
T — R 1
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Here & represents void fraction in the ablative material, and is given by (5), where p, specifies intrinsic density of
resin, which is equal to 1763.6 kg/m>. Source terms in above equations, namely R, D, f, and | stand respectively for
pyrolysis rate due to decomposition of the material, diffusion that expresses rate of change of pyrolysis gas density due
to spatial varying pressure, derived from negative of divergence of flux given by Darcy’s law [10], friction to the flow
due to porosity of the medium (less porosity, i.e. low &, will mean high frictional resistance on the gas flow) and Inertial
force that accounts for deviation from Darcy’s law, when velocity of diffusing gas is high. These source terms are given
in equations (6) — (9), as reported in [10].
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In (5) - (9), K and p stand for gas permeability and viscosity, and their expressions and for all other variables in (5)
— (9) are given in [10], and reader is referred to this paper for further formulation details. Ref. [10] gives values for Kk,
thermal conductivity of carbon-phenolic material and Cpc, specific heat of solid carbon char as a function of
Temperature, but value of Cp, was not reported, which was taken to be a constant value of 1174 W/m.K for this work.
Pyrolysis Gas is a species of 14 gas components, C, CH, CH,, CH3, CH,4, CO, CO,, C,, C3, H, HO, H,0, O, and O,
taken to be at equilibrium at the temperature of the solid material. Pressure of the gas was obtained through use of
chemical solver, CANTERA?, in which initial composition were given as, C: 1.3527, H: 6.4557, O: 1, being
composition of resin. The input to CANTERA for all thermodynamic calculations is through a CTI file, and properties
like specific heat, enthalpy, and entropy are specified as functions of temperature, in terms of NASA polynomials, for
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each of the components of the pyrolysis gas. For non-equilibrium analyses, reactions and their rates (in Arrhenius
coefficients) can also be specified in this CTI file. The equilibrium properties like internal energy, pressure, enthalpy,
temperature etc. can be found by specifying initial composition (by mol fraction) of the mixture, and equilibrium criteria
at constant temperature and pressure.
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Figure 1: Above Plot shows variation of internal energy (J/kg) of pyrolysis gas with Temperature of the gas (in
K). Line in red, with red dots shows data collected from CANTERA, and line in green shows exponential fit
evaluated using TECPLOT. As we see above, the fit is useful only up to temperature of nearly 3000 K.

Thus, we got eq, internal energy of gas and MW, the molecular weight of the gas for different Temperature and
density of gas. The data points for both, e and MW were exponentially fitted to get a plot that grows monotonically, and
to avoid any discontinuity in the gradients of these properties. The expression of e4, was obtained using TECPLOT,
while 3D data for MW (in terms of temperature and density) was curve fitted using an online software, ZunZun.com®.
Their expressions are given below. We used second order polynomial in logarithm (of base 10) in density and fourth
order polynomial in Temperature. X-axis is from 2.952 to 9.288, which stands for Temperature, Y-axis is from -2.2 to
2.2, which stands for Logio(pg) and Z — axis is from 4.872e-3 to 1.8317e-2, which is for Molecular weight of gas in
Kg/mol. The plot of the curve fitted can be seen in figure 2, which was plotted using VRMLview*’. CANTERA is seen
as a potential source for future for including effects of chemical reactions in the flow solver. It will be compared in
coming future, for its performance, ease of implementation and solution accuracy compared to current ways of solving
chemically reacting flows and results.

e, =exp(AT +A))-A (10)
MW =B, exp(y)+ B, exp(x)+B,exp(x)exp(y)+B, (11)

Where, the constants for equation (10), are given as A; = 1.869e-03, A, = 1.198exp+01 and A; = 1.156exp+07. For
equation (11), x and y depend on temperature and gas density respectively as, x = (T/1000)? and y = LOGo(pg), and
constants are given by, B; = 1.7981exp-04, B, = -1.333exp-06, B; = 2.0159exp-07, and B, = 1.678exp-02. Prior to
above exponential fits, polynomials curves were fitted through the data, and it was found that the resulting plots had non-
monotonic behavior, which can cause issues in simulation, like pressure gradient might shift signs from positive to
negative, and that can affect solution accuracy.

