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A study of the dielectric barrier discharge (DBD) plasma actuators for micro-scale
applications is reported. Traditional macroscale DBD actuators suffer from relatively small
actuation effect as characterized by small induced force density and resulting flow velocity.
As a remedy we propose micro-scale plasma actuators that may induce orders of magnitude
higher force density. We study the physics of such actuation using a Multi-scale Ionized Gas
(MIG) flow code based on the high-fidelity finite-element procedure. First, a two-
dimensional volume discharge with nitrogen as a working gas is investigated using a first-
principles approach solving coupled system of hydrodynamic plasma equations and Poisson
equation for ion density, electron density, and electric field distribution. The quasi-neutral
plasma and the sheath regions are identified. As the gap between electrodes is reduced, the
sheath structure dominates the plasma region. Second, we simulate a first generation
plasma micropump. We solve multi-scale plasma-gas interaction inside a two-dimensional
cross-section of the micro-scale pump geometry. The result shows that a reasonable mass
flow rate can be pumped using a set of small active electrodes.

Nomenclature

= electron diffusion coefficient (cm?/s)
= jon diffusion coefficient (cm?/s)
electric field (V/m)

elementary charge (C)

electric force density (N/m”)
Boltzmann’s constant (J/K)

electron density (m™)

ion density (m™)

= average flow rate (ml/min)

charge density, (n;-n,) (m™)
electron-ion recombination rate (cm’/s)
electron temperature (K) or (eV)

ion temperature (K) or (eV)

nitrogen velocity (m/s)

Townsend coefficient (cm™)
dielectric constant (Farad/m)
potential (V)

macroscopic characteristic length (m)
mean free path (m)

electron mobility (cm*/sV)

ion mobility (cm*/sV)
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I. Introduction

lasma that has been used for the flow actuation at atmospheric pressure is a weakly ionized gas, where the ions

are often near the ambient pressure and temperature. The dielectric barrier discharge (DBD) plasma actuator for
flow actuation shown in Fig. 1 needs an asymmetric configuration of electrodes differentially powered at a radio
frequency (RF). This configuration creates an electrohydrodynamic (EHD) force generated by the interaction of the
charged particles with an external electric circuit. Recently, people have widely investigated application of EHD
force for drag reduction behind the airfoils and fuselages at a high angle-of-attack.'” However, the primary
weakness of traditional DBD actuators is the relatively small flow actuation effect. It has been proven to be quite
effective only at low speeds (10-30 m/s). In order to remedy this weakness, micro-scale discharge is proposed to
increase the higher EHD force density with lower power consumption.

Generating a plasma discharge at atmospheric pressures using several micron gap is a promising approach. Such
gap lowers breakdown voltage requirement (hence, lowers power consumption) to drive the discharge. Micro-scale
discharge has been studied for many applications over the past decade. Such applications include NO, and SOy
remediation, volatile organic compounds (VOCs) destruction, ozone generation, excimer formation as UV radiation
sources, materials processing, surface modification as plasma reactors.”

The size of an actuator is ultimately limited by the breakdown voltage of the working material. Electrical
breakdown is the process by which a non-conducting material transforms into a conductor as a result of a
sufficiently strong electric field. This occurs when the applied voltage at least equal to the breakdown voltage. The
breakdown characteristic of a gap is a function of the product of the gas pressure p and the gap length d based on
Paschen’s law. Several studies have been reported in the literature documenting electrical breakdown voltage
varying from 300 to 750 V in micro-scale gap (~ 10-10% um).” Torres ez al.” and Germer® showed that Paschen’s
law was not valid for gaps of less than 5 um between electrodes. The deviation of Paschen’s curve has been
conjectured as a result of the quantum tunneling of electrons in which electrons may pass through a barrier without
expending sufficient energy. Before breakdown, the current in the gap between electrodes is very low. However,
once the breakdown voltage is applied the electrical discharge leads to current spikes.

Although micro-scale discharge has been studied experimentally for more than a decade, our understanding of
the fundamental physics is still limited due to the challenges in reduced length scales, unsteady phenomena, and
rapid collisional interaction in micro gaps. Therefore, numerical simulation is a possible remedy to overcome the
experimental challenges.

