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The spatiotemporal Koopman decomposition (STKD) is a data-driven modal decomposition
technique that provides a means to represent a flow-field as a sum of standing and traveling
waves with temporal and spatial growth rates. The method involves repeated application of
dynamic mode decomposition (DMD) or higher-order DMD (HODMD). In this paper, HODMD
and STKD are shown to be useful in analyzing coherent structures in a flow-field perturbed
by a square serpentine plasma actuator. The methods are applied to an implicit large eddy
simulation (ILES) run with our in-house CFD code Multiscale Ionized Gas (MIG) which
modeled a square-serpentine plasma actuator on a flat plate at Mach 0.5 to cause transition.
Previous work performed a proper orthogonal decomposition (POD) for this type of actuation
to analyze the relative energy content of various modes. The STKD allows for tracking the
spatiotemporal growth of the generated flow structures before transition, providing more detail
about the process leading up to transition.

I. Nomenclature

𝑎 = HODMD/STKD mode amplitude
𝑑 = Delay parameter
𝐼, 𝐽, 𝐾 = Number of data points along spatial dimensions
𝑃1, 𝑃2, 𝑃3 = HOSVD mode matrices reduced rank
𝑆 = Core tensor
𝑢 = HODMD/STKD mode shapes
V = Snapshot matrix/tensor
𝑥, 𝑦, 𝑧 = Spatial dimensions
𝑡 = Time
𝑇, 𝑋, 𝑍 = HOSVD mode matrices
𝛿 = Temporal growth rate
𝜏𝑤 = Wall shear stress
𝜔 = Angular frequency
𝜅 = Angular wavenumber

II. Introduction

Transition prediction and control is a vital area of research for many flow regimes due to key differences in drag
and heat transfer between turbulent and laminar flows. Many characteristics of transitional flows and methods for

controlling transition elude investigators. The nonlinearity of the problem means that certain types of analyses, e.g.
linear stability theory (LST) [1] or parabolized stability equations (PSE) [2] can only provide information for part of the
flow-field. Generally, high-fidelity computational fluid dynamics (CFD) simulations or experiments are required for
more detailed analyses. Once data is obtained, either from CFD or experiment, many post-processing techniques can be
applied to gain a deeper understanding of the flow physics. In addition to usual flow-variable calculation and statistics,
data-driven modal analysis techniques can provide valuable insight.
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The various data-driven modal decomposition methods are ways of analyzing complex system dynamics via
decomposing a data set into a sum of modes. These modes may correspond to some physical mechanism in the flow or a
coherent structure of interest. The dynamic mode decomposition (DMD) and the proper orthogonal decomposition
(POD) are two of the most widely used decompositions, and there are many extensions and variants of these [3–5]. The
POD computes orthogonal modes that optimally capture the variance of the data. In this paper, we refer to the spatial
POD commonly known as the snapshot POD developed in [6], which can differ significantly from Lumley’s original
formulation [7, 8]. This is because the DMD can be considered as an extension of the snapshot POD. The connection
between the DMD and the POD is the singular value decomposition (SVD), a general matrix decomposition that can be
directly applied to the (mean-subtracted) snapshot matrix to yield POD modes [5, 9]. DMD is performed by computing
the best-fit operator that advances snapshots of data one time step into the future to compute single-frequency modes,
and the regression may be done after first projecting onto the leading SVD modes as a way to filter noise (which is
decomposed into low-variance SVD modes).

