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Abstract: The dynamics of a Hall thruster are investigated numerically with the novel
application of Physics-Informed Neural Networks (PINNs). The efficacy of PINNs is ex-
plored as a potential design tool for the purpose of efficiently simulating a simplified form
of the original one-dimensional Hall thruster model.1 Numerical novelty includes the uti-
lization of PINNs, for mesh-less convergence, and stability of the solution. The process of
imposing a PINN requires the development of a normalization scheme for all partial differ-
ential equations (PDEs) and appropriate boundary conditions. The optimization criteria is
the minimization of the residuals of the normalized PDEs as close to true zero as possible
via algorithms encompassed in Adam and L-BFGS.2,3 With the model presented, a small
convergence criteria of 10−8 was produced, which corresponds to a maximum solution error
of ϵ ≈ 10−4. This was produced with a convergence time of 4 minutes and 32 seconds with
10,000 collocation points and 40,000 epochs (iterations). Since the results are based to the
simplified system of PDEs, it is unreasonable to claim the results presented follow all of
the complex physics represented within the Hall thruster. As such, this paper encompasses
an intermediate model of six simplified steady state equations for a Hall thruster ignoring
the nearwall physics, with a focus of qualitative result analysis to effectively validate the
use of PINNs against suitable literature. While the model lacks physical process fidelity,
results show reasonable trend of a Hall thruster operating at steady state.
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Nomenclature

Variables

V = velocity
[
m
s

]
z = domain in the axial direction [m]

m = mass [kg]

n = number density
[

1
m3

]
pe = pressure [Pa]

e = electron charge [C]

Ez = electric field
[
V
m

]
E′ = wall loss [eV ]

Ω = Hall parameter

ωce = electron cyclotron frequency
[
1
s

]
ωpe = electron plasma frequency

[
1
s

]
ν = collisional frequency

[
1
s

]
S = source

[
1

m3s

]
αB = Bohm diffusion coefficient

[
m2

s

]
α = energy loss per ionization

EI = ionization energy of xenon [eV ]

T = Temperature [K, eV, J ]

φ = electric potential [V ]

t = time [s]

JT = total current density
[

A
m2

]
A = area [m2]

ṁ = mass flow rate
[
kg
s

]
ρ = density

[
kg
m3

]
Γ = flux

[
1

m2s

]
σ = collisional cross-section [m2]

ki = ionization process constant
[
m3

s

]
X = dummy variable

Subscripts

i = ion particles

n = neutral particles

e = electron particles

ei = electron-ion particles

en = electron-neutral particles

in = ion-neutral particles

w = wall

z = along the z-axis

θ = along the θ-axis

ref = reference value

0 = initial value

Superscripts

0+ = neutral to singly ionized

Ẋ = time-based derivative

X̄ = normalized variable

Acronyms

DSMC = Direct Simulation Monte Carlo

PIC = Particle-in-cell

VPIC = Vector Particle-in-cell

ANN = Artificial Neural Network

PINN = Physics-Informed Neural Network

HET = Hall-Effect Thruster, Hall Thruster
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I. Introduction

Hall Thruster experimentation started in the early 1960s, and because of diligent international efforts,
became an enabling technology for onboard propulsion in many space applications. This coaxial device

consists of four key parts: the anode, which serves as a propellant distributor; an annular acceleration channel
made of boron nitride typically; a magnetic unit; and a hollow cathode (see Figure 1).4

Figure 1: Schematic of a hall thruster,
with emphasis on the radial mag-
netic field and the accelerating electric
field4

The magnetic unit comprised of coils induces a radial magnetic
field between the thruster center line and the outer edge. Gas is
fed into the discharge channel through the anode, while electrons
are emitted from the external hollow cathode. Electrons attempt to
gravitate towards the positively biased anode, but have their mo-
bility reduced in the axial direction by a transverse radial magnetic
field. This effectively traps electrons, creating an acceleration region
where neutral atoms are ionized by the electrons through impact ion-
ization. The magnetic field strength is chosen such that the heavier
ions accelerate axially through the potential created by the anode
and cathode, rather than spiral around the thruster channel. The
remaining electrons from the hollow cathode will neutralize part of
the ion beam in the exit plume. Present-day Hall-Effect Thrusters
(HETs) offer specific impulses over 2000 s, and thrust and power
well-exceeding 100 mN and 5 kW, respectively.5 The HET efficien-
cies are approximately 50% with operational lifetimes over 10,000
hours.6

An abundance of experimental data for Hall thruster character-
ization reveals that there are known discrepancies between ground-
testing results and in-flight diagnostics.7 These measurement differ-
ences occur due to a variety of inconsistencies between systems, whether it be facility effects or electrical
circuit variations. As construction of an infinitely large vacuum chamber to mimic the space environment
is intractable, the physical domain limitations in ground testing always impose unrealistic effects on data
collected on the ground. While certain hyper-parameters can be tuned to match in-space conditions, this is
still not the most reliable alternative for determining Hall thruster characteristics, as it makes models less
reproducible since parameters must change for each different experimental set-up. This allows for the justi-
fication of experiment-informed computational methods that possess the ability to numerically represent a
variety of Hall thruster configurations. While computational methods cannot replace experimentation, they
allow for a cost-effective initial step that enhances the data-based results.