In past few years, several numerical investigations of micro-scale discharge have been documented in the
published literature. There are three basic models that describe the evolution of charged particles in plasma
discharges. The first one is the hydrodynamic model’"!, which is the most popular. The second one is the kinetic
model, which is the Particle-In-Cell/Monte Carlo Collision (PIC/MCC) model'>™. The third one is the hybrid
kinetic-fluid simulation model*'®, which is often used for modeling high-density plasma reactors. Kushner’
presented a two-dimensional plasma hydrodynamic model of micro-scale discharge devices operating at pressures of
450-1000 Torr and dimensions of 15 to 40 um. He found that such devices typically require more applied voltages
to operate at lower pressures, and because of this, they resemble discharges obeying Paschen’s curve for breakdown.
Boeuf et al.' utilized a fluid-based model to explain the physical mechanisms occurring in microhollow cathode
discharges. Wang et al.'' simulated a micro-scale discharge in helium at atmospheric pressure based on the
hydrodynamic model and found that it resembled a macroscopic low pressure DC glow discharge in many respects.

A one-dimensional Particle-In-Cell Monte Carlo Collision (PIC-MCC) model was developed by Choi et al.'* for
current-driven atmospheric-pressure helium micro-scale discharge. The PIC-MCC simulation results were
compared with the hydrodynamic model results. The results showed the sheath widths were comparable between
the PIC-MCC" and the hydrodynamic model simulation'', and the peaks of the electron and ion densities were
within the same orders of magnitude. However, the density profiles were significantly different. Radjenovic et al.”
utilized the PIC-MCC model and found the deviation from Paschen’s law when the gap between electrodes was
smaller than 5 pum. They conjectured that because the electron mean free path was of the order of a few micrometers
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at atmospheric pressure, the electrical breakdown was initiated by the secondary emission processes instead of a gas
avalanche process at small inter-electrode spacing.

The third approach to simulate micro-scale plasma discharge is using the hybrid kinetic-fluid model. In this
model the reaction rates are obtained by solving a basic Boltzmann equation, while the transport of electrons, ions
and neutrals is carried out via fluid models. Farouk er al."’ simulated a DC argon micro glow-discharge at
atmospheric pressure for a pin-plate electrode configuration with inter-electrode gap spacing of 200 um together
with an external circuit. The temperature measurements, which were around 500 K, suggested the discharge as a
non-thermal, non-equilibrium plasma. The measured and predicted temperatures were found to compare favorably.

In this paper, we choose hydrodynamic plasma model due to its advantage of capturing reasonable physics of
the micro-scale discharge at relatively low computational cost. First, we simulate a two-dimensional micro-scale
volume discharge for a working gas of atmospheric nitrogen based on a self-consistent model of charged and neutral
particles. Numerical results are then compared with previously reported experimental data. We conduct an error
analysis for such volume discharge to benchmark the accuracy of the micro-scale plasma model. Finally, we
implement the same model to self-consistently simulate the plasma-gas interactions of a first generation plasma
micropump.

II. Model Details

A hydrodynamic plasma model is utilized from Kumar and Roy' for multi-scale plasma discharge simulation at
atmospheric pressure. The model uses an efficient finite element algorithm anchored in the Multi-scale ionized gas
(MIG) flow code.™"” The unsteady transport for electrons and ions is derived from conservation laws in the form of
mass conservation equation. The species momentum is modeled using the drift-diffusion approximation under
isothermal condition that can be derived from the hydrodynamic equation. At atmospheric pressure, the drift-
diffusion approximation is reasonable and computationally efficient. The continuity equations for ion and electron
number densities are given by:

on, . ﬁ(naVaj )
ot ox,

=p|l,|-ran,, fora=e i, and j=1,2 (1)

i"e

where n is the number density, V is the species hydrodynamic velocity, » is the electron-ion recombination rate,
subscript j is the flow direction of x and y, and subscript i and e are ion and electron, respectively. The working gas
is nitrogen at 760 Torr. We use the value of » given by Kossyi et. al.'"® The discharge is maintained using a

Townsend ionization scheme. The ionization rate is expressed as a function of effective electron flux |1“e| and