V. Numerical Scheme

A. Galerkin Finite Element Method with Sub-Grid Embedding scheme

Our In-house Multi-scale lonized Gas flow code; MIG was used to solve the ablation problem. The discretization
scheme employed in the code is Standard Galerkin based Finite element. Local element stiffness matrices are built in the
‘element_library’ subroutine, which are assembled into global matrix. For time stepping, we use 6-implicit approach, and
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for fully implicit time integration, we use 6 = 1.0. Newton Raphson scheme is used for solving highly non-linear
problems. The assembled global matrix is solved using generalized minimal residual method, GMRES, an iterative way
for solving a system of linear equations. The governing equations, are converted from conservative to a non-conservative
form, and then integrated with the basis function to obtain the discretized weak form. A simple example of burger’s
equation with a given source term, is shown just to demonstrate the discritizing process.

o(U? >
VI Gl VU

ot 2 ox ot OX
(Conservative form) (Non-conservative form)

I{V}[a{;}+{U}8g;}jdx=j{v}.{6}dx )

Both, U and V are approximated by U;, and V,, and then written in terms of their nodal values and Lagrange shape
functions (denoted by N),

0, ={Ny (U] @)
Vi ={N}T {Vi} (14)

Final weak form for the equations is given by,
I{N}{N}T [{Uj} A;{Uj} ]dx+J‘{N}{U}{%} {Uj}nﬂdXZJ‘{N}-{G}anX 15)

Where, {N}N}" denotes mass matrix, and {N}U}DN/Dx}" is hyper matrix, where U is just evaluated at the
required location in the integration. If {G} depends on {U}, then the expression is placed into element stiffness matrix,
by using Newton’s method, else it just sits as a source vector on right hand.

Successful solving of Euler equations and MHD equations using Galerkin Finite element, requires use of artificial
dissipation. Sub-Grid Embedding (SGM) developed by Roy et al.”® was employed as an artificial dissipation mechanism,
which enabled successful solution of both the equations.

Ablation problem was also solved with MIG code, but it results in oscillations in the solution, as discussed in results
section. Since paper [10], uses a loosely coupled formulation for solving equations (1), (4) and (2), (3) as two separate
sets, we also implemented this into our system, to see if it resulted in any improvement for solution. This however didn’t
help in getting rid of oscillations.

Seeing inevitable oscillations in the solution, and incapability of SGM, artificial dissipation scheme, to overcome
these oscillations, we decided for implementing upwind based finite element procedures into our framework, and
Discontinuous Galerkin scheme seemed to have most attractive features, due to its high order accuracy, simple
implementation, and easy extension to higher dimensions, which seemed promising for our future goals to extend the
Ablation problem to 3-D. We built 3 codes for Discontinuous Galerkin method.

1) Explicit Runge Kutta Discontinuous Galerkin method

2) Explicit Discontinuous Galerkin module in MIG

3) Implicit Discontinuous Galerkin module in MIG

B. Explicit Runge Kutta Discontinuous Galerkin method

Explicit Runge Kutta Discontinuous Galerkin Method was developed by Cockburn and Shu in their series of papers,
[34] - [37] and some sample problems as mentioned in [43], like Advection equation, Burger equation, and heat
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conduction problem were tested using this code. The basic DG formulation is given as follows. By use of Legendre
polynomials as basis function, we are able to decouple the resulting system of equations into totally explicit equations,
by which we can solve equations node by node. This makes the system suitable for parallelization, an advantag;e that
offsets the increased degree of freedoms in DG method. For time integration for resulting ODE’s, we use a 3™ order
Runge Kutta time integration scheme.

£+6F(U)+6FV(U,VU)
ot OX OX

=G(U) (16)

U represents vector of solution variable that we are interested in solving for. F and F, are Inviscid and viscous flux
vectors and G is the source vector. Above system of equations are multiplied by arbitrary smooth functions, V and then

integrated over an element, with interval I, = (xH/Z, ijz)- Integration by parts to the resulting system of equations and

approximating U by U;, and V by V,,, leads to following system of equations,

I 20, (0 (00 | F (U, () 2V, (0005 H (U,) (0 (41.00)
H(U), 4 (0% (X)) RV (%) 8,2, () H, (U,8,), 0 (O (X) 0D

H, (Uy.S,) 4, (1), (xjtl,z)—jh G(U, (x.))V, (x)dx=0

Uy and Vy, are written in terms of basis function (Legendre polynomials are used here) , and we obtain following
system of equations,

l%=iUMU) (18)
¢,(x):P,<2(x—xj)/Aj) (19)