Despite significant numerical and theoretical advances of recent past, there are still several obstacles
present in the traditional use of Particle-In-Cell (PIC), hybrid, and fluid models. In the hybrid PIC model,
ions and neutrals are treated as particles, while electrons are streaming as fluid. While this enables the
inclusion of detailed kinetics from individual particle modeling, PIC methods have significant computational
costs. In the fluid formulation, all species are described by their respective macroscopic equations. While
this method is not as computationally intensive, the fluid models are typically created on a case-by-case
basis, which negatively impacts general application. Several one- and two- dimensional models are available
in literature. Manzella,8 Boeuf and Garrigues,9 Ahedo et al.10(to name a few in no particular order) have
documented one-dimensional Hall thruster simulations. Fife,11 Keidar et al.,12 and Roy and Pandey13 doc-
ument the two dimensional numerical results. Even with their central roles in characterizing HET functions,
the employment of these tools is often complicated by the need to incorporate multi-physics, complex ge-
ometries, and the treatment of real time analyses.14 In particular, one especially challenging aspect of Hall
thruster modeling is wall interactions with the plasma, including the sheath and pre-sheath region at the
walls and anode. This becomes even more daunting as the viscosity and heat flux distribution due to the
heavy particles also affect the performance of the high power HETs.15

To overcome several of these theoretical challenges and numerical modeling limitations of the previous Hall
thruster models, the use of Artificial Neural Networks (ANN) can provide design level efficiency learning from
experiment and physics-based models. Furthermore, similar to the standard (PIC/VPIC/DSMC/hydrodynamic)
plasma simulation, ANNs can be enhanced with wall processes and interactions present in a physical HET sys-
tem. The framework used to carry out this approach is called a Physics-Informed Neural Network (PINN).16

What separates PINNs from other neural networks is the inclusion of physical equations that constrains
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the solution. Furthermore, such a model can be used in a ”forward” manner to analyze data, solve the
equations directly, or incorporate data to further tune the results. Thus, PINNs are able to bridge the gap
between data rich and data poor regimes, allowing for physical solutions despite limited data availability.
The final results are anticipated to give an accurate model at a high speed that is versatile. Even though the
presented model does not yet have experimental data, the described PINN framework will enable the use of
data in the future. While it is expected that the training portion of this model is intensive, once trained,
the surrogate model is expected to provide accurate predictions for Hall thruster operation in drastically
less computational time compared to other conventional numerical methods. Namely, while the training of a
PINN can be substantial, their online inference time is exceptionally short, often on the order of microseconds.
Further noting that PINNs can be trained for a broad range of parameters,17,18 the trained PINN can be
used as a rapid surrogate of the Hall thruster performance across a diverse range of thruster designs. A
further distinction of PINNs compared to many traditional numerical methods is that PINNs do not require
the inclusion of meshing. This prevents the need for mesh convergence, generation, and testing, which is one
of many obstacles encountered in mesh-dependent numerical methods.

Without the inclusion of data, the model presented represents that of the forward problem. This serves
as an initial step in the model development, since results of the forward problem will demonstrate whether
the physics are adequately represented. In this proceeding, the forward problem is developed via the simpli-
fication and normalization of the seven equation system presented in Roy & Pandey.1,19 These simplified
equations are then passed through a PINN, which returns the optimized results for most major components
in a Hall thruster: electron temperature, electron velocity, ion number density, neutral number density, ion
velocity, and electric field, with the exception of neutral velocity. It is important to note that the model
presented is simplified to a steady state assumption with a constant neutral velocity. The procedure to model
development with wall physics is an incremental process, and the details of the neutral velocity are the last
to be included before establishing the forward problem as complete. While the present study focuses on a
single design with a given set of parameters, previous work has indicated that extending the model to learn
the parametric solution to a system of PDEs does not pose a fundamental challenge.20,21 Such an extension
will be left to future work.

II. Approach: Physics-Constrained Deep Learning

The PINN framework is focused on minimizing the residual of one or more PDEs as well as approximating
the solution of the targeted PDE(s) through boundary conditions inputted into a neural network (see equation
1). More specifically, the PDE(s) utilized in this model will align with the steady-state governing equations
of a Hall thruster, with the assumptions described subsequently.

An approximate solution is found via solving the optimization problem. As depicted in Figure 2, ANNs
are composed of layers of neurons. The first layer is the input layer and the last layer is the output layer. In
between are hidden layers, and each has a distribution of weights and biases that are optimized in order to
reduce the loss function. This process is done via the use of gradient-descent method and backpropagation:
where the adjusting of weights and biases in a neural network is performed by analyzing the error rate
from the previous iteration, and then the weights and biases are determined to minimize equation 1.22 The
algorithm works in a backwards-fashion to test for errors from outputs nodes to input nodes.

Ideally, in the final stage of model development, a rapid surrogate model will be produced for predicting
the flow characteristics for a variety of input parameters within the Hall thruster. A loss function suitable
for this task can be expressed as23

Loss =
1

NPDE

NPDE∑
i

|R (xi) |2 +
λ

Nbdy

Nbdy∑
i

|u (xi)− ui|2. (1)

where R (xi) is the residual of the PDE(s), the second term on the right hand side enforces the boundary
conditions, and λ is a regularizer that determines the relative importance of the PDE and boundary terms.
NPDE and Nbdy represent the number of points to sample inside the simulation domain and along the
boundary, respectively. If this model were to be extended into a time dependent problem, an additional
term would need to be applied to enforce the initial conditions.

A known limitation in the modeling scheme is the complexities of minimizing a loss function comprised of
multiple terms. For example, in equation 1, encompassing the physics of the Hall thruster requires multiple
PDEs, and thus an added term to the loss function for each PDE. Having more terms in the loss function
creates more challenges for convergence in the optimizer.24
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Figure 2: Schematic of the proposed future neural network architecture. The neural network would take
(z, t) as inputs, feed it through hidden layers, and output the plasma fields.

Another notable limitation is that the optimizer can fail to exactly satisfy boundary conditions, which
results in physically inaccurate solutions. This was overcome by adding a layer after the last hidden layer
of the neural network that transforms the output of the hidden layers such that boundary conditions are
exactly enforced, thus removing the boundary terms from equation 1. This can be illustrated for the case of
a Dirichlet boundary condition: u (x) = ubdy (x) + uzero (x)u

′ (x), where u′ (x) is the output of the hidden
layers of the ANN, u (x) is the predicted solution, and uzero (x) is created such that this term vanishes on
the system’s boundaries, allowing ubdy (x) to satisfy the boundary conditions.

III. Neural Network Architecture

A. DeepXDE

DeepXDE is the primary framework used to produce the results described. This is a python library for sci-
entific machine learning and physics-informed learning that utilizes reputable machine learning libraries such
as TensorFlow or PyTorch as a backend.25 DeepXDE allows for easy construction of network architecture.
In light of anticipating future work on this model, DeepXDE allows for the ease of incorporating data as a
constraint to the network.

