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ABSTRACT

Data-driven modal analysis methods provide a powerful way to decompose data into a sum of modes. The spatiotemporal Koopman
decomposition (STKD) enables the computation of modes defined by global frequencies and growth rates in various spatial dimensions and
time. The method is an extension of the dynamic mode decomposition (DMD) and higher-order dynamic mode decomposition (HODMD)
that represents the data as a sum of standing and traveling, possibly growing or decaying, waves. In this paper, the STKD with HODMD is
applied to schlieren video highlighting second mode instability waves traveling down the length of a 3-degree half-angle cone and a 7-degree
half-angle cone, both at a freestream Mach number of 6. The HODMD is able to compute dominant modes and frequencies that align with
those from associated experimental measurements of unsteady pressure fluctuations, and whose mode shapes clearly show the intensifying
wavepacket structure of the waves. The STKD algorithm is used to compute streamwise wavenumbers, spatial growth rates, and wave speeds.
The spatial growth rates from the STKD and the magnitudes of the HODMD mode shapes are used to compute the N-factor for waves of sev-
eral frequencies. Overall, the STKD with HODMD is shown to be a useful tool for extracting spatiotemporal disturbance growth from a
schlieren video.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226443

I. INTRODUCTION

Transition prediction is vital for hypersonic flight as the onset of
turbulence can significantly impact important flight characteristics
such as surface heating and drag. An understanding of hydrodynamic
stability is necessary to gain insight into the complex process of transi-
tion. The fundamental work done by Mack1 summarizing linear stabil-
ity theory (LST) is well-known. Specifically, Mack’s second mode is an
instability mechanism that selectively amplifies high-frequency acous-
tic waves that remain within the sonic line in the boundary layer. For
flow regimes at a Mach number greater than 4 over flat plates and
cones at zero angle of attack, it is known that this second mode
becomes the dominant instability mechanism as it is associated with
the largest amplification rate.

Initially a solution to the LST equations, Mack’s second mode
instability is studied via more sophisticated analyses such as parabol-
ized stability equations (PSE)2 for more complex flows. Numerical
simulations used for stability calculations can become exceedingly

costly, however. Experimental measurements of instability mecha-
nisms contain the true physics without limiting assumptions such as
linearization of the flow. However, experiments, especially in the
hypersonic regime, come with a wide range of difficulties. Pressure
sensors can be used to measure pressure fluctuations which can be
used to estimate modal frequencies, but identifying growths of distur-
bances like instability waves that evolve spatially with a given fre-
quency can be more challenging. Thus, it is desirable to look at other
sources of unsteady data like schlieren videography to extract this type
of information.

In this paper, the effectiveness of a data-driven modal decomposi-
tion method, the spatiotemporal Koopman decomposition (STKD)
developed by Le Clainche and Vega3 (discussed below), is examined
through computation of second mode instability growth from experi-
mental schlieren video. The goal of implementing this algorithm is to
show a fast and computationally inexpensive method of estimating
second mode growth from experimental schlieren, a data source
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primarily used for flow visualization. The implications of this purely
data-driven method are wide-reaching, and the algorithm could be
applied as a low-cost method for estimating growth of any signal in a
flow-field from schlieren or other unsteady data sources. The novelty
of this paper is the application of STKD to extract spatial growth rates
of second mode waves from schlieren video along with associated
wave speeds. To the authors’ knowledge, this is the first application of
STKD for a coupled spatiotemporal analysis of experimental measure-
ments of second mode instability waves. However, separate temporal
and spatial analyses have been done to compute the growth of instabil-
ity waves. For example, authors applied dynamic mode decomposition
(DMD)4 and later higher-order DMD (HODMD)5 for a purely spatial
analysis to estimate the spatial growth of TS waves from numerical
simulation data for flow over an airfoil.6,7 Another study used
HODMD spatial analysis to analyze cross-flow instabilities over an air-
foil.8 Additionally, other studies have used temporal analyses to exam-
ine spatial mode shapes and their associated time dynamics with
various modal analysis techniques including DMD from schlieren.9

Most previous studies have used modal analysis methods like DMD
for spatial or temporal analyses of schlieren or of instabilities from
computational or experimental data. The approaches in the present
paper have the advantage of isolating spatial growth rates for waves
with specific temporal frequencies, constituting a coupled spatiotem-
poral analysis of second mode instability waves from experimental
schlieren.