(2|1+1j i ‘_J ¢|( d*—f U, (xt), Sh(X,t))aiﬂ(x)d)
_%LjG(Uh(X’t))ﬂ(x)d X_Ai{H (Uh(xj+1/2))(t)_(—1)l H(Uh(xj—llz))(t)} (20)

i
1

+Z{HV(Uh(XJ+1/2)’Sh(sz))(t)—(—l)' Hv(Uh(Xj_l,z),Sh(xj+1,2))(t)} 0

A; is the length of interval I;. An auxiliary variable, S is introduced to replace VU , with an additional auxiliary
equation for S. For more details on how to apply DG for viscous fluxes, please refer to [43]. H and H, are numerical
fluxes that depend on solution variable on both sides of the node in the subscript. For Inviscid fluxes, both Godunov flux,
and Local Lax-Friedrichs flux have been used. Godunov flux is well-known due to its smallest amount of artificial
viscosity that is introduced into the scheme. Local lax Friedrichs produces more artificial viscosity than Godunov flux,
and is suitable when f is complicated, as in our case. For viscous fluxes, BR-1 scheme is used, which is simple averaging
of flux values from both sides of the node, (Xj.1/2 O Xj+12).
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min,_, F (u),if (a<b)
°(ab)= b _ 1)
max,_,., F (u),otherwise

HY* (a,b) = 5(F () +F (b)-a(b-a))
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Resulting system of equations, are ODEs which are integrated in time, using Runge Kutta time discretization
method. We have used 3™ order Runge Kutta time discretization for this part. Please refer to [43] for details on Runge
Kutta time discretization.

C. Explicit Discontinuous Galerkin Module in MIG

Being limited by very small time step for Explicit Runge Kutta Discontinuous Galerkin method, we decided on
implementing Implicit Discontinuous Galerkin scheme into MIG as a separate module. This formulation requires use of
matrices, and due to inbuilt structure of implicit solver in MIG, it seemed lucrative and time efficient to use the
framework built in MIG. Since MIG has been implemented for 2-D and 3-D problems in plasma, this module can also be
easily extended to higher dimensions. As a first step therefore, Explicit Discontinuous Galerkin method using matrix
system (rather than decoupled equations in Explicit RKDG above) was implemented to check its working with already
developed and fully tested Runge Kutta Explicit DG code. The formulation for Explicit DG code, as different from
Explicit RKDG, is as follows.

U{¢}{¢}de}# H‘M }dx+|¢|:| J{z—fﬁ}dxﬂy}.ﬁtzj{q}G}dx (24)

The term in square brackets (with unsteady term) is a diagonal mass matrix since the basis functions are Legendre
polynomials. Applying forward Euler time integration for unsteady terms, we get final form of system of equations to be
solved.

U!}Ml—{ul. n

[M]{ ' n | j{a¢ }dx |pF " +j{ V}dx—|¢.FV|*+j{¢.G}dx (25)

M denotes mass matrix, and right hand side above is known at previous time step. Note for auxiliary equations the
n+1
term in bracket with [M], will change to simply{U :} .

Here also, both Godunov and Local Lax-Friedrichs flux was used for approximation of numerical fluxes of Inviscid
oF
flux vector, F. For LLF, o is maximum eigenvalue of Jacobian matrixa—U. For Euler and Ablation equations, Jacobian

matrix and eigenvalues are given below.

Euler equations
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0 1 0
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0 5 (3-7) ¥ (26)
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A,z =U,U—C,U+C (27)
y is ratio of specific heats, and c is the speed of sound.
Ablation equations
[0 0 O 0 0 0]
0 0 1 0 00
oF B D F 00
- (28)
o |[u*A C E u*F 0 O
0 0 O 0 00
0 0 0 0 0 0
Expressions for A, B, C, D, E, F is given in appendix.
2 deg 22 2
pg gﬁ P(pGCr +pCCpC)+pgpr CprP
+p,p.)C2P+2p,.p.C._PpC
ﬂlz’gzo,ui pgpc pc pgpr pr pC pc —O'uicmod (29)

*deg
pg pGCr+chpc+gpg di-l-

Cmod 1S denoted as modified speed of sound, since the structure of eigenvalues resembles that of Euler equations.