B. Fully-Connected Neural Network

A ”Fully Connected” Neural Network (FNN) refers to a neural network in which each input node is connected
to each output node. The major advantage of a fully-connected neural network is that they are ”structure
agnostic”.26 Thus, no special assumptions need to be made about input data types. In addition to this, it
has the most documentation and potential sources to reference, allowing for simple implementation.

C. Activation Function: Hyperbolic Tangent

The essence of a neural network lies in the hidden layers where weights and biases can be adjusted to
get reasonable outputs via gradient-descent and backpropagation. However, one obstacle with the use of
gradient-descent methods is derived from the property that large and smaller numbers can have huge/tiny
gradients. The optimizer employs these gradients to know which direction and magnitude to fine-tune
weights and biases, which could cause weight and bias terms to either extrapolate to infinity or disappear
to zero, respectively. Incorporating an activation function addresses these concerns by constraining weights
and biases to be on a reasonable order of magnitude. There are two general types of activation functions:
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linear and nonlinear. While linear has its place in numerics, it could not be applied to this problem. Linear
activation functions always have the feature where negative numbers stay close to zero, but positive numbers
are allowed to grow, which can lead to the exploding gradients problem. Furthermore, many linear activation
functions are discontinuous at zero, which would be disastrous for the current application of the gradient-
descent method. The notable exception is Exponential Linear Unit (ELU), but that still possesses the
potential for exploding gradients.

As such, a nonlinear activation was sought out: the hyperbolic tangent. The benefit of employing the
hyperbolic tangent function is that it and its higher order derivatives are continuous and differentiable across
it’s entire domain. Hyperbolic tangent activation functions specifically allow all values of weights and biases
to be confined to [-1, 1]. In addition, the nonlinearity allows the network to be more expressive in its outputs
since it can handle nonlinear outputs such as both exponentials and natural logs.

D. Initializer: Glorot Uniform

Within the network of weights and biases, a nontrivial initial condition must be applied to each neuron called
the initialization function. The initialization chosen for a model can significantly impact the convergence
time for a given simulation. It is effectively like racing in the 100 meter dash, except a proper initialization
function would get a 50 meter head-start. Glorot Uniform specifically is a shifted normal distribution for
the weight’s and bias’ initial values. This distribution is conducive to convergence for PINNs and proven to
reduce convergence speed.27 Thus, it is more than suitable for this model.

IV. The Presented Model

A. Physical Processes and Assumptions

The thruster plasma is a partially ionized gas, consisting of electron, ion, and neutral xenon particles. In
such a plasma, both elastic and inelastic processes take place simultaneously. Elastic collisions involve
only exchange of momentum and energy between colliding particles, whereas inelastic processes can be
responsible for redistributing the number density of the particles along with its momentum and energy.
That being said, not all processes are equally probable, and only the most imperative processes will be
included when applicable. For example, inelastic processes such as recombination, charge-exchange collision,
and plasma-wall interactions will not be considered in the present work. Additionally, momentum exchange
between electron-electron and ion-ion collisions will not be considered as their relative drift due to charge
attraction will be small in comparison to that of the electron-ion collisions. However, the inelastic process of
ionization will be included with the approximation that neutral and ion source terms are equal and opposite
(|Si| ≈ | − Sn| = |S|).

The plasma in the thruster is assumed to be quasineutral (electron and ion number densities are approx-
imately equal: ne ≈ ni), ignoring the thin sheath layers near the anode and cathode. In a similar vein, the
masses of ions and neutrals are assumed to be equivalent (mi ≈ mn). Despite the plasma being quasineutral
for the duration of the channel length, the electrostatic field is maintained due to the charge separation
within the acceleration channel.

B. Problem Geometry

The problem geometry consists of a one-dimensional line that occurs along the center axis of an axisymmetric,
cylindrical Hall thruster. A 4.0 centimeter Hall thruster length is assumed, with an area of 0.0045 [m2].1,9

V. The Governing Equations

In order to fully characterize the system, seven key, one-dimensional equations are referenced from Roy
& Pandey1 in the present work: electron momentum, electron energy, ion continuity, ion momentum, neutral
continuity, current conservation, and mass conservation. These equations are derived with few assumptions
and are dependent on definitions such as collisional frequencies and the ionization source terms, which are
defined subsequently. Note that the electron response time is much faster than that of ions due to the higher
order of magnitude for electron velocity (Ve). Hence, in Roy and Pandey1,19 the electron momentum and
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energy equations are considered steady-state while for slower ions and neutrals, a set of time-dependencies
were included. However, in the simplified present work, these ions and neutrals will also be considered steady.

A. Collisions

1. electron-ion (Coulomb) collisions

Plasma particles are deflected over the Debye length (λDe) due to the long-range nature of the Coulomb
force.

νei =
4
√
2π

3
√
me

e4niLe

T
3/2
e

=
Le

3
√
2π

(
ni

ne

)(
ωpe

neλ3
De

)
, (2)

where ω2
pe = 4πnee

2/me is the square of the electron plasma frequency with an electron mass me and charge
e, λ2

De = Te/(4πnee
2) is the square of the Debye length, and Le = ln(Λ) is the Coulomb logarithm. For

the context of low-temperature space plasmas, the Coulomb logarithm was selected to have a value of 15.1

Typical values of Le are approximately from 10 to 20 where weak-scattering events caused by long-range
forces dominate transport properties.

2. electron-neutral collisions

The plasma-neutral collisional frequency is νen = nn⟨σVthe⟩ where Vthe is the thermalized velocity based
off the Maxwell distribution. After calculation, it can be found that electron-neutral collisions can be
approximated as νen ≈ nn(2.50 × 10−13), which is also in Boeuf.9 Typically, for a majority of the Hall
thruster regime, the effect of Coulomb collisions may be smaller or of the same order of magnitude in
comparison with the electron-neutral collisions.