Data-driven modal decomposition such as the proper orthogonal
decomposition (POD)10 and DMD have been used for a wide variety
of physical problems and are commonly used in fluid dynamics to ana-
lyze complex or turbulent flow-fields.11 The DMD algorithm, however,
poorly represents data that have a higher spectral complexity than spa-
tial complexity.5 Here, spectral complexity is related to the number of
frequencies and damping rates required to represent a dataset, while
spatial complexity is the dimension of the vector space spanned by the
DMD modes. Each DMD mode has only one frequency and one
growth rate, so the number of frequencies that can be computed is lim-
ited by the spatial complexity. This is a fundamental limitation in the
DMD algorithm, which computes eigenvectors of a best-fit matrix that
advances snapshots one time step into the future. The rank of this
best-fit matrix is then the spatial complexity of the data. The DMD
makes the approximation for a snapshot matrix V of size I�K that

VK
2 � RVK�1

1 ; (1)

where R is the matrix whose eigenvectors give DMD modes. The
superscript here denotes the last column being taken, and the subscript
denotes the first. Thus, the right-hand side matrix VK�1

1 contains all
but the last column of V. Then, this best-fit matrix R has only at most
the rank of the set of snapshots and accordingly has a limited number
of eigenvectors corresponding to non-zero eigenvalues. The rank is
further limited by a dimension reduction with an initial truncated sin-
gular value decomposition (SVD) that is often used to filter out noise
or small flow scales that could be undesirable. The issue of limited spa-
tial complexity arises when data are either spatially undersampled (a
time series from a single spatial point would have a rank of one, for
example) or when an optimal rank truncation has been done via a
truncated SVD-based method.

The HODMD overcomes the issue of spatial complexity by using
time-lagged snapshots. The HODMD assumes there are d matrices

that relate dþ 1 snapshots to each other, where d is the delay parame-
ter. The higher-order Koopman assumption encapsulates this as

vkþd ¼ R1vk þ R2vkþ1 þ � � � þ Rdvkþd�1; (2)

for k ¼ 1;…K � d, where vk are columns of the snapshot matrix.
This ideally enlarges the dimension of the data for the spectral com-
plexity of the data to be better captured. The problem of larger spectral
complexity than spatial complexity is well-known for the standard
DMD, as12,29 emphasized the DMD cannot compute all oscillatory
dynamics that exist in a subspace with a rank less than twice the num-
ber of expected frequencies. This is because two DMD modes are
required to capture one frequency, a complex-conjugate pair. The
exact algorithm will be summarized in more detail in Sec. II. The
HODMDmethod is used here because many fluid dynamics problems
have larger spectral complexity than spatial complexity, and experi-
mental data like schlieren video have inherent noise that adds non-
physical spectral complexity to a degree that can cause standard DMD
to provide spurious results. As will be discussed in this paper, standard
DMD produced good results for the purely temporal decomposition.
However, a mix of standard DMD and HODMD was required for the
spatiotemporal analysis.

In addition to the benefits above, the HODMD method has been
shown to converge to finding peak frequencies faster than other modal
decomposition techniques including standard DMD, POD, and spec-
tral POD (SPOD)13 from limited data for several different fluid
dynamics simulations.14 Both HODMD and standard DMD methods
result in modes u that are functions of space only and modulated by
sinusoids that can grow or decay exponentially. This is represented in
Eq. (3) as

vðni; tkÞ �
XN
n¼1

anunðniÞe dnþixnð Þtk ; (3)

where the spatial indices have been collected and stacked so that each
snapshot, and therefore each mode, is a vector of length equal to the
number of spatial points. Thus, n parametrizes points along all the spa-
tial dimensions of the dataset organized consistently into entries of a
single vector. The data can be organized as a higher-order tensor as
well. However, this changes the algorithm slightly as discussed below,
and it requires the application of a higher-order singular value decom-
position (HOSVD). Using the HOSVD allows for better noise removal
in many cases than the standard truncated SVD, as will be discussed in
subsequent sections.26,28