D. Implicit Discontinuous Galerkin Module in MIG

Formulation for Implicit DG, will be same as (), but the right hand side now is dependent on solution vector, U and
at current time step. Since RHS is also unknown, this is a linear problem and requires use of Newton’s method to solve
system of equations. For Newton’s method, we require evaluation of Jacobian, i.e. derivates of Inviscid flux, viscous flux
and source vectors need to be computed. Resulting Jacobian for system of equations (), is thus given as,

J=w _M[;% Focfo L L) (B Ry B B j¢.%dx}3o>

E-
ox oU oU " oU ox oU ou oU
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The derivatives for F, F,, and G are given below for Ablation equations. F"and F~ depend on U from element at j
and the neighboring element (j+1 or j-1), hence their derivatives w.r.t. U; and Uj,; or U, (depending on if we have

F*or F7) need to be evaluated and placed accordingly in the global matrix assembly. For implementation, of Implicit
Discontinuous Galerkin to MIG, for both Euler equations, and Ablation equations, only Local Lax-Friedrichs flux was
found to work. We found that Jacobian of Godunov flux didn’t satisfy linearization check, as explained in appendix.

[0 0 0 0 0 0
0 —%gs1 0 0 —%(Spg)g 0
0 0 0 0 0 0 (31)
giz 0 0 0 0 0 Ko
I - I 0 0
op, 0ep, Ogpyu oE
L I S 0 0
I op, 0ep, Ogpyu oE |
_—2R/pr 0 0 00 0]
2RI p, 0
s | o e [_ P _2.444|u|] 0 00 -
U &Py Kepy &K,
0 0 0 000
0

Implicit method requires rigorous check of the linearization of jacobians, and jacobians need to be modified for

F*and F~ at the boundary nodes. Same has to be done for viscous flux vectors. Derivatives for F"and F~in general
for interior nodes is given as,

oF* 1( oF - R
5 %U_U_m(u)@j—(%(u))j(u -U7) (33)
oF 1(oF , - _y-
0 "2 au],,. " 4WA (e L)), L7V @

if U belongs to element at j, and since F"and F ~also depend on U from adjacent element, their derivatives w.r.t.
U needs to be placed in the same row for element at j, but columns for elements at j+1 or j-1, whichever is applicable.

Derivatives of F"and F~w.r.t. U from neighboring elements is given as,

ok _1foF
U 2(au

“o(0)d,~(a, )] (7 -) )

u=u*

for U belonging to element on right, and,
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ou  2lou

u=U-

8F‘_1(6F

a0)3,-(a; () ("0 9

for U belonging to element on left
o is maximum eigenvalue given in equation (29), therefore its derivative w.r.t. U is,

U2 de, 1 ]
o U 20 —94+>(C C
_ (“zj +1[png+g( Prson pcpC)J
o u 2(F’((:prlor +Cpcpc )) 2 (pgg deg+pg (Cprpr +Cpcpc)) (37)
. =———*C,, de,
(ps)  epy 1 a1
I de
gpg [Cprpr +Cpcpc + 8'09 dTgJ
ox —_ —ii u'Cmod (38)
a(gpgu) &Py Z{E—gpgeg —;gpguz_/?rh?}

1
Z[E—gpg : —zgpguz—prhf}

Positive and minus signs in above expressions are selected based on whether maximum eigenvalue chosen in (29) is
(U + Cmod) or (U - Cmod)'

V. Boundary & Initial Conditions

Total grid size is taken to be 1 cm, and the inner boundary is fixed at x = 0 cm and outer boundary at x = 1 cm. Boundary
conditions are as follows. No boundary conditions are needed for equation (1), since it’s a pure unsteady differential
equation. For (2), pg no boundary conditions are specified at x = 0 cm. At x = 1 cm, py is found by solving the state
equation, i.e. MW as a function of py and T, which basically relates Pressure, gas density and Temperature. Pressure at X
=1 cm, is given to be 0.22 atm (Arc jet test data in [10]), and Temperature will be known by solid’s temperature. For (3),
u is taken to be 0 m/s and adiabatic boundary condition for Temperature (equation (4)) at x =0 cm.

At x = 1.0 cm, equation (1), as mentioned, doesn’t need a boundary condition, (2)’s boundary condition has already
been specified above. No boundary condition is applied on velocity at x = 1 cm. For temperature, an incoming heat flux
(in negative X direction) of 1400 W/cm? is specified. Initial conditions are uniform throughout the domain for all 4
variables; p, is 250 kg/m®, pg is 6.05e-3 kg/m?® (evaluated @ P = 0.22 atm, and T = 300.0 K), u is 0 m/s and T is 300.0 K.