3. ion-neutral collisions

A constant was assumed for ion-neutral collisional frequency based from Roy & Pandey’s model. This
constant came out to be νin = 1.80× 106.1

B. Ionization

The inelastic process of electron collisions with a xenon atom is the main source of ion production within
a propulsive plasma. The rate of ion production in the plasma is determined via the total cross section of
the process. The only collisions considered are the transition from which a neutral becomes a singly ionized
state (Xe0 → Xe+), which is represented below.1 This corresponds to why Coulomb, electron-neutral, and
ion-neutral collisional frequencies were considered.

Sionization = k0+i nenn, (3)

where ki is a process constant, and ne and nn correspond to electron and neutral particle number densi-
ties, respectively. The function for k0+i is described for a singly charged ionization as a general third-order
temperature-dependent polynomial fitted to experimental data based on the Maxwellian distribution func-
tion:1

k0+i = (1.9435× 10−5T 3
e − 0.0068T 2

e + 0.6705Te − 1.6329)× 10−14; T [eV ]. (4)

C. Magnetic Field

In a typical Hall thruster experiment, the radial field is dominant in comparison with the axial field. Thus, a
one-dimensional radial magnetic field is prescribed based on an adapted Gaussian distribution (see equation
5 and Figure 3), which is scaled to fit the defined 4 cm thruster profile.9

B = Bmax · 1.02e
−(z−0.8)2

0.32 , (5)

where Bmax is the maximum magnetic field strength determined to be 200 Gauss, and z is an azimuthal
location along the thruster domain.
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Figure 3: The imposed magnetic field distribution. The magnetic field is maximum upstream of the exit
plane.

D. Electron Momentum

With the understanding that the dynamics of the electron are determined primarily by the pressure gradient,
electric and magnetic forces, and collisional exchange of momentum, the electron momentum equation can be
defined. The presence of Coulomb, electron-neutral, and wall interactions are thought to play an imperative
role in electron transport. Thus, they are kept in the governing derivation:

Vez
∂Vez

∂z
= − 1

mene

∂

∂z
(pe)−

e

me
Ez − ΩωceVez − νei(Vez − Viz)

−
(

S

ne

)
(Vez − Vnz) + νwVez,

(6)

where the following relations between azimuthal (Vez) and axial electron velocities (Veθ) are utilized:

Ω =

(
ωce

νei + νen + αBωce

)
, (7)

and
Veθ = ΩVez, (8)

where, αB is the Bohm diffusion coefficient, νw is the wall collisional frequency, pe is pressure, and Ω is the
Hall parameter. The inclusion of αB is to qualitatively account for the effect of anomalous Bohm conductivity,
which is equivalent to frequency νB = αBωce. The presence of ωce in this relationship incorporates the effect
of magnetic field fluctuations (ωce = 1.76× 107B where B is in Gauss).

E. Electron Energy

Electron energy is derived to include the effect of Joule heating, random thermal energy exchange, ionization
interactions, and plasma interaction with the wall. Neglecting the effects of radiation, viscous dissipation,
and thermal conduction, the electron energy equation can be written as:

d

dz

{
neVez

[
me(1 + Ω2)V 2

ez

2
+

5

2
Te

]}
− neeVez

dφ

dz

= 3
me

mi
neνei(Ti − Te) + 3

me

mn
neνen(Tn − Te)

+S

(
3

2
Te + αEI

)
− neνwE

′,

(9)
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where Te, Ti, and Tn ≈ 0.3[eV ] are electron, ion, and neutral temperatures in eV, respectively. EI is the
ionization energy of xenon (EI ≈ 12.1[eV ]), φ is the electric potential, E′ is the wall loss, and α is the
collisional excitation energy loss per ionization with a value of α ≈ 2.5.

F. Ion Continuity

The ion continuity equation is:
∂ni

∂t
+

∂(niViz)

∂z
= S − νwni, (10)

which occurs in its non-steady-state form.

G. Ion Momentum

In the derivation of ion momentum, particle properties were leveraged to simplify the equation. Ions are
considered to be unmagnetized due to their large gyration (Larmor) radius in a 200G magnetic field, and
thus the effect of magnetic field on ion transport is neglected. Additionally, the pressure gradient term is
ignored as the thermal energy of ions are much smaller than their kinetic energy (Ti << miV

2
i ). These

assumptions give the following form for ion momentum:

∂Viz

∂t
+ Viz

∂Viz

∂z
=

(
e

mi

)
Ez +

(
me

mi

)
νei(Vez − Viz)−

(
mn

mi

)
νin(Viz − Vnz)

−
(

S

ne

)
(Viz − Vnz) + νwViz. (11)

H. Neutral Continuity

The neutral continuity equation is:
∂nn

∂t
+

∂(nnVnz)

∂z
= −Sn, (12)

which also occurs in its non-steady-state form. The source term for neutrals is equal and opposite to that
defined in equation 3.

I. Current Continuity

Current conservation serves a supplementation to equations 6-12:

eni(Viz − Vez) = JT , (13)

where

JT =
Id
A
. (14)

JT is the total current density, Id is the total discharge current, and A is the cross section of the thruster
channel.

J. Mass Conservation

Mass conservation is shown as:

mnnnVnz +miniViz =
ṁ

A
, (15)

where
ṁ = ρV A. (16)

ṁ is the mass flow rate, which encompasses neutral, ion, and electron flow.
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VI. Simplified Governing Equations to be Applied to the Model

The primary challenge with implementing a PINN in this context is the debugging process for creating
a hall thruster model. This is an iterative process that can take significant time to develop a final working
model. In the presented work, 6 out of 7 equations from Roy and Pandey1 have been implemented in
simplified form and the neutral continuity equation assumes a constant neutral velocity.

Each governing equation solves for a different variable within the presented system. More specifically:
(i) the electron momentum equation determines electric field, (ii) the electron energy equation determines
electron temperature, (iii) the ion continuity equation determines ion number density, (iv) the ion momentum
equation determines ion velocity, (v) the neutral continuity equation determines neutral velocity, (vi) the
current continuity equation determines electron velocity, and (vii) the mass conservation equation determines
neutral number density.