Although the DMD modes have linear dynamics (complex exponentials), their use for analyzing nonlinear systems
is justified via the connection to the Koopman operator: a linear operator that acts on measurement functions of a
nonlinear system whose spectral decomposition characterizes the nonlinear system [10]. The focus of this paper is
applying extensions of DMD that overcome the limitations of standard DMD and the rank-reduction via the truncated
POD to a simulation of plasma forcing on a flat plate to analyze the mechanisms by which the actuation was able to bring
about transition to turbulence. A similar case was previously analyzed with snapshot POD to examine the relative energy
content of various modes undergoing plasma forcing [11]. The simulation was an implicit large eddy simulation (ILES)
that used modal discontinuous Galerkin (DG) spatial discretization with the Multiscale Ionized Gas (MIG) code [12] to
solve the compressible Navier-Stokes equations. The plasma forcing was modeled by a body force approximation based
on the model in [13] to generate the 3D structures known to result from serpentine actuators [14]. The effects of actuator
collocation have been investigated with POD as well [15]. This gave fundamental insight into how serpentine-style
actuators can be used for low-speed transition control via manipulating 3D boundary layer instability mechanisms
[16]. The non-collocated (one actuator) case is the focus of this investigation. It is known that the actuation generates
staggered pairs of lambda vortices, which ultimately interact and lead to oblique wave transition [11]. Therefore, it was
desirable to investigate this flow-field by isolating frequency and wavenumber to capture the spatiotemporal growth
of the perturbations. This is the benefit of DMD-like methods — they allow users to isolate modes that have fixed
frequency and associated exponential growth. Figure 1 below shows a contour of 𝑢-velocity from the data set for Mach
0.5 flow over a flat plate. Figure 2 shows isosurfaces of Q-criterion colored by 𝑢-velocity. The influence of the actuator
at the leading edge is clear, and the flow can be seen to breakdown to turbulence farther downstream.

Fig. 1 Contour of 𝑢-velocity.

The Spatiotemporal Koopman decomposition (STKD) [17] takes the benefits of DMD a step further by computing
modes that are traveling waves with fixed spatial wavenumber, temporal frequency, and spatial and temporal growth/decay
rates. Since its development, the STKD has been applied to study offshore wind turbines [18, 19], arch vortices in urban
flows [20], reconstructing 3D flow-fields from 2D data sets [21], and also for extracting growth rates of pixel value from
experimental schlieren (which is related to density gradient) depicting second mode instability waves on hypersonic
cone geometries [22]. As discussed later in the paper, isolating based on wavenumber is not always the best method
since spatially stretching waves will result in many wavenumbers (modes) representing a single coherent structure
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Fig. 2 Isosurfaces of Q-criterion colored by 𝑢-velocity. The domain duplicated twice to show 3 spanwise
wavelengths of the actuator.

evolving. Regardless, the STKD will provide the most dominant wavenumbers for a given frequency. This provides a
general size and quantified spatial growth rates of various structures in the flow-field. This is advantageous for analyzing
spatially developing flows or convective instabilities, for example. A similar spatiotemporal decomposition can be
performed with the original Lumley decomposition for POD where homogeneous directions and temporal stationarity
require harmonic decompositions [7, 8, 23, 24]. A key difference with the STKD is the potential for growth rates in
the direction that is transformed into the frequency or wavenumber domain. Thus, the STKD can capture intensifying
traveling waves. Of course, doing a Fourier transform in time (spectral POD [25]) can produce good results due to
the strong connection between wavespeed, temporal frequency, and wavenumber. A small drawback of HODMD is
that it can lump together waves of different wavespeeds into a single mode if the wavenumber is such that they have
the same frequency of occurrence. However, the STKD guarantees this decomposition into waves with fixed distinct
wavenumbers and frequency. The largest benefit of the STKD is that it directly and efficiently computes growth rates in
addition to wavenumbers.

The basic form of DMD and its higher-order extension used in this paper which can be more robust for data exhibiting
high spectral complexity, higher-order DMD (HODMD) [26], both decompose a snapshot matrix V𝑖𝑘 = V(x𝑖 , 𝑡𝑘) as
the following Fourier expansion:

V𝑖𝑘 =
𝑁∑︁
𝑛=1

𝑎𝑛𝑢𝑖𝑛𝑒
(𝛿𝑛+𝑖𝜔𝑛 )𝑡𝑘 . (1)