The HOSVD is necessary for the multidimensional extension of
HODMD that Le Clainche and Vega first developed to obtain modes
with explicit spatial and temporal growth rates, frequencies, and spatial
wavenumbers, the STKD.3 The STKD allows for expansions of the
form

vðxi; yj; tkÞ �
XM
m¼1

XN
n¼1

amnumnðyjÞe �mþijmð Þxiþ dnþixnð Þtk ; (4)

where the modes u could be functions of a spatial coordinate or not,
and as many spatial coordinates could be included in the exponential
as is desired. Generally, the benefits of enhanced filtering through the
HOSVD and the robustness of the HODMD method lend the STKD
to be more well suited for complex multiscale or turbulent flows than
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traditional DMDmethods. The STKD has been applied to analyze vor-
tices in urban environments,15 flows around offshore wind turbines,16

a zero-net-mass-flux jet,17 and a 3D cylinder wake.18 For the analysis
in this paper, x is taken to be the surface-tangent coordinate along the
streamwise direction of the cone, and the expression of interest is
exactly that defined in Eq. (4).

The outline of the rest of this paper is as follows. First, the algo-
rithms for HODMD and then STKD are presented. This is because
there are many DMD-like methods and variations of the algorithms,
so it is important to outline the steps taken in the present study. Then,
the experimental setup is described along with a note about the appli-
cation of the methods to schlieren video. The Boeing/AFOSR Mach 6
Quiet Tunnel (BAM6QT) was used for the schlieren videography
because of its unique quiet run capability, allowing for the second
mode waves to be seen more clearly. Next, results for standard DMD
(equivalent to HODMD with a delay parameter of one) are presented.
An estimation of noise levels based on DMD-1 is given. This is then
used to choose the truncation tolerance for HODMD with a delay
parameter greater than one. Finally, the HODMD and STKD analyses
are presented. These methods are shown to be useful for extracting
important flow features such as modal frequencies, wavenumbers, spa-
tial growth rates, and wave speeds from the schlieren video. The pro-
cess described in this study suggests that application of STKD to
schlieren video can give fast, low-cost estimates of growth rates of sec-
ond mode instability waves in the flow in addition to the other param-
eters mentioned above. This is an improvement over traditional
computationally costly numerical simulations which make limiting
assumptions such as small-amplitude perturbations or linearization of
the flow and other experimental measurements where it can be diffi-
cult to obtain a full picture of the flow phenomenon being analyzed. In
addition, the usefulness of the STKD is not limited to instability waves
as has been discussed in the papers mentioned above. Therefore, impli-
cations of applying the STKD to schlieren videos can be extended to
extract the dynamics of many flow features from schlieren video where
spatially evolving structures are involved.

II. HODMD ALGORITHM

The HODMD algorithm, also termed the DMD-d algorithm, is
summarized here for completeness. For a detailed derivation of the
method and its properties, see the original paper by Le Clainche and
Vega.5 The first step is to start with the truncated (to rank r) economy-
size SVD of the snapshot matrix of size I�K, written as

V ¼ XRTT : (5)

Here, X is of size I� r, R is r� r, and T is K� r. The truncation
parameter is determined based on the magnitudes of the singular val-
ues r. Namely, r is chosen so that the relative root mean square error
(RRMSE) of the SVD reconstruction is

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rrþ1 þ rrþ2 þ � � � þ rfinal
r1 þ r2 þ � � � þ rfinal

r
� esvd;1: (6)

The RRMSE is defined as

RRMSE � jjV � VDMDjjF
jjVjjF

: (7)