There is only one direct input into the neural network: the dimensional space z. The neural network
outputs correspond to the number of partial differential equations being solved for in the described equation
set. With the simplification of neutral continuity, that leaves four PDEs which each include spatial deriva-
tives, and three algebraic equations. Algebraic equations are not directly passed through the optimizer, but
rather imposed as hard constraints to the equation system. Even though the network will only directly see
the PDEs, the algebraic equations (current continuity, neutral continuity, and mass conservation) will still
play a role in solution determination and optimization since all equations are coupled.

A. Electron Momentum Simplified

From equation 6, electron inertia was assumed to be small and negligible. In addition, the pressure gradient
and wall collisional terms are most influential near walls and sheaths, neither of which are incorporated in
this model.

0 ≈ − e

me
Ez − ΩωceVez − νei(Vez − Viz)− νen(Vez − Vnz)−

(
S

ne

)
. (17)

B. Electron Energy Simplified

Much of equation 9 is neglected, as they are not important outside of the wall and sheath regions.

d

dz

(
neVez

5

2
Te

)
− neeVez

dφ

dz
≈ 3

me

mi
neνei(Ti − Te) + 3

me

mn
neνen(Tn − Te)

+S

(
3

2
Te + αEI

)
.

(18)

C. Ion Continuity Simplified

The assumption of steady-state is applied to ion continuity in equation 19 as this is only a one-dimensional
problem. Additionally, wall collisions are also neglected.

∂(niViz)

∂z
≈ S. (19)

D. Ion Momentum Simplified

The assumption of steady-state is also applied to ion momentum in equation 20 as this is only a one-
dimensional problem. Wall collisional terms are also neglected.

Viz
∂Viz

∂z
≈
(

e

mi

)
Ez +

(
me

mi

)
νei(Vez − Viz)−

(
mn

mi

)
νin(Viz − Vnz)−

(
S

ne

)
(Viz − Vnz). (20)

E. Neutral Continuity Simplified

As the iterative process is still ongoing for model development, Neutral Continuity is reduced to its simplest
form to ease modeling. Although this means that the model is not yet complete at the time of this proceeding,
an approximation will still allow the physical solution to show qualitative trends towards the later expected
high-fidelity solutions.

Vnz ≈ Constant. (21)
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F. Current Continuity Simplified

No further assumptions are applied to the derivation of current continuity.

eni(Viz − Vez) = JT . (22)

G. Mass Conservation Simplified

From equation 16, the mass of neutrals and ions are approximated to be equivalent. Additionally, mass flow
rate is approximated to neglect electron mass flow.

mnnnVnz +miniViz ≈ mn(Γn + Γi) ≈
ṁ

A
, (23)

where Γ is the flux of a given particle.

VII. Normalized Equations

In order for the system of equations to be compatible with the machine learning network, they must be
normalized. The goal of this normalization is to transform each equation to be on a similar scale with respect
to each other. This, in turn, improves the performance and training stability of the machine learning model.
Otherwise, the PINN will run into convergence-preventative obstacles such as exploding gradients for large
terms, or the wrongful neglect of terms on a smaller order of magnitude in comparison.

A. Normalization Scheme

The reference values for normalization are given in Roy & Pandey and are defined as follows:1

Γref = 1023m−2s−1, Tref = Ei[12.1eV ], Vref =

√
Tref

mi
ms−1, nref =

Γref

Vref
m−3, νref = σrefΓrefs

−1,

σref = σ0

(
mi

me

) 1
2

, zref =
Vref

νref
,

(24)

where
σ0 = 3.6 · 10−20m2. (25)

The normalization can then be performed with respect to these reference parameters defined in equation 24:

X̄ =
X

Xref
, (26)

where X can be any variable of choice such as z, Vi, ni, etc.

A useful conversion for φ and Tref was applied to allow for the following:

φ̄ =
φ

Tref = φref [eV ]
=

φ

eTref [J ]
. (27)

B. Normalization Technique

To normalize each equation properly, it is imperative to ensure that each equation remains balanced. Each
term, which is comprised of variables such as n, V, etc. must have the same units as the next term within
the same equation. This known property is useful for determining what normalization coefficient must be
used for an entire PDE.
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1. Ion Momentum Equation Normalized

From the simplified ion momentum equation, the term with the least complexity is selected to determine the
normalization factor for the entire equation. Any term is viable, this is simply the most robust approach to
normalization and unit determination.

Vi
∂Vi

∂z
. (28)

Within equation 28, it can be seen that there are two primary variables: Vi and z. As such, the normalization
references provided above (z = z̄zref and Vi = V̄iVref from equation 26) can be applied to equation 28. This
gives the following:

Vi
∂Vi

∂z

(
zref
V 2
ref

)
= V̄i

∂V̄i

∂z̄
. (29)

This is the normalized version of the ion inertia term, and this coefficient zref/V
2
ref can be used as the

normalization factor for every other term in the ion momentum equation. This is shown below.
The electric field term becomes:

e

mi
Ez → − e

mi

∂φ

∂z

(
zref
V 2
ref

)
= −∂φ̄

∂z̄
= Ēz. (30)

For the collisional terms, the reference equation for zref is applied to find a relationship between z, V, and
ν. Then the normalization of electron-ion (Coulomb) and ion-neutral collisions become:(

me

mi

)
νei(Vez − Viz) →

(
me

mi

)
νei
(
V̄ez − V̄iz

) 1

νref
, (31)(

mn

mi

)
νin(Viz − Vnz) →

(
mn

mi

)
νin
(
V̄iz − V̄nz

) 1

νref
. (32)

Lastly, the source term normalization relies on number density. As such, the normalization scheme can be
adapted to become the equivalent:

zrefnref

V 2
refnref

. This allows for number density to be accounted for, without

changing the normalization scheme.(
S

ne

)
(Viz − Vnz) =

k0+i nnne

ne
(Viz − Vnz) → k0+i n̄n(V̄iz − V̄nz)

zrefnref

Vref
. (33)

Now, the ion momentum equation can be written as the following in its final form:

V̄i
∂V̄i

∂z̄
= Ēz +

(
me

mi

)
νei
(
V̄ez − V̄iz

) 1

νref
−
(
mn

mi

)
νin
(
V̄iz − V̄nz

) 1

νref
− k0+i n̄n(V̄iz − V̄nz)

zrefnref

Vref
. (34)

2. Ion Continuity Equation Normalized

From the simplified ion continuity equation, the term with the least complexity is again selected to normalize:

∂(niViz)

∂z
. (35)

Within equation 35, it can be seen that there are three primary variables: Vi, ni, and z. As such, the
normalization references provided above (z = z̄zref ,ni = n̄inref , and Vi = V̄iVref from equation 26) are
applied. This gives the following:

∂(niViz)

∂z

(
zref

nrefVref

)
→ ∂(n̄iV̄iz)

∂z̄
. (36)

Lastly, the source term is dependent on two number densities, which necessitates there being two reference
number densities in the normalization scheme. In order to achieve this the normalization is adapted to look

like the following:
(

zrefnref

Vrefn2
ref

)
. Normalizing the source term with this factor gives:

S = k0+i nnne → k0+i nnne

(
zrefnref

Vrefn2
ref

)
= k0+i n̄nn̄e

zrefnref

Vref
. (37)
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This gives ion continuity in its final form as:

∂n̄iV̄iz

∂z̄
= k0+i n̄nn̄e ·

(
zref

Vrefnref

)
. (38)

3. Neutral Continuity Equation Normalized

The value for normalized neutral velocity is assumed to be given. This value was approximated through Roy
& Pandey’s numerical results.1

V̄nz ≈ 0.4. (39)

4. Electron Momentum Equation Normalized

Following the same normalization scheme as the ion momentum equation, the final normalized form of the
electron momentum equation becomes:

0 ≈ −mi

me
Ēz − ΩωceV̄e

1

νref
− νei(V̄e − V̄i)

1

νref
− νen(V̄e − V̄n)

1

νref
−
(
k0+i n̄n

)
(V̄e − V̄n). (40)

This result can be achieved due to both momentum equations possessing the same units.

5. Current Continuity Equation Normalized

Despite this equation being labeled as a continuity equation, the units are different than what is described in
ion continuity. As such, the normalization scheme for continuity as described in Section 2 cannot be applied.
Following the same process as described prior, the normalization factor for the equation is:

eni (Vi − Ve) → eni (Vi − Ve)
1

nrefVref
= en̄i

(
V̄i − V̄e

)
. (41)

After applying this scheme to the rest of the equation, current continuity in its final form becomes:

en̄i

(
V̄i − V̄e

)
= JT

1

nrefVref
=

Id
A

1

nrefVref
. (42)

6. Mass Conservation Normalized

Following the same process for mass conservation gives:

mnnnVn → mnnnVn
1

nrefVref
= mnn̄nV̄n. (43)

With the simplified configuration, mass does not need to be normalized as it will cancel out with the mass
terms embedded in mass flow rate:

¯̇m = mnV̄n · n̄n0 −mi

√
Te

Tref
· n̄i, (44)

where
√

Te

Tref
is the normalized ion velocity V̄i.

Applying this normalization scheme to the rest of the equation gives the following:

n̄n =
¯̇m− n̄iV̄i

V̄n
. (45)

7. Electron Energy Equation Normalized

Similar to all approaches prior, the normalization factor is found:

5

2

∂

∂z
(neVezTe) →

5

2

∂

∂z
(neVezTe) ·

zref
nrefVrefTref

=
5

2

∂

∂z̄

(
n̄eV̄ezT̄e

)
. (46)

Applying this to the rest of the equation through similar techniques gives electron energy in its final form:

5

2

∂

∂z

(
n̄eV̄ezT̄e

)
+ n̄eV̄ezEz = 3

me

mi
n̄eνei(T̄i − T̄e)

1

νref
+ 3

me

mn
n̄eνen(T̄n − T̄e)

1

νref
. (47)
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VIII. Conditions Prescribed to the Model

A. The Physics Layer

In order to improve the robustness of the PINN, a tailored layer between the hidden layers of the neural
network and the eventual output is introduced. This ‘physics layer’ will enforce several properties of the
solution as hard constraints such as (i) positivity of quantities such as density and temperature, (ii) boundary
conditions at z = 0, (iii) the potential drop across the thruster, and (iv) enable several of the underlying
equations to be exactly satisfied at z = 0. While such properties could be enforced as additional terms in the
loss function, by enforcing them as hard constraints this will limit the space of solutions that the optimizer
searches across. This will be shown below to have the effect of improving the robustness of the PINN. The
physics layer presented has the following properties:

1. The neutral number density at the inlet is assumed as given and equal to the reference number density
(nref ). This is not applied within the output transform as the algebraic mass conservation equation’s
residual is not being optimized.

2. Ion number density is determined based on Roy & Pandey’s condition of ni0 = 0.014·nref .
1 The output

transform is as follows: ni = ni0 + n1 tanh
(
z
L · n2

i,NN

)
, where ni,NN corresponds with the associated

hidden layers output for ion number density and n1 corresponds to a maximum ion number density.

3. The constraint for electric field was set such that a voltage drop was enforced across the thruster,
noting the relationship Ez = −∂φ

∂z . The output transform is written in terms of electric potential and
is as follows:
φ = φ0 · (L−z)(L+z)

L2 − φ1z
L

(L−z)
L +

(
z
L

)2 · φNN ,
where φNN corresponds with the associated hidden layers output for electric field, φ0 = 100V is an
initial electric potential, and φ1 is the derivative of φ.

4. Physics layer condition for ion velocity is chosen such that the ion momentum equation (see equation
34) is exactly satisfied at z = 0: Vi = k+0 ·nn0/νref ·z+Vi,Max tanh((

z
L )

2 ·VNN ), where VNN corresponds
with the hidden layers output associated with ion velocity.

5. The electron temperature is assumed to be equivalent to Te0 = 3.0[eV ] at the inlet. The output
transform is as follows: Te = Te0 ·e

z
L ·Te,NN , where Te,NN corresponds with the associated hidden layers

output for electron temperature.