Here, the x is a vector containing all spatial points in the domain, 𝑎𝑛 are DMD mode amplitudes, 𝑢𝑖𝑛 are the generally
complex-valued DMD modes, 𝛿𝑛 are the temporal growth rates of each mode, and 𝜔𝑛 are the angular frequencies at
which each mode oscillates. The HODMD obtains this expansion by making the higher order Koopman assumption

v𝑘+𝑑 = 𝑅1v𝑘 + v𝑘+1 + ... + 𝑅𝑑v𝑘+𝑑−1, (2)

for 𝑘 = 1, ..., 𝐾 − 𝑑. If the delay parameter 𝑑 equals one, then the method is the same as standard DMD. Thus, this
assumption is the more general way of obtaining the expansion in Eq. 1 than the commonly applied standard DMD
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assumption. Increasing 𝑑 increases the rank of the snapshots used, and the rank limits the number of modes with
nonzero eigenvectors. This affects the quality of DMD results when a dimension reduction via truncated SVD has been
performed to remove noise or when the data is spatially undersampled. Taken’s delay embedding theorem justifies
performing a dimension reduction followed by augmenting the reduced snapshots with delayed snapshots [26]. One
HODMD mode oscillating at different frequencies𝜔 can be a spatial function with multiple wavenumbers 𝜅 and therefore
be made up of many different wave speeds 𝑐, where 𝑐 = −𝜔/𝜅. The data may also be organized as a higher-order
snapshot tensor with each dimension corresponding to a different index of the tensor rather than a 2D matrix. The
snapshot tensor is represented for 3D unsteady data as V𝑖 𝑗𝑟 𝑘 = V(𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑟 , 𝑡𝑘). In this case, an HOSVD can be a first
step rather than a standard SVD. The DMD algorithm is then applied to the temporal modes that result (for more details,
see Appendix Alg.1). It should be noted that this method is equivalent to the standard SVD-based DMD if no truncation
is done on the HOSVD spatial mode matrices, a step that allows for additional filtering in each dimension.

The STKD method expands a snapshot tensor (of any number of dimensions, but 2D is detailed here) V𝑖 𝑗𝑘 as

V𝑖 𝑗𝑘 =
𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑎𝑚𝑛𝑢𝑚𝑛 (𝑧𝑘)𝑒 (𝜈𝑚+𝑖𝜅𝑚 )𝑥𝑖+(𝛿𝑛+𝑖𝜔𝑛 )𝑡𝑘 , (3)

or any similar variant. For example, 𝑧-direction wavenumber could be desirable instead of 𝑥, or both 𝑥 and 𝑧 could
appear only in the complex exponential and the STKD mode shapes could be only functions of 𝑦 in 3D. However, for
this study, the expansion in Eq. 3 is the desired form.

This paper proceeds as follows. A quick overview of the setup and methodology that was implemented for the
multi-dimensional HODMD as well as the STKD is presented. The algorithms are given more detail in the Appendix.
Next, results showing an HODMD analysis of the flow are given. These results show the flow response to actuation with
the growth of higher harmonic modes. Finally, results from the STKD analysis detailing dominant wavenumbers and
associated growth rates are presented and interpreted.

III. Methodology
There are a large number of variants of DMD-based methods, but many present issues when capturing transient

dynamics [10]. We explore the use of HODMD with delay embedding to obtain expansions with the STKD. Various
forms of Eq.3 are obtainable, and the algorithm differs slightly depending on the exact form. Therefore, it is important
to describe the steps taken in the present study. Brief overviews of the algorithms for multi-dimensional HODMD
[27], DMD-𝑑 (the key algorithm for HODMD)[26], and STKD [17] are given in the Appendix in Algs.1, 2, and 3 for
completeness and clarity. For a detailed description and derivation of the methods, see [17, 26–28].