=V + (), ()

where 4 and B are pre-exponential and exponential constants, respectively, p is the gas pressure, and E is the
electric field, i.e. E= —V¢ . The ionic and electronic fluxes in equation (1) are written as:

Townsend coefficient S
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where the Lorentz force term, V'xB , brings in the effect of the magnetic field. We neglect the magnetic field effect
for our problem. After some algebraic manipulations, we end up with the following equations:
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where u is the mobility, D, is the electron diffusion calculated from the Einstein relation which is a function of the
mobility g, , Boltzmann's constant kz, and the electron temperature, i.e. D, = k3T, / (e t.). The ion mobility g is
expressed as a function of a reduced field (E/p).

The relation between electric field and charge separation is given by the Poisson equation:
V- (gE ) =q @)

where ¢ is the dielectric constant, the net space charge ¢ = e(n, —n,), and e is the elementary charge.

The system of equations (5)-(7) is normalized using the following normalization scheme: 7= t/t), z; = x/d, N, =
ne Ing, Ny = n; Ing, up; = Vol Vp, uy = Vi/Vs, and ¢p= e p/ksT, where Vj is the Bohm velocity, Vi = kT, /m; ,

reference length d which is usually a domain characteristic length in the geometry, the reference time #) = 10°®
second, and reference density n, = 10" m > for weakly ionized gas.

In micro-scale flows, Knudsen number (Kn) is an important dimensionless parameter that determines the validity of
continuum model for different regimes of fluid flow."” The Knudsen number is defined as the ratio of the fluid
mean free path A and macroscopic characteristic length A, i.e. Kn = A /4 . As Kn increases up to 107, the no-slip
boundary condition no longer applies. For the flow problem in micro-scale pump, the Kn is 2.6x10™ assuring
continuum flow with no-slip wall boundary condition. For a globally incompressible nitrogen gas (Mach number
less than 0.3), the continuity and momentum equations are:

v,
£=0 (8
ox;
aV./j + aV/f _ qu _la_p+ﬁazl/.ﬁ (9)

a Moy p pox, pox’

where subscript f denotes the working fluid with bulk density p and bulk viscosity x4, and gE; is the electrodynamic
body force calculated from solving the plasma equations (5)-(7).

III.  Finite Element Method with MIG

The finite element method (FEM) is a popular technique used for solving partial differential equations (PDE).
The FEM is based on the Galerkin Weak Statement (GWS) and approximate the solution of the PDE. In the FEM,
the global domain is divided in several elements, and the solution in each element is constructed from the basis
function. The FEM has several advantages, such as easy to implement with complicated Neumann (flux) or Robin
(convection) boundary conditions. The fundamental principle of the FEM is the construction of a solution
approximation. Any real world problem distributed over a domain x; can be approximated as a Taylor series of
known coefficients a; and functions y(x)):

L)=Yay,(x) (10

The plasma governing equations (5)-(7) or fluid equations (8)-(9) can be written generally as L(v) = 0 where v is
the vector containing N;, N,, and ¢ or V; and p. The GWS approach requires that the measure of the approximation
error should vanish in an overall integrated sense.”>' This gives a mathematical expression for the minimization of
the weighted residual over the domain:

GWS = jQ[wL(u)dQ =0 (11)
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where Q is the domain and w is the weighted basis function chosen to be a Strum-Louville function for
orthogonality.

The MIG flow code is modular and anchored in the FEM. It has been developed and verified with one-, two-
and three-dimensional problems, including fluid dynamics and heat transfer related problems, micro/nanoscale flow,
specifically to modeling DC/RF induced dielectric barrier discharges, and designing electromagnetic propulsion
thrusters. Computed solutions show details of the distribution of charged and neutral particles and their effects on
the flow dynamics for the various applications.” " '% 2

MIG flow code employ the Newton-Raphson scheme for dealing with nonlinear terms. To solve the global
sparse matrix, we apply an iterative sparse matrix solver called Generalized Minimal RESidual (GMRES). The
Newton-Raphson iteration for nonlinear solver is considered converged at any given time step when the L, norms of
all the normalized solution variables and residuals are below a chosen convergence criterion of 107

IV. Problem Descriptions

A. DC_Volume_Discharge

A direct current (DC) discharge forms plasma, sustained by a dc through an ionized medium shown in Fig. 2. A
high voltage difference between two parallel electrodes kept at small a gap results in the electrical breakdown of the
gas. We study the dc volume discharge at atmospheric pressure between the parallel plates shown in Fig. 3A with
different micro gaps ranging from 200 to 5 pm. The working gas is nitrogen (N).