From conditions 1-5 it is apparent that at z = 0, the ion density, velocity and temperature satisfy
ni = ni0, Te = Te0, and Vi = 0, which are the boundary conditions for these fields. Thus, regardless of the
output of the hidden layers of the neural network, the boundary conditions will be automatically satisfied. It
is also apparent that the ion density and temperature are guaranteed to be positive definite [see conditions
for ion number density (item 2) and electron temperature (item 5)]. Furthermore, the parameter n1 is set to
define the maximum density that the optimizer will search for, thus preventing the optimizer from looking
for unphysically large ion densities. In practice, n1 should be chosen to be substantial so that the range
of solutions considered isn’t artificially restricted, but small enough to restrict the network to physically
plausible values of the density. The performance of the PINN is not sensitive to the precise value of this
parameter.

From condition 3 it is apparent that the electrostatic potential is equal to φ = φ0 at z = 0 and φ = 0
at z = L, regardless of the value of φNN . This then guarantees that a potential drop of φ0 across the axial
dimension is enforced. Finally, the prefactors of conditions ion velocity and electric potential were chosen to
ensure that the ion continuity and momentum equations are exactly satisfied at z = 0 (item 4). Specifically,
the first derivatives of Vi and φ are forced to be equal to:

∂Vi

∂z

∣∣∣∣
z=0

= k+0 · nn0/νref , (48)

∂φ

∂z

∣∣∣∣
z=0

= φ1, (49)

which results in the ion continuity and momentum equation being exactly satisfied at z = 0. By guaranteeing
that the first derivative of Vi and φ are exact at z = 0, this forces the solution to be accurate for small
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values of z, and thus further improving the robustness in the training of the PINN. Without enforcing this
property, the residual of the system of ODEs was found to be maximal at z = 0. By enforcing exact first
derivatives of a subset of fields at z = 0 results in the residual of two ODEs vanishing identically at z = 0,
with only modest residuals for the other two ODEs, as illustrated Section IX,.

B. Conditions to Introduce Flexibility into the Model

A known challenge with modeling Hall thruster physics is the stiffness of the equations prescribed. In
order to mitigate this challenge, the model was given flexibility in what it was able to select for current
density. Furthermore, the model was set up such that a potential drop is enforced of φ0 = 100V , with which
discharge current could then be computed from. This is what is performed in several models such as Boeuf9

and Ahedo,10 and is referred to as a trainable variable. Consequently, the model is able to train and select
the value for current density that best suits the physics provided. As a result, model stiffness was reduced
and convergence improved.

IX. Results and Discussion

It is important to emphasize that since the model is still undergoing the iterative debugging process,
these results do not fully encompass the physics represented within the Hall thruster described in Roy &
Pandey.1 Even though this is the case, these results still provide a general precursor as to whether or not
PINNs are a viable tool to use in the electric propulsion community.

The described equation set has been solved numerically over a computational domain of the channel
length with the exit plane located at 4cm. No meshing was required to achieve these results or solutions.
The neural network architecture includes one input (z), four outputs (PDE residuals), four hidden layers,
and 32 neurons per layer. There is no determinate method to select the number of hidden layers for a neural
network, but making this value proportional to the number of outputs was conducive for model convergence
while balancing computational cost. The network tested 10,000 collocation points per epoch, with 40,000
epochs. More specifically, the Adam optimizer operated for the initial 10,000 epochs to start the training
process, and then L-BFGS trained for the remaining 30,000 epochs. The learning rate, similar to a time-step
of sorts, for both of these algorithms was 10−4. The training process took an approximate 4 minutes and 32
seconds.

The trainable variable of total current density referenced in Section B resolved to a value of 6.5859A.
During model development, it was noted that if the current density was prescribed by the user rather than
determined by the potential drop, convergence would not be met at higher amperage. This is a point of
concern within the model and will be explored further in future work.

A. Output Results

1. Loss History

In additional efforts to debug the model and conclude on the viability of PINNs, residual plots were made
versus space as well as versus epoch. Plotting residuals versus space for the last epoch in the training
process is advantageous as they allow for conclusions to be drawn regarding where the network is facing the
most challenges in the domain. Typically, the model encounters these points on the boundaries if there are
discrepancies in the physics application. Ideally, the residual versus space should oscillate about true zero.
Plotting residuals versus epoch allows for conclusions to be drawn on the error of the model with respect to
the physics it was provided. What is considered to be excellent convergence criterion is an error of ϵ < 10−3,
where residual relates to the square of error (residual = ϵ2)

Figure 4 demonstrates the loss history versus epoch, which demonstrates how well the optimizers were
able to converge with each iteration. It can be seen that the convergence criterion is surpassed with the
lowest residual being on the order of to 10−8, which corresponds to an error of 10−4. This, with the added
clarity given by the residual plots versus space, serve as the final indicator that the results provided have
converged to capture the relevant physics. This, however, does not guarantee accuracy of the solution as
this is a simplified model.

15
The 38th International Electric Propulsion Conference, P. Baudis Convention Center, Toulouse, France, June 23-28, 2024

Copyright 2024 by the Electric Rocket Propulsion Society. All rights reserved.



Figure 4: Convergence of each optimized PDE versus epoch. ICE stands for the Ion Continuity Equation,
IME represents the Ion Momentum Equation, EME corresponds to the Electron Momentum Equation, and
EEE denotes the Electron Energy Equation.

2. Ion Continuity and Mass Conservation Equations (ni and nn)

In Figure 5, it can be seen that the ion continuity residual trained optimally. The residual oscillates about
true zero for the entire span of the domain. Although the residual is largest in amplitude at the thruster
inlet and exit, the order of magnitude is small and thus not a point of concern.

Figure 5: The residual for the ion continuity
equation plotted versus thruster domain.