For the temporal HODMD, 𝜏𝑤 was analyzed as a simple way of determining the effects of actuation by taking
2D slices of data along the wall, since velocity gradients succinctly describe the nonlinear dynamics of the flow [29].
The DMD has been applied similarly to the skin friction coefficient in an analysis of H-type transition [30], in which
staggered pairs of lambda vortices interact to cause transition similar to the present case. In addition, the data set was
cropped before analysis to only include the region just before transition started. The purpose of this was to most clearly
quantify the effects of actuation leading up to transition without being hindered by the increased complexity of the
flow-field downstream. As will be seen below, useful insights into the lead-up to transition are obtained even with this
spatial truncation. A total of 783 snapshots were used with Δ𝑡 = 20 𝜇s, or a sampling frequency of 50 kHz. This allows
for the actuation frequency of 2 kHz to cycle 31.28 times. In other words, if 𝑇 = 2𝜋/𝜔act then the time interval sampled
is 31.28𝑇 . A simulation with the setup from [11] was run longer to enable the post-processing of more time steps to
build a longer time series at a high sampling rate. The tolerance parameter 𝜖 was set to 1 × 10−4 for HOSVD, SVD, and
amplitude truncations. A delay parameter of 𝑑 = 80 was used.

The STKD analysis also used 𝜏𝑤 snapshots. However, the mean was subtracted before application so that traveling
waves were better captured. Due to this, the tolerances were set for a slightly heavier rank truncation of 5 × 10−3. In
addition, the flow-field was cropped to not include the actuator. Including the actuator resulted in a large number of
modes which only represented small, quickly decaying perturbations that remained in the immediate vicinity of the
actuator. Additionally, only 301 snapshots were used in this analysis. This was more than enough to obtain the same
dominant frequencies, and it captures 12 periods of actuation frequency of 2 kHz. Since fewer snapshots were used,
a delay parameter of 𝑑 = 30 was used in time. For the spatial dimension, a delay parameter of 𝑑 = 2 minimized the
reconstruction error for the given 𝜀 tolerance.
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IV. Results and Discussion

A. HODMD Temporal Analysis
In this section, we present results for HODMD temporal analysis of the data. The normalized amplitudes (normalized

by maximum amplitude) are plotted against frequency in Fig. 3a. The real and imaginary components of the eigenvalues
for each mode are given in Fig. 3b. The real parts of the first 6 mode shapes are given in Fig. 4.
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(a) HODMD frequencies.
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(b) HODMD eigenvalues.

Fig. 3 HODMD spectrum.

3.8 4 4.2 4.4 4.6 4.8 5
0

0.005

0.01

0.6

0.8

1

1.2

(a) HODMD mode 1.
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(b) HODMD mode 2 (2 kHz).
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(c) HODMD mode 3 (4 kHz).
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(d) HODMD mode 4 (6 kHz).

3.8 4 4.2 4.4 4.6 4.8 5
0

0.005

0.01

-5

0

5

(e) HODMD mode 5 (8 kHz).
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(f) HODMD mode 6 (3.98 kHz).

Fig. 4 HODMD mode contours.

In Fig. 4 above, the modes are ranked according to the amplitudes solved for via a least-squares best fit. Note that the
true value on the color bar is less significant than the change from negative to positive. This is because all modes have
the same Frobenius norm. Therefore, the best way to discern the relative importance of modes is by the amplitude plot
(Fig. 3a). As can be seen in Fig. 3a, there are clusters of modes around the dominant frequencies that have relatively
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high amplitudes. For that reason, although modes 3,4 and 5 are harmonics of the primary actuation frequency, the next
few modes do not show higher harmonics of the actuation frequency. This is already evident with mode 6 in Fig. 4f
which is close to the frequency of mode 3 and not a harmonic of the main actuation frequency. Many of the modes in
between the main harmonics are similar to mode 6 in appearance. For this reason, below in Fig. 5 are plotted modes 23,
36, and 56, which correspond to 10 kHz, 12 kHz, 14 kHz, respectively. All of these modes show intensification in the
downstream direction. In addition to that, it is clear that the main mode structures of each harmonic mode originate
farther downstream than those of the previous harmonic. There is a dominant pattern intensifying in the streamwise
direction and this motivates further decomposition via STKD to quantify the dominant growth rates and wavenumbers.
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0

0.005

0.01
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5

(a) HODMD mode 23 (10 kHz).
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(b) HODMD mode 36 (12 kHz).
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0

0.005
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0

5

(c) HODMD mode 56 (14 kHz).

Fig. 5 HODMD mode contours corresponding to higher harmonics of actuation frequency.

B. Spatiotemporal Analysis
The lambda structures generated by the actuator forcing mechanism stretch as they travel in the streamwise

direction. This results in a high spectral complexity in 𝑥. In other words, the dominant modes have wavenumbers
which are decreasing as they convect downstream. Since STKD finds single wavenumber modes, these structures will
be represented by several modes with different wavenumbers and wavespeeds. This can increase the complexity of
interpretation of the resulting modes, because many STKD modes are required to represent a single flow structure,
which is the stretching lambda vortex. Nonetheless, the main flow features are identified by the largest amplitude waves
and the only complication that will arise is additional waves at similar frequencies and wavenumbers and slightly faster
or slower wavespeeds.

It is clear from looking at a space-time diagram along any constant 𝑧 line that the flow is dominated by a single
traveling wave. This corresponds to the primary pairs of lambda vortices traveling downstream as can be seen in Fig. 2
and is also evident in the second HODMD temporal mode in Fig. 4b. Figure 6a shows the spacetime diagram along the
centerline. The slope 𝑑𝑥/𝑑𝑡 for a given structure in the diagram is the wavespeed. This value changes slightly in the
streamwise direction, which also explains the large number of modes obtained. Figure 6b shows the reconstruction of
Fig. 6a with the STKD modes and the tolerances described in Sec. III. With these tolerances, 70 spatiotemporal modes
were kept. There is good agreement qualitatively, and a better agreement could have been obtained by keeping more
modes. However, the reconstruction based on these modes captures the state of the system reasonably.
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(a) Fluctuating component of wall shear stress.
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(b) STKD reconstruction.

Fig. 6 STKD reconstruction of wall shear stress fluctuations along centerline (𝑧 = 6.25 mm).

The main results of the spatiotemporal analysis are spatial growth rates for a given wavenumber. In addition, the
speed of various waves can be obtained by examining a dispersion diagram. As shown in Fig. 3a, the HODMD modes
with harmonic frequencies of the actuator frequency have amplitudes that drop off in magnitude very rapidly. Similarly,
the dominant STKD modes are associated with the 2 kHz mode and its harmonics. In the dispersion diagram in Fig. 7a
below, the 70 modes (35 complex conjugate pairs) are scattered. The wavespeed is the negative of the slope of the lines
connecting the complex conjugate eigenvalues. Many of the dominant modes have positive wavespeed. However, some
lower-amplitude waves are propagating upstream. These waves have positive growth in the streamwise direction, so they
decay exponentially as they propagate upstream. In addition, Fig. 7b shows that all of the STKD modes have positive
growth rates in the streamwise direction. Notably, the highest spatial growth rate is attributed to the primary actuation
frequency and its harmonics.
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(a) Dispersion diagram.
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(b) Spatial growth vs frequency.

Fig. 7 Dispersion diagram and spatial growth rates. The colormap represents normalized mode amplitude.

The primary actuation frequency contains 4 traveling waves in the positive 𝑥 direction with growth rates of
𝜈 = 1.82, 14.82, 12.17, and 23.29. The largest amplitude modes have the primary actuation frequency and these growth
rates. In addition, the waves with a negative wavespeed at this frequency have the same growth rate. The reconstruction
of these opposing waves in time gives a single traveling wave for each wavenumber active at 2 kHz growing in 𝑥
non-uniformly. The reconstructed wave has a magnitude that increases in 𝑥, then pauses momentarily and then increases
in 𝑥 more, and so on. The wavespeed also undulates slightly. This effect is small, though, due to the differences in
amplitudes. For example amplitudes 𝑎3,2 and 𝑎4,1 which correspond to a downstream propagating dominant wave are
25.66 times higher than 𝑎3,1 and 𝑎4,2 (the corresponding upstream propagating wave with the same wavenumber and

7

D
ow

nl
oa

de
d 

by
 A

rm
an

 G
ha

nn
ad

ia
n 

on
 J

an
ua

ry
 1

3,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
22

02
 



frequency). However, this effect is important to note since it means that some of the upstream propagating waves are not
necessarily flow structures but rather manifestations of non-uniform growth of the primary waves in the streamwise
direction. This could correspond to the forcing pattern of the actuator, which in time takes the form of the absolute
value of a sine wave, and also the cyclic interactions of the pairs of lambda vortices.

V. Conclusions and Future Work
We have presented a DG-ILES simulation of flow turbulization using a body force simulating a square-serpentine

plasma actuator. Results for a temporal HODMD applied to the 𝜏𝑤 field are given. The HODMD modes show the
primary structures generated by the forcing mechanism, and higher modes show higher harmonics of this frequency.
STKD was used to represent the mean-subtracted data set as a sum of traveling waves. This allowed wavenumbers
and spatial growth rates to be computed in addition to temporal frequencies. The STKD results in a large number
of dominant modes, so further cropping of the domain in addition to higher truncations of rank in each direction via
HOSVD was required. The modes with the primary actuation frequency of 2 kHz and harmonics of this frequency were
dominant and had the highest spatial growth rates. Several upstream propagating waves resulted from the analysis as
well. However, reconstructing based on counter-propagating waves showed that some of the upstream propagating waves
(particularly those at 2 kHz) were not true flow features, but rather a result of non-uniform growth of the primary 2 kHz
structures. The reconstructed wave grows in 𝑥, pauses, and continues to grow in 𝑥 cyclically. Future work will involve
application further into the transitional regime of the flow where the high spectral complexity in both the streamwise
direction and time will result in more difficulty in isolating the actuator’s effects. Ultimately, various expansions similar
to Eq. 3 could prove to be more useful, and this will be explored as well. Finally, the STKD could be used to examine
different flow/actuator configurations, such as frequency, spanwise wavenumber, or freestream conditions, to determine
how these variables affect the growth rates of the various modes.

Appendix

Algorithm 1 Multidimensional HODMD
1: Organize the data as a snapshot tensor:

V𝑖 𝑗𝑘 = V(𝑥𝑖 , 𝑧 𝑗 , 𝑡𝑘). (4)

2: Apply a truncated HOSVD as

V𝑖 𝑗𝑘 =
𝑃3∑︁
𝑝3=1

𝑃2∑︁
𝑝2=1

𝑃1∑︁
𝑝1=1

𝑆𝑝1 𝑝2 𝑝3𝑋𝑖 𝑝1𝑍 𝑗 𝑝2𝑇𝑘𝑝3 , (5)

where 𝑆𝑝1 𝑝2 𝑝3 is the core tensor. The exact number of kept HOSVD modes (𝑃1, 𝑃2, 𝑃3) can be determined based
on limiting the rank when singular values drop below some tolerance. For this paper 𝜎/𝜎1 >= 𝜀 was used for all
directions.

3: Multiply each row of the transpose of the temporal mode matrix 𝑇𝑝3𝑘 by its associated singular values:

𝑇𝑝3𝑘 = 𝜎
𝑡
𝑝3
𝑇𝑝3𝑘 . (6)

4: Apply the DMD-𝑑 algorithm to the above reduced snapshots, resulting in:

𝑇𝑝3𝑘 ≈
𝑁∑︁
𝑛=1

𝑎𝑡𝑛𝑢
𝑡
𝑝3𝑛
𝑒 (𝛿𝑛+𝑖𝜔𝑛 )𝑡𝑘 . (7)

5: Construct the full modes by plugging 𝜎𝑡𝑝3
𝑢𝑡
𝑘 𝑝3

into the HOSVD expansion in place of 𝑇𝑘𝑝3 . Note that the reduced
mode matrix is transposed here.

6: Normalize the modes to have unit RMS norm and scale the amplitudes accordingly.
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Algorithm 2 DMD-d Alogrithm
1: The higher-order Koopman assumption is applied to rescaled temporal modes matrix as

𝑇𝐾𝑑+1 ≈ 𝑅̂1𝑇
𝐾−𝑑
1 + 𝑅̂2𝑇

𝐾−𝑑+1
2 + ... + 𝑅̂𝑑𝑇𝐾−1

𝑑 , (8)

where 𝑅𝑛 are matrices. For matrices with a superscript and a subscript, the notation denotes the columns of the
matrix. For example, 𝑇4

1 denotes the first four columns of the 𝑇 matrix.
2: Form the modified snapshot matrix 𝑇 as where each column of 𝑇 is given as

t̃𝑘 =


t̂𝑘

t̂𝑘+1

...

t̂𝑘+𝑑−1


, (9)

for 𝑘 = 1, ..., 𝐾 − 𝑑 + 1. Note that t̂ are the columns of the rescaled temporal mode matrix 𝑇 .
3: Apply a truncated SVD to the modified snapshots as

𝑇 = 𝑈Σ𝑉𝑇 , (10)

keeping the leading SVD modes by truncating based on the tolerance 𝜀 as described above for the HOSVD.
4: Define the reduced modified snapsnots as

𝑇 = Σ𝑉𝑇 . (11)

5: Apply the higher order Koopman assumption to the reduced modified snapsnots as

𝑇𝐾−𝑑+1
2 = 𝑅̄𝑇𝐾−𝑑

1 . (12)

6: Solve for the least-squares solution for 𝑅̄. The eigenvalues of this matrix are the HODMD eigenvalues 𝜆𝑛. The
growth rate and angular frequency (or wavenumber) are the real and imaginary parts of ln (𝜆𝑛) /Δ𝑡, respectively.

7: Calculate the reduced modes as the first 𝑃3 components of each column𝑈𝝓, where 𝝓 are the eigenvectors of 𝑅̄.
8: Solve for the amplitudes 𝑎𝑡𝑛 via regression of the expansion to the reduced snapshots 𝑇 .

Algorithm 3 STKD Algorithm
1: Apply steps 1 to 4 of the Multi-Dimensional HODMD algorithm outlined above.
2: Apply the DMD-𝑑 algorithm to a spatial matrix whose dynamics are of interest (scaled by the singular values),

resulting in
𝑋̂𝑝1𝑖 = 𝜎

𝑥
𝑝1
𝑋𝑝1𝑖 , (13)

and

𝑋̂𝑝1𝑖 ≈
𝑀∑︁
𝑚=1

𝑎𝑥𝑚𝑢̂𝑝1𝑚𝑒
(𝜈𝑚+𝑖𝜅𝑚 )𝑥𝑖 . (14)

3: Now solve for the non-normalized modes 𝑢̃ 𝑗𝑚𝑛 as

𝑢̃ 𝑗𝑚𝑛 = 𝑎
𝑥
𝑚𝑎

𝑡
𝑛

𝑃1∑︁
𝑝1=1

𝑃3∑︁
𝑝3=1

𝑆𝑝1 𝑗 𝑝3𝑢
𝑥
𝑝1𝑚

𝑢𝑡𝑝3𝑛
, (15)

where

𝑆𝑝1 𝑗 𝑝3 =
1

𝜎𝑥𝑝1𝜎
𝑡
𝑝3

𝑃2∑︁
𝑝2=1

𝑆𝑝1 𝑝2 𝑝3𝑍 𝑗 𝑝2 . (16)

4: Solve for the STKD amplitudes 𝑎𝑚𝑛 as the Frobenious norm of each mode divided by
√
𝐽, and divide 𝑢̃ 𝑗𝑚𝑛 by these

amplitudes so the final modes 𝑢 𝑗𝑚𝑛 have unit RMS norm.
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