V. Results and Discussions

Since Gas equations in equations (1) — (4), are similar in form to Euler equations, an initial test for the MIG code
was done for 1-D Euler equations, and 1-D MHD equations. Subsequently for development of Discontinuous Galerkin
scheme, Euler equations were used as test problems to check working of the DG code. The results are shown below.
Sub-grid embedding (SGM)? was used to control the oscillations in the solution that generally appear with a convection
term in the Galerkin framework.
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A. Euler equations and MHD equations with Galerkin FEM

First problem tried on MIG, is Sod’s Shock tube case®. The domain is from x = 0 m to 1 m, and boundary
conditions are p = 1.0 kg/m3,u=0.0m/s, P =1.0 Paatx =0m, and p = 0.125 kg/m3,u=0.0m/s,P=0.1 Paatx =1 m.
Initial solution was a sharp discontinuity in both Pressure and density profiles with discontinuity at x = 0.5 m. The
solution was solved with SGM, an artificial diffusion approach that minimizes all oscillations, which can propagate in
the solution domain and destroy the solution. The results are compared with exact solution available in any standard
textbook on numerical computations of fluid flows, like [30]. The solution was run with At = 1.0e-4 sec up till t = 0.2
sec, and the results are shown for both 1001 and 101 nodes in figures 2 and 3 respectively. The initial discontinuity
basically represents state of perfect gas, in shock tube, where a diaphragm in center separates gas in both chambers (left
and right) at two different conditions. At t = 0 sec, this chamber is broken, and this leads to travelling shock in the right
chamber, and travelling expansion wave in the left chamber. The travelling shock is accompanied by a contact
discontinuity, which moves at lower speed to the right chamber.

With 1001 nodes for shock tube problem, we got close results with SGM. Shock’s position in humerical solution
came out to be 0.837 m, as compared to 0.8501 m for exact solution. Density, left to contact discontinuity, is 0.42568
kg/m3 (numerical) and that to left of shock is 0.26524 kg/m3. The exact values at these locations respectively are 0.42
kg/m3 and 0.26 kg/m3 (Get exact values at this location). Velocity is very close to exact value of 0.92 m/s. Pressure ratio
across the shock is obtained as 3.084, as compared to exact value of 3.025. When the solution was run with 101 nodes,
we noticed that curbing of oscillations by use of SGM, was more difficult, but still the solution was close to the exact as
shown in figures. It is easier to curb out high frequency oscillations with selective diffusion scheme, than to curb out
lower frequency oscillations. Higher diffusion to curb out oscillations near discontinuity will result in smearing of the
shock profile more across mesh elements. The effect of SGM on oscillations can be seen in figure 4, which are shown for
a 100 nodes mesh, where solution for p and u shows exact solution, and numerical result with and without SGM. We can
clearly see the dissipation of the oscillations, without much smearing of the solution in the whole domain.

1+ i

& o
08k

Fig. 2: Comparison of humerically obtained results p, u, P, with exact solutions for 1001 nodes in mesh. SGM was
employed for selective artificial diffusion. Red color for p, u indicates exact solution and green color indicates
numerical solution. Pressure was compared by shock’s location and ratio of pressure on to left of shock to its

right end.

rho
T
u
T
—
T

Fig. 3: Comparison of numerically obtained results p, u, P, with exact solutions for 101 nodes in mesh. SGM was
employed for selective artificial diffusion. Red color indicates numerical solution and other color indicates exact
solution.
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Fig. 4: Blue color indicates solution without SGM, and red with SGM. Black color indicates exact solution. We see
the effect of SGM in reducing oscillations without much of smearing of the solution.

Second problem solved by MIG was 1-D MHD compound shock-wave problem. MHD equations are fluid dynamics
equations coupled with Maxwell’s electrodynamics equations, which describe the flow of conducting fluid in a magnetic
field®. By making some assumptions, like neglecting displacement current, viscosity, resistivity etc. we get “ideal”
MHD equations. A simplified 1-D form of MHD equations is given below along with the boundary conditions. The
results are also shown, both with and without SGM in figure 5. Again we see the effect of SGM in curbing all
oscillations, without smearing or destroying of the overall solution. y for this problem was chosen to be 2, to compare the
results with [31]. The given system of MHD equations is non-convex as well as not-strictly hyperbolic for reasons
described in [31]. The domain size is from x =0 m to x = 800 m, Ax =1 m, and At = 0.2 sec, and solution is ran up till 80
sec of total time. Initial solution has discontinuity in Density, Magnetic field in y-direction, and Pressure at x = 400 m.
Magnetic field in x-direction is held constant at a value of 2.66 T. The solution of MHD equations shows fast rarefaction
wave moving to the left, and a slow compound wave next to it. The waves moving to right are contact discontinuity in
middle, slow shock wave next to it and fast rarefaction to the extreme right.
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Fig. 5 : Results obtained with MIG Code for 1-D MHD Problem for p, u, v, By, P. Plots show again comparison
between solutions without SGM and with SGM for u and v equations, in two forms for the factor used. The above
solution shows close resemblance to exact solution.