Alternatively, the tolerance could be implemented so that

rrþ1

r1
� eSVD;1: (8)

A dimension reduction could also be obtained via a truncated
higher-order singular value decomposition (HOSVD) which repre-
sents the data as

Vijk �
XP3
p3¼1

XP2
p2¼1

XP1
p1¼1

Sp1p2p3Xip1Yjp2Tkp3 : (9)

The data must initially be organized as a snapshot tensor for the
HOSVD, Vijk ¼ Vðxi; yj; tkÞ. The HOSVD allows for better noise
removal by allowing for SVD truncations in each dimension of the ten-
sor. This gives singular values corresponding to each dimension as well
ðrx; ry; rtÞ. The tolerance eHOSVD can be different along each dimen-
sion. The temporal modes T are then rescaled as

T̂ ¼ RTT (10)

if a standard truncated SVD was performed or as

T̂ p3k ¼ rtp3Tp3k (11)

if an HOSVD was used initially. The columns of T̂ , denoted t̂, are
referred to as the reduced snapshots. The higher-order Koopman
assumption is applied to the reduced snapshots as

T̂
K
dþ1 � R̂1T̂

K�d
1 þ R̂2T̂

K�dþ1
2 þ � � � þ R̂dT

K�1
d : (12)

The algorithm proceeds by reshaping this equation into one containing
modified snapshots as

~T
K�dþ1
2 � ~R~T

K�d
1 ; (13)

where the columns ~tk are

~tk ¼
t̂k
t̂kþ1

…
t̂kþd�1

2
664

3
775: (14)

A final truncated SVD is then applied to filter out any redundancies
resulting from this process, which gives the equation for the reduced
modified snapshots as

�TK�dþ1
2 � �R�TK�d

1 : (15)

A second tolerance esvd;2 is used for this truncation. The reduced modi-
fied snapshots �T above are given as the product of the singular value
matrix and the transpose of the matrix of right singular vectors from
the truncated SVD of ~T , just as the reduced snapshots are computed
from the SVD matrices of the snapshot matrix. The matrix �R is solved
for with a pseudo-inverse. The eigenvalues of the �R, kn, give the growth
rates and frequencies based on the relation

dn þ ixn ¼ ln knð Þ
Dt

: (16)

The eigenvectors of �R give those of ~R when left-multiplied by the
matrix of left singular vectors of ~T (obtained through the final trun-
cated SVD mentioned above). The first P3 (or r) components of each
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of the eigenvectors of ~R are the reduced modes û. The expansion now
reads

t̂ �
XN
n¼1

anûne
dnþixnð Þtk : (17)

The reduced modes ûn are rescaled to have unit RMS Frobenius norm.
Then, the amplitudes are solved for via a least squares fit of the above
expansion to the reduced snapshots t̂. They are then truncated based
on the tolerance eamp such that only modes with

an
amax

� eamp (18)

are kept. Then, the final HODMD modes for the standard SVD ver-
sion of the method are found by left-multiplying the reduced modes
by the matrix of left singular vectors of the reduced snapshots as

un ¼ Xûn: (19)

For the HOSVD variant, the modes must be computed from the
HOSVDmodes as

uijn ¼
XP3
p3¼1

XP2
p2¼1

XP1
p1¼1

1
rtp3

Sp1p2p3Xip1Yjp2 ûnp3 : (20)

III. TWO-DIMENSIONAL STKD ALGORITHM

The STKD algorithm is summarized below for completeness, and
Le Clainche and Vega give a complete description and derivation of
the method in the original paper.3 The first step is computing the
HOSVD of the snapshot tensor. For clarity, the truncated HOSVD is
written again here as the sum

Vijk �
XP3
p3¼1

XP2
p2¼1

XP1
p1¼1

Sp1p2p3Xip1Yjp2Tkp3 : (21)

The HOSVD mode matrices are then rescaled by their singular values
as

X̂ pi ¼ rxp1Xp1 i (22)

and

T̂ pk ¼ rtp3Tp3k: (23)