The computational grid consists of 25x30 biased bi-quadratic (9-node) quadrilateral elements with the first node
0.1 um away from the wall as shown in Fig. 3B. We neglect the thickness of electrodes at the top and bottom
surface. An electrode potential of ¢ =500 V is applied through an external circuit. The anode is at y = 0, while the
cathode is at y = 0.1. A vanishing ion density is imposed at the anode, while the electron density at the cathode is
calculated from the flux balance using a secondary-emission coefficient of 0.1. The left and right boundaries of the
computational domain are maintained at symmetry conditions. Initial distributions of electrons and ions are based
on the DC sheath solution.”? A uniform time-step of 10™'% seconds is used for the time integration.

B. Plasma_Micropump

For the second case, we simulate plasma-gas interactions inside a cross-section of plasma micropump. Such
design is proposed by Roy.” Fig. 4 shows the plasma micropump with four pairs of DBD actuators at both inlets
and two pairs of DBD actuators at the center of the pump. The discharge is driven by a pulsed dc voltage of ¢ =
¢Osin4(27pﬂ) volts applied to exposed electrodes. Such pulsed dc voltage can be produced by commercial function
generator. We have chosen ¢y = 1300 V and /= 5 kHz. The pump inlet openings are 250 um at both sides and the
single outlet opening is 500 um at the top. Fig. 5A shows the configuration of DBD actuator. The powered
electrode is 20 um wide, while the grounded electrode is 40 pm wide. The gap between electrodes is 10 um at
streamwise direction and 50 um in vertical direction. Fig. 5B shows two-dimensional computational mesh for
simulation of plasma micropump with a Kapton polyimide insulator, i.e. dielectric constant & = 4.5&,, where & is
permittivity of vacuum. We simulate half of plasma micropump due to the symmetric configuration. The
computational mesh consists of 67x50 elements and 13635 nodes. The boundary condition of potential along the
exposed electrodes is maintained at ¢ and that on the grounded (encapsulated) electrodes is kept at 0V. We neglect
the thicknesses of powered electrode (at y=0.5 and 3) and grounded electrode (at y=0 and 3.5). For the flow
simulation, gauge pressure is equal to zero at the inlet and the outlet. The right boundary is maintained as
symmetry, and based on low Kn (<107) all the dielectric surfaces are maintained at zero wall velocity.

V. Results and Discussion

A. DC_Volume_Discharge
The simulation results for ion and electron densities along y-direction with various gaps from d = 200 to 10 pm
at atmospheric pressure (760 Torr) are presented in Fig. 6. The variables for y, N,, and N; were normalized using the
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following normalization scheme: y =d /pl, N, = n, /ny, and N; = n; /n, where reference length p/ varied from 2000 to
100 pm, and reference density ny = 10" m™>. By decreasing the gap d, the sheath became more dominant to the
plasma region. The location of the sheath was roughly at the bifurcation of ion and electron densities. The sheath
thickness was a few Debye lengths based on the pressure, and Debye shielding confined the potential variation
shown in Fig. 7. The function of a sheath is to form a potential barrier so that more electrons are repelled
electrostatically. The potential lines are bent towards the cathode due to a very low density of electrons. This high

potential will also drive electrons away from the cathode and form a cathode sheath thickness.

According to the order of accuracy of Newton-Raphson scheme for the nonlinear system of equations, the ideal
convergence was quadratic convergence. However, Fig. 8 shows the convergence was between linear and quadratic
because for linearization of the Jacobian matrix for numerical effciency. The convergence is below 10~ for every
time step. Fig. 9 shows that the computed electric field compared with the published experimental data of
Longwitz24 with a very good agreement from 50 to 5 pm inter-electrode gaps. The computed charge density ¢
slightly decreased as the gap d decreased, but it increased at the gap below 10 um because much less electrons exist
in the plasma region. Based on the calculation of the electric force (¢£), we can see the force F), is 1 MN/m’® at 20
micron gap. Note that such force density is three orders of magnitude higher than that of macro plasma actuators. As
the gap decreases force seem to increase sharply. For example, at five micron gap the force density increases
approximately seven fold to 6.8 MN/n’.

B. Plasma_Micropump

Simulations results are presented at the peak voltage of ¢. Fig. 10A-10C plot the contour of potential (@), ion
number density (&;), and electron number density (N,). Fig. 10A shows an applied potential of 1300 volts on the
powered electrode (red). The electric field lines are acting from the powered electrode to the grounded electrode.
Due to a large difference of potential between electrodes, the fluid is ionized at local regions shown in Fig. 10B and
10C. We can see the net charge densities are concentrated inside the boundary layer near the wall, and it is almost
zero away from the wall. Note that the charge densities depositing on the dielectric surface will cause a net electric
force in the direction from the powered electrode to the grounded electrode. Therefore, outside the plasma region,
the flow is mainly driven by viscous force.

The advantage of plasma micropump is to push the flow continuously without any moving parts. Also, it can
avoid the wear of the parts because there is no moving part inside the micropump. Fig. 11A shows the flow
behavior inside the plasma micropump. We can see the plasma drives the fluid into the pump at the inlet due to the
net near-wall jet created by DBD actuators. We also can see one of the DBD actuators at right boundary (symmetry)
with different configuration. This actuator is used for altering the fluid flow direction from horizontal to vertical
direction and pushes the fluid upward to the outlet. However, it also creates a strong vortical structure inside the
pump. That will influence the mass flow rate of plasma micropump due to the energy loss. Fig. 11B shows the V-
velocity distribution along x-direction normal to the outlet. The V,-velocity increases sharply from the wall (at x =
0.0005 m) and becomes flat V,,,, = 3.1 m/s at middle of the pump (at x = 0.00075 m). The sharp increase is because
the shear stress that flow exerts on the wall of the pump. After simple calculation, we find the average flow rate
Ouwe= 28.5 ml/min, which is a function of operating voltage of 1300 V for plasma micropump with nitrogen as
working gas. Such flow rate may be useful for the application of biological sterilization and decontamination, micro
propulsions, and cooling of microelectronic devices.”

VI. Conclusion

Plasma actuation at atmospheric pressure is getting more attention in aerodynamics applications. To understand
the effects of discharge in the fluid region, we solve system of plasma and Navier-Stokes equations based on the
first-principles approach. The primary weakness of DBD actuators is the relatively small actuation effect as
characterized by the induced flow velocity. In order to enhance the electric force for real aerodynamics applications,
we study plasma discharge in micro-scale. First, a two-dimensional nitrogen volume discharge under applied dc
potential has been modeled. It is based on first-principles using a self-consistent coupled system of hydrodynamic
equations and Poisson equation. Two distinct regions may be observed, the quasi-neutral plasma where N; = N, and
the layer of sheath which is of several Debye lengths attached to the cathode where N; >> N,. We can see the
electron density in the sheath close to zero and the electric field arises out of this charge separation. As one
approaches the sheath edge, there is an abrupt drop in the charge difference within a small spatial extent. This is the
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region of pre-sheath where separation in ion and electron density curves begins and where electron density is much
less than ion density. By decrease the gap d, the sheath becomes more dominant to the plasma region. The results
of electric field match well with published experimental data. Subsequently, we investigate a novel plasma
micropump using the same micro-scale hydrodynamic plasma model. We find the air flow rate is around 28.5
ml/min for plasma micropump. Such plasma micropumps may become useful in a wide range of applications from
microbiology to space exploration and cooling of microelectronic devices.
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Figure 9. Comparison of numerical results and experimental data for electric field strength from d =5 to
50 pm. The charge density (¢) and the electric force (F}) are calculated from numerical results.
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Figure 10. A) Potential (¢) distribution with electric potential lines. B) Ion number density (/V;) contour.
C) Electron number density (/V,) contour.
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Figure 11. A) The velocity stream traces inside the plasma micropump. B) V-velocity component
distribution normal to the outlet.
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