%, .. %N _,

+uLt+

ot OX L OX
ou . ou EEJFE@:O BOUNDARY CONDITIONS:

a  ox pox p oX 0=10@ Left, p= 0.125 @ Right

v, v B B, 0 u, v= 0.0 @ Both ends

ot X p ox By = 1.0 @ Left, By = -1.0 @ Right

oB B P=10@ Left P=0.1@ Right
—L+ Byé—u+u—y—BX@:o

ot OX OX OX (40)

&» +2P a +U i =0
ot OX OX
B. Ablation problem with Galerkin FEM

After above two attempts at solving Shock tube problem and MHD compound shock problem, ablation problem was
attempted in its entirety. But, due to difficulty in convergence, some simplifications were attempted to observe the effect
of simplifications on our ability to solve the ablation problem. What follows is a series of efforts to simplify the ablation
problem, and obtained results are reported with standard Galerkin approach.

- 1000 B _

rhar
1
T
rhog
u

1 L L L 1 . 3
" *

Fig. 6 : Solution of Ablation equations some simplifications, like neglecting terms like D and I, and taking
constant value of e and e,.

First attempt was to treat some of the terms appearing in the equations as constant. For example, first case was
eliminating D and | from equations (2) and (3). These are basically driving terms for gas flow, apart from Pressure
gradient in equation (3). With constant values of e, and e, at 1.141e07 J/kg and 2.20e06 J/kg. The solution was run for
total time of 1 sec, and obtained results are shown in figure 6. This shows a negative velocity profile. The velocity is
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mainly driven by Pressure gradient (only being restrained by friction), which depends on the gradients of both
Temperature and gas density. So, Pressure gradient being dependent on T and pg4, has a maxima in the solution domain
and hence drives the gas in two directions, as seen in the solution. General shape of Temperature, resin density and gas
density make sense, since Heat flux from right hand side, leads to increase in temperature on right end, and then through
heat conduction, there’s a resultant rise in temperature inside the material, which leads to pyrolysis in that zone, due to
high temperature, which leads to production of gases. Gas density profile shows that the gas accumulates on the left side
of the domain. But, net mass of gas close to left end depends both on void fraction and density, and void fraction is very
low close to the left end, since there’s no pyrolysis currently at this location. We get information that the pyrolysis is
between x = 0.6 cm and 1.0 cm.

C. Loosely coupled approach for Ablation problem with Galerkin FEM

Since, the solution had convergence issues due presence of oscillations upon including the terms, which were
neglected in above simplification, we tried to solve two sets of equations, i.e. (1), (4) and (2), (3) separately in a loosely
coupled fashion, in which the in-house finite element based code, MIG was modified to solve given sets of equations in a
loosely coupled manner in a generic way. The advantages of this approach lies in being able to selectively identify the
root cause of problem of convergence issue and also in solving different equations sets in their respective time scales.
The modified code was then tested for given set of Euler equations, to test its running, and results showed were very
close to earlier obtained results. See figure 7 for comparison. This helped us in identifying the root cause of problem in
the gas equations, and then the focus was shifted to solving Gas equations, (i.e. equations, (2) and (3)) separately given a
temperature and resin density profile.

Fig. 7: Solution obtained for Euler equations by modifying MIG into solving separate sets of equations in loosely
coupled fashion. Red solution shows, Euler equations solved all together, and green solution shows Euler
equations solved in loosely coupled fashion.