The HODMD algorithm, excluding the initial truncated SVD,
can then be applied to X̂ and T̂ , which yields

T̂ p3k �
XN
n¼1

atnû
t
p3ne

dnþixnð Þtk (24)

and

X̂ p1i �
XM
m¼1

axmû
x
p1me

�mþijmð Þxi : (25)

Now, the non-normalized STKDmodes are computed as

~umnj ¼ axma
t
n

XP3
p3¼1

XP1
p1¼1

Ŝp1jp3 û
x
p1mû

t
p3n; (26)

where

Ŝp1 jp3 ¼
1

rxp1r
t
p3

XP2
p2¼1

Sp1p2p3Yjp2 : (27)

The STKDmode amplitudes are solved for as

amn ¼ 1ffiffi
J

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j¼1

½~umnj	2
vuut ; (28)

for amn> 0. The STKDmodes are then given as

umnj ¼
~umnj

amn
: (29)

Note that the above non-zero amplitudes are real and positive, and the
modes exhibit unit RMS norm. With these definitions, the expressions
(24)–(29) yield the desired expansion (4). Like the HODMD algo-
rithm, the final amplitudes may be truncated so that only

amn

maxðamnÞ � eamp (30)

are kept. This value of eamp may or may not coincide with that used in
the HODMD analysis of X̂ and T̂ .

IV. EXPERIMENTAL SETUP

The Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) is a
Ludwieg tube design engineered to achieve Mach 6 flow. The driver
tube up to burst diaphragm section is pressurized to the desired stag-
nation pressure. The dual diaphragm configuration acts as a barrier
between the vacuum tank and the pressurized tunnel segments. The
tunnel is started by bursting both diaphragms, followed by the passage
of an expansion fan through the throat, initiating Mach 6 flow within
the test section.

This wind tunnel produces Mach 6 flow while maintaining an
approximate free-stream noise level of 0.02%.19 Quiet flow is achieved
through a combination of a highly polished nozzle, long diverging sec-
tions, and boundary layer suction via bleed-slots at the nozzle throat.
Disabling the bleed-slot suction during operation transitions the tunnel
to a conventional mode, resulting in a free-stream noise level of
approximately 3%.19 The BAM6QT typically sustains operation for 4–
5 s, with approximately 3 s of continuous quiet flow.20,21

A. 3-degree cone

The 3-degree cone model consists of a sharp 3-degree half-angle
cone with a base diameter of 11.43 cm. The model is sting mounted.
The cone is adjusted to have a 0 degree angle of attack. A simple model
schematic can be seen in Fig. 1.

B. 7-degree cone

The 7-degree cone model consists of a sharp 7-degree half-angle
cone with a 4.31 in. base. The strut is 0.43 in. thick and is mounted to
the top of the tunnel. When mounted in the tunnel, the cone is
assumed to be at a 0 degree angle of attack. A simple model schematic
can be seen in Fig. 2.
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V. APPLICATION OF HODMD AND STKD TO SCHLIEREN
VIDEO

The frames of the schlieren video are matrices of gray-scale pixel
values. For the HODMD with standard SVD, each frame, or snapshot,
is reshaped into a column vector, and these column vectors are stacked
sequentially into the snapshot matrix. Each column then contains all
of the pixel values from the respective frame of the video, and each col-
umn represents the video one Dt from the previous. For the STKD
and HODMD with HOSVD, the video is initially organized as a higher
dimensional tensor where each index corresponds to a different
dimension as in Eq. (4). In the present analysis, both videos are
cropped to regions of interest, and 500 frames are taken. For the
HODMD analysis, the desire was to obtain time dynamics associated
with spatial modes u(x, y). The spatial growth rates and wavenumbers
are given implicitly by the mode shapes given by the temporal
HODMD analysis. Thus, the STKD can be thought of as further
decomposing the spatial information of each HODMDmode as a sum
of potentially growing or decaying sinusoids in space and time to give
explicit spatial dynamics as well.