The rapid increase in ion number density (from 0.35×
1018 to 1.25 × 1018) correctly corresponds to the rapid
decrease in neutral number density (from 2.0 × 1019 to
0.05 × 1019), as represented in Figures 6 and 7. This is
qualitatively consistent with the fact that as neutrals en-
ter the thruster chamber they undergo impact ionization,
thus turning neutrals into ions. In reality, ion number
density should not decrease almost an order of magnitude
from the maximum density to the thruster exit. Addition-
ally, neutral number density should not decrease on the
magnitude with which is occurring. However, the trends
and physical concepts validate what is undergone in a Hall
thruster despite these discrepancies.1 The input parame-
ter of φ0 = 100V is expected to have a significant affect
on results. Similar to the model failing to converge for
higher amperage inputs, the model also fails to converge
for larger potential drops. This is due to the direct correspondence between thruster power, voltage drop,
and current. The lower input potential was required to reach convergence criteria with the truncated model,
even if the value of 100V isn’t considered standard operating conditions.
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Figure 6: Numerical Solution for ion number
density throughout the thruster domain.

Figure 7: Numerical Solution for neutral number den-
sity throughout the thruster domain.

The location of peak ion number density is validated by Figure 8, where the maximum ionization cor-
responds with maximum ion number density. This denotes the ionization region within the Hall thruster
model.

Figure 8: Numerical Solution for ionization rate throughout the thruster domain.

3. Ion Momentum and Current Continuity (Vi and Ve)

In Figure 9 it can be seen that the residuals are optimal as well. Figure 10 describes the axial ion velocity
profile. The peak ion velocity occurs at the end of the domain, but the steepest gradients are from regions
10mm to 20mm. This denotes the acceleration region of the model. Ions are accelerated primarily due to
the presence of the potential gradient, which is at a maxima near the channel exit. This lack of true maxima
at the end of the domain could be attributed to the relatively small prescribed initial potential compared to
what is denoted in Roy & Pandey (100V vs. 300V).1 In reality, the maximum ion velocity would peak and
then decay at the thruster exit.
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Figure 9: The residual for the ion momentum
equation plotted versus thruster domain.

Figure 10: Numerical Solution for ion velocity
throughout the thruster domain.

The results associated with the electron velocity profile are consistent to the provided conditions, but
not consistent with performance in a Hall thruster. In theory, the electron velocity should start small in
magnitude and increase within the acceleration region due to the presence of the magnetic field peaking in
this region. However, this is ongoing investigative work, and shortcomings of this solution are likely a result
of the reduced model.

Even with these graph discrepancies, it can still be seen qualitatively that the model is finding a solution
close to what represents a Hall thruster. The PINN faced little trouble when converging this simplified
model, so it is unreasonable to conclude that convergence problems will occur when the model is complete.
Any and all discrepancies, as such, are proven to be a product of the reduced-physics model and boundary
conditions provided in-code, which will be relaxed in future iterations.

Figure 11: Numerical Solution for electron velocity throughout the thruster domain.

4. Electron Momentum (Ez)

In Figure 12, it can be seen that the electron momentum equation converged properly with minimal residual
variance versus space. Figure 13 denotes the electric field, which is the negative gradient of potential, φ.
The peak occurring in this plot is consistent with what occurs in literature, but the ascent begins sooner
than what is standard.1
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Figure 12: The residual for the electron
momentum equation plotted versus thruster domain.

Figure 13: Numerical Solution for electric field
throughout the thruster domain.

5. Electron Energy

Figure 14 shows that, throughout the bulk of space, the residuals oscillate about zero. There are discrepancies
in oscillation period and amplitude, but none of these values significantly vary from true zero to justify a
point of concern. Figure 15 describes the electron temperature profile. The increase in the temperature is not
uniform in the channel, which is consistent with literature.1 The maximum increase occurs approximately
three-quarters into the thruster channel. For the presented model, the magnitude of the electron temperature
maxima is higher than what is found in Roy & Pandey.1 In theory, the peak in electron temperature can
be attributed to ohmic heating and maximum gyration energy in this region. However, this does not appear
to be the case for this model. This could point to some apparent limitations of the present one-dimensional
simplified model.

Figure 14: The residual for the electron
energy equation plotted versus thruster domain.

Figure 15: Numerical Solution for electron tempera-
ture throughout the thruster domain.
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X. Conclusion

In this paper, a simplified, steady, one-dimensional PINN model is presented for a Hall thruster with
quasineutral plasma. The model includes the formulation of partially ionized plasma using the multi-
component fluid equations to study the convergence and solutions PINNs can produce to validate viability.

The plasma and neutral density profiles are in decent agreement with reported literature. The ion density
subsequently is also in decent agreement as these parameters are inversely related. The electron temperature
and electric field profile predict a maximum in the downstream region of the Hall thruster. The axial ion
velocity distribution shows that ions are accelerated down the channel, as would be expected for a thruster
plasma.

While the PINN implementation was relatively successful, the presented one-dimensional model had
several simplifying assumptions, which limited the proper validation of the results. Specifically, the electron
and ion momentum equations were simultaneously considered at steady state which severely limits the
accuracy of the solution. The neutral velocity needs to be calculated, and reasonable wall loss terms should
be brought back to recover proper physical processes described in reference literature.1,14,19 This is one of the
final steps remained in the model development before considering the addition of anode fall or incorporating
experimental data.

A. Future Work

Upon addition of the neutral continuity equation into the system and relaxing simplifications, the fluid
model will become complete. In the future, relationships between the initial electric potential, current
density, and convergence rates will be further explored. As of now, the model faces difficulty in training at
larger input discharge voltages and input amperages. These future results are also expected validate the use
of PINNs, allowing the problem to then be extended to multiple dimensions with higher-order parameter
space simulations that are not presently possible with conventional methods. With the addition of a modest
quantity of experimental data, the neural network can be expanded such that it can accurately predict
solutions over a variety of thruster configurations at low computational cost. This is implemented via an
additional term in the loss function by replacing Nbdy by Ndata in equation 1, where Ndata represents the
number of data points utilized. The addition of data will greatly extend the neural network’s ability to
predict dominant characteristics that arise in a Hall thruster. As such, this research has the novelty and
potential to grow and be improved upon to positively contribute to the electric propulsion community.
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