We also tried solving Euler equations in a smaller domain and with higher pressure gradients in the solution, since
actual problem faces higher pressure gradients in smaller domain, and this becomes more challenging due to high
velocities that are generated in the solution, which means stronger oscillations, and this brings in difficulties of
convergence issues which were faced. Figures (8 — 10) below, shows some of the results with Euler equations in a
domain size of 1 cm, and higher pressure gradients. First result (Figure 8) is comparison of Euler equations solution with
all boundary conditions as applied in earlier problems, but smaller domain. A stronger diffusion was required to lead to
convergence, and shown solution appears little diffused, because the characteristics have not yet fully developed. Time-
step for this simulation is 1.0e-3 sec, and total run time for the solution is 2.0e-3 sec. The comparison is made with the
figure on the left, which shows Euler equations solution (solved on a bigger domain of 1 m, with same boundary
conditions). Here also we see the solution characteristic has not yet developed at At = 2.0e-3 sec, but both the solutions
share same behavior. Another set, was run for lower boundary conditions for density (figure 9) on both ends, since we
actually have lower densities of order of 1.0e-02 in the beginning solution. The solution is again compared with the
bigger domain’s solution and both have reasonable agreement. A third case was run with Pressure values of 1.0e05 Pa
and 1.0e03 Pa on left and right sides respectively, with bigger domain, (since this was difficult to converge, the problems
will only increase with a smaller domain) and solution is shown in figure 10.
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Fig. 8: Comparison of Euler equations solution in a domain of 0.01 m at t = 2.0e-03 sec. Both the above results
show quite a good resemblance
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Fig. 9: Comparison of solution of Euler equations with smaller domain and smaller density boundary conditions.
Above three plots show, r, u, and P for bigger domain, (of size 1 m), and bottom 3 plots show r, u and P for
smaller domain at 7.2e-4 sec. Again we see close resemblance to have some faith on smaller domain solution.
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Fig. 10: Above plot shows solution of Euler equations with Pressure boundary conditions, as P = 1.0e05 Pa @ x =
0 mand 1.0e03 @ x = 10.0 m. In spite of using SGM, we still see oscillations in the solution.
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After this, a preliminary solution of ablation with all terms in equations (1) — (4) included was attempted with a
moderate temperature and density profile as shown. As we cranked up temperature, oscillations became more prominent,
and it became difficult to curb them with SGM.

D. Euler equations and Ablation problem with Explicit Runge Kutta Discontinuous Galerkin method

As a very simple test for Explicit Runge Kutta Discontinuous Galerkin method, we verified the case of advection of
sine wave, and square wave through the domain X € (0,1) through a total time of 100 sec. No limiters were used in the

simulation, and the obtained results showed it best to use at least k = 2 polynomial order for Legendre polynomials. For
lower order solutions were too dissipative. We used Godunov flux only, with Explicit Runge Kutta discontinuous
Galerkin scheme.
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Fig. 11: Advection of a sine wave (a — ¢) and square wave (e — f), using explicit RKDG method. Green line denotes
solution after 100 s, and red line denotes initial solution

Results for Euler equations, for the shock tube problem, are given below,
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show density, velocity and pressure profile at t = 2.28 sec
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Solution for Shock tube problem (Euler equations), using Explicit RKDG method, and Godunov flux. We




The result is compared with the exact solution. The shock location is predicted to be at 4 m, which is exact solution.
There are some oscillations with the shock, but they are never allowed to grow, due to TVD nature of RKDG scheme.
The result of Euler equations for Sod’s shock tube was compared with that of MIG (using SGM), and we found RKDG
to predict correct shock speed as compared to MIG code, which has some error in prediction of shock’s speed.
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Fig. 13: Density result for shock tube problem compared for explicit RKDG method and Galerkin finite element
using SGM. Above result of density is at t = 0.2 sec

We attempted Explicit RKDG code for Ablation problem. Time step for solution was 1.0e-08 sec. Due to pressure at
right boundary being fixed at 0.22 atm, and temperature (hence pressure) rising inside the domain, we saw fluctuations in
velocity, these fluctuations were strong, and with larger time steps will cause solution to blow up. At this slow time, in
the beginning of simulations, no significant pyrolysis is observed, and so all the effect seen is due to thermodynamics of
pressure rising with temperature. Below shown is one of simulations, (with pressure boundary condition applied), and
total time of 5.14 ms. We see that pyrolysis has hardly begun, from resin density plot. Gas density falls on right end of
the domain, and has just begun to increase. Gas velocity being governed by only thermodynamics and not due to gas

generation by pyrolysis is up to 4 m/s, and temperature at right end is nearly 790 K. Total number of elements used are
200.
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d)

Fig. 14: Thermal Ablation solution with Explicit RKDG method, and total time of 5.14 ms. Pressure at right
boundary is fixed at 0.22 atm, that causes high fluctuations in velocity, and causes simulation eventually to blow

up.