The cropped regions of interest are shown for the videos in Figs.
3 and 4. These images contain the first frames of the unprocessed vid-
eos. For the 3-degree case, the image is flipped horizontally to show
flow going left to right. In addition, the results shown hereafter assume
the positive x-direction to be the streamwise direction. The video is
confined to last approximately 9 cm of the length of the cone, and the
video is oriented such that the camera is aligned with the cone surface.

Like the 3-degree cone video, the original unprocessed video of
the 7-degree cone is flipped so that the flow moves left to right, and
this is flipped for the rest of the analyses as well. The video shows the
base corner of the cone and part of the base flow region. Additionally,
the video is aligned with the freestream direction, so the base corner of
the cone is seen pointing down with the cone surface tilted 7 degrees
from the orientation of the video frame. Note that the colormap for
the schlieren frames was adjusted uniformly from traditional grayscale
for enhanced visibility.

VI. RESULTS AND DISCUSSION
A. DMD and HODMD

1. DMD-1 with standard SVD and no dimension
reduction

For all cases analyzed here, DMD-1 has been applied to the
mean-subtracted dataset with no SVD truncation (eSVD 
 1). No

truncation means the rank of the snapshots was not reduced. For the
3-degree cone case, the rank of the snapshot matrix was 499, so 499
SVD modes were kept. This was done because mean subtraction has
been shown to improve results of SVD-based DMD.22 This resulted in
a very small reconstruction error compared to the mean-subtracted
dataset, RRMSE � 6:50� 10�13. The video has background noise,
which can be seen in the DMDmodes below, but the main features are
highlighted clearly enough due to the high signal-to-noise ratio (SNR).
The high SNR combined with the high spatial resolution of the video
allowing for high spatial complexity to fully capture the spectral com-
plexity of the data (when no truncation has been done to reduce the
spatial complexity in an effort to remove noise) explains the good per-
formance of the DMD-1 method for the cases presented here. Figure 5
shows the DMD-1 spectrum, where the eigenvalues are colored by
their normalized amplitudes, as well as a plot of normalized amplitude
vs frequencies and growth rates.

The plot of frequencies shows peaks around 101.50 and
106.75 kHz. In addition, higher harmonics of this frequency range are
seen. This harmonic energy transfer is a known experimental phenom-
enon, and the peak frequencies here align closely with those from the
corresponding pressure sensor data.23 The closeness of computed fre-
quencies to experimental PSD is expected too, as24 showed an equiva-
lence between the DMD and the discrete Fourier transform (DFT)
when the mean is subtracted. However, Hirsh et al.22 showed that this
is only the case whenever the mean-subtracted dataset has full effective
rank. Although the physics involved may be lower-rank, background
noise causes the experimental dataset to be full rank. Thus, the similar-
ity between the DMD and DFT persists—the growth rates are all
approximately zero, which means that this dataset has been decom-
posed into a sum of non-decaying Fourier modes. The frequencies
computed were all separated by Df ¼ fs=K . This is exactly the output
of a DFT applied to a signal. The reduction of DMD to a DFT is gener-
ally not desirable, as exponential growth in the signal will not be cap-
tured explicitly (only as the sum of a large number of purely oscillatory
Fourier modes since the Fourier transform of a decaying exponential is
a continuous function of frequency). However, for the time dynamics
of the present datasets, finding exponential growth was not the goal, so
frequencies close to experimental values along with spatial mode
shapes that displayed the proper physics were considered adequate.
However, as will be discussed later, this was not sufficient for the spa-
tial analysis which sought to exploit exponential growth in space.

The DMD mode contours for the 106.75 kHz mode are shown in
Fig. 6. The mode shapes clearly show the wavepacket structure of the

FIG. 1. Model schematic showing basic geometric details for 3-degree cone. All units are in inches unless otherwise noted.
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second mode instability waves. The intensification of the signal as the
wave travels downstream is shown in both the real and imaginary
components. This is also made clear in the magnitude plot in Fig. 6(c),
while the phase plot [Fig. 6(d)] more clearly shows the traveling nature
of the disturbance. The relationship between amplitude and phase and
the real and imaginary mode shapes is clarified by reconstructing the
data based on one mode pair. This is due to the fact that complex
modes computed from real-valued data with both nonzero imaginary
parts and nonzero real parts come in complex-conjugate pairs. Letting
an overbar denote the complex conjugate and the positive-frequency
mode be uðx; yÞ ¼ aðx; yÞ þ ibðx; yÞ, then uðx; yÞeixt þ �uðx; yÞe�ixt

¼ 2aðx; yÞ cosðxtÞ � 2bðx; yÞ sinðxtÞ. Then, the reconstruction
based on a single mode pair, ignoring amplitude, can be written as

Vreconst ¼ Aðx; yÞ cos½xt þ /ðx; yÞ	; (31)

where the phase angle /ðx; yÞ ¼ atan2½bðx; yÞ; aðx; yÞ	, and A(x, y) is
twice the magnitude of the single DMD mode. Note that A(x, y) is dif-
ferent than the amplitude associated with each mode—each mode is
scaled to have unit RMS Frobenius norm and A(x, y) is the variation in
the value of the mode shape. A small distinction that must be noted,
however, is that when looking at a single DMD mode the phase
may have a flipped sign. This is because the negative-frequency mode
in the complex-conjugate pair will have a phase of /ðx; yÞ
¼ atan2½�bðx; yÞ; aðx; yÞ	. The positive frequency mode will have a
phase that matches the sum of the contribution of the two modes.

For the 7-degree cone, a similarly low reconstruction error was
seen when applying DMD-1 to the mean-subtracted schlieren video.
The reconstruction error was RRMSE � 6:45� 10�13. The DMD-1
spectrum along with the frequencies and growth rates is given in
Fig. 7. Again, there is a high-frequency mode that represents incoher-
ent noise at 473.5 kHz, half the sampling frequency. The peak frequen-
cies are clearly identifiable in Fig. 7(b). The peak frequencies
corresponding to the second mode waves were around 275 kHz. The
highest amplitude DMD-1 mode corresponding to the second mode

instability waves had a frequency of 278.25 kHz. There are several
other high-amplitude modes close to this frequency as well.

The contours of the third DMD-1 mode corresponding to a peak
frequency of 278.25 kHz are given in Fig. 8. The peak frequencies here
align closely with STABL PSE computations. The real and imaginary
parts visualize the wavepacket structure, while the magnitude and
phase show the increasing wave intensity and traveling nature, respec-
tively. These mode shapes align with the published SPOD results for
the schlieren video.25 The instability waves are shown to follow the
expansion around the base corner and showed that the peak second
mode frequencies were found in the power spectrum of unsteady base
pressure measurements taken during the run.25

2. Mean subtraction and SVD truncation for d> 1

For higher values of the delay parameter d, it was found that sub-
tracting the mean from the data did not improve results. This is likely
due to the fact that the modified snapshot matrix defined in Eqs. (13)
and (14) did not necessarily have a zero temporal mean for each of its
rows. In this case, the DMD does not reduce to the DFT which can
mean higher reconstruction error despite having potentially physically
more relevant modes that capture growth rates. Additionally, and
counter-intuitively, a heavier truncation was required to achieve the
expected results. This is attributed to the fact that the DMD-1 method
suffered a significant loss in reconstruction accuracy even when only a
few SVDmodes were removed in a truncation (for example, to rank 490
instead of the full 499). If the first truncation for HODMD with d> 1
keeps all 499 SVD modes initially, the dimension of the data would be
reduced to 500� d þ 1 upon construction of the modified snapshot
matrix in Eq. (14). This is problematic, as the goal of constructing the
modified snapshot matrix is to enlarge the dimension of the data.

The amount of SVD truncation that should be performed is not
always clear, and this must be chosen carefully. In Ref. 14, the authors
mention that large truncations may be required for complex multi-

FIG. 2. Model schematic showing basic
geometric details for 7-degree cone. All
units are in inches unless otherwise
noted.

FIG. 3. Cropped region of interest for 3-degree cone. The image has been flipped horizontally so that flow goes left to right.

FIG. 4. Cropped region of interest for 7-degree cone. The image has been flipped to show the flow moving left to right.
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scale (or noisy) data despite the fact that one would otherwise generally
want to keep as many SVD modes as possible to capture the full phys-
ics embedded in the data. The tolerance eSVD can be used to compute
the lower-rank approximation of the dataset onto which the Koopman
matrix R would be projected if d¼ 1. If d> 1, the reduced SVD coordi-
nates are those used to compute the modified snapshots and the modi-
fied Koopman matrix. Ideally, for simple flows, eSVD would be set
based on the noise level. However, for feature identification in complex
or turbulent flows, the tolerance can be relaxed further to remove even
smaller scales of turbulent flow in addition to noise.14,26 Alternatively,
the truncation value can be set directly by keeping only the leading
SVD modes. This truncation can reduce the accuracy of standard
DMD. This is because the dimension-reduced snapshots may still con-
tain a very high spectral complexity.

DMD with a truncated SVD computes the best-fit linear operator
that advances the time coefficients of the leading SVD modes one time
step into the future. Because the SVD is dimension-reduced, the

higher-order Koopman assumption can be more accurate than the
standard DMD approximation and augment the spatial dimension. In
this way, the HODMDmethod allows one to analyze the time dynam-
ics of the most energetic SVD modes in a way that standard DMD can
fail to do due to the low rank of the dimension-reduced data. This also
partially elucidates the reason that HODMD works better with a
heavier truncation than standard DMD—the kept higher energy SVD
modes can contain a great deal of spectral complexity that requires
augmentation beyond the K � d þ 1 limit in Eq. (13). Truncating the
SVD then, which reduces the spatial complexity, will also limit the
spectral complexity that could be captured by the standard DMD.
With HODMD, the full spectral complexity of the truncated data can
be found as long as it is less than K � d þ 1. Standard DMD without
dimension reduction can result in noisy modes and could even lead to
spurious results. Dimension reduction can help clean the noise as long
as the spectral complexity of the remaining SVD modes is not much
higher than the number of retained modes. Of course, as stated above,
DMD can reduce to a DFT in which case the data will be represented
almost exactly with RRMSE 
 1, though this may not be desirable
depending on the exact scenario.

These factors motivate using a larger tolerance for the initial SVD
truncation. As shown above, the DMD-1 with no truncation identified
expected peak frequencies and mode shapes, but the modes were still
noisy—the small RRMSE means the noise was reconstructed too. In
addition, the DMD-1 method produced many low-amplitude modes
that contained only (or mostly) noise. On the one hand, the small-
amplitude modes could be removed after the computation of the
DMD expansion. However, the DMD-1 modes found above still con-
tain background noise. Thus, although leaving in the noise for DMD-1

FIG. 5. DMD-1 frequencies and growth rates for 3-degree cone.

FIG. 6. DMD-1 106.75 kHz mode contours for 3-degree cone case.
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produced accurate results in terms of the data reconstruction, it was
desirable to apply the HODMD with d> 1 as well. Thus, it was seen as
desirable to remove noise via a truncated HOSVD and apply DMD-d
and DMD-1. The subsequent sections detail noise estimation, applica-
tion of DMD-d with d> 1 with HOSVD, and DMD-1 with HOSVD
before the final spatiotemporal analysis with STKD.

3. Estimation of noise from DMD-1

The amplitude vs frequency plot in Fig. 5(b) was used to truncate
the DMD expansion to filter noise. The kept modes are marked on the
frequency plot (Fig. 9) below with a circle. In addition to removing the
small-amplitude modes via setting eamp ¼ 1:2� 10�1, the high-
amplitude mode with a frequency of 437.5 kHz was removed. This is
because a visual inspection of the mode shows only