Another simulation with no pressure boundary condition on right end of domain, and with only 20 elements, run
with time step of 1.0e-08 sec, and up till total time of 17 ms. Gas velocity goes to a maximum of 110 m/s, at around 8.5
ms. Temperature goes to 2085 K at right end of the domain, at 17 ms. In plot of resin density we can also see the
pyrolysis region near the right end of the domain. Right end has almost reached to the point of zero resin density, i.e.
material has completely charred over there.
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Fig. 15: Simulation for Ablation problem, with no pressure boundary condition at 17 ms (using explicit RKDG
method)

Another set of results that were obtained for total time of 56.11 ms. While running animation of results, we see that
gas density is undergoing a cycle of increase and decrease, on the left side of domain. Its maximum value inside the
domain is 0.18 Kg/m®. Gas velocity has oscillations in the data by this time. Temperature profile hits a 2281 K at around
20 ms, after which its increase is less compared to before 20 ms.
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Fig. 16: Solution for thermal ablation problem at 56.11 ms. Solution shows oscillatory behavior in velocity.
(Obtained using explicit RKDG)

E. Euler equations and Ablation equations result with Explicit DG method in MIG
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Fig. 17: Results obtained for shock tube problem using Explicit DG method into MIG (using Godunov flux solver,
a) —c), and LLF solver d) —f)). Lesser oscillations are observed with LLF. Time step = 1.0e-4 s, total time = 0.2 s

Ablation problem was attempted with Explicit DG method using LLF, and similar issues of velocity fluctuations
were faced with this case. Given below are results obtained at time of 0.25 ms. At this early stage pyrolysis has not
begun significantly, therefore resin density is nearly constant throughout the domain.
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Fig. 18: Results with Explicit DG method for Ablation problem (using LLF), at a total time of 0.25 ms

F. Euler equations and Ablation equations result with Implicit DG formulation in MIG

Here the role of Jacobian is very crucial and as seen, only LLF worked to solve for Euler equations. There’s a
Jacobian linearization check that should be verified prior to use of the Jacobian, for good convergence. Results obtained
with Euler equations are as follows. As compared with explicit DG cases, we see the oscillations in the solution are
suppressed due to additional artificial dissipation due to time integration scheme. Higher the time step for integration,
more the dissipation of oscillations. Coupling of jacobians from adjacent elements is also crucial, for good convergence.

Results for Euler equations, at time step of 10 s, and a total time of 0.2 s are shown below.
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Fig. 19: Results for Euler equations with Implicit DG method at time step of 10-4 sec, for a total time of 0.2 s.
Only Local Lax-Friedrichs flux was successful with Implicit DG
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Ablation problem with Implicit DG method took significantly large number of iterations to converge, and have yet
to be resolved for their convergence, by working on Jacobians involved in this problem. Below shows results with
Implicit DG method at total time of 0.032 ms, run with time step of 1.0e-06 s.
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Fig. 20: Result of Ablation problem with Implicit DG method at t = 0.032 ms

VI. Conclusion
Various attempts were made to get solution using Galerkin based Finite element method, using SGM for selective
diffusion. But as the pressure gradient that drives the flow increases we see that solution develops oscillations which
becomes difficult to curb through use of SGM. This was observed when Euler equations were solved with higher
pressure on the boundary conditions. The next step is to try Discontinuous Galerkin based Finite element methods, since

they employ approaches similar to flux splitting, which have been successfully used in the area of finite difference and
finite volume. Special focus will be on Runge Kutta Discontinuous Galerkin method.

Appendix
Expressions in Matrix of Jacobian of Inviscid Flux
The expressions for A, B, C, D, E and F in matrix are given by,

£(PC, +'Ryp,)
(pCCpC +prcpr +gpg deg)
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1 (guszRgas + 2P(,0CCpC +pGCr)—2(s‘p(_:]2eg Rgas)

B=-u’+ 5
Py (chpC +p,C, +ép, deg)
Co e u (gungRgas +2P(chpc +pGCr)—25p§eg Rgas)
2p, (pCCpC +p,C, +ép, deg)
D=2u- PRy
(,OCCPC +p,C, +ép, deg)
E=¢, +gu2 _(p C f::gg Rf;p deg)
c~pc T Frpr 9
E o 8Py Ryas
(pCCpc +p,C,, +ép, deg)

Linearization check for a Jacobian used for implicit time integration method

Jacobian formed by a derivative of a flux vector w.r.t. the solution vector, must be verified especially for DG
formulation, where we have F+, and F-, which depend on some maximum or absolute value, for Linearization check.
The procedure for this is,

1) Introduce a small perturbation 8U in U, the solution vector
2) Calculate F|U+SU - F|U
3) This should equal J|y.6U
A good convergence is usually likely with above criteria met for the implicit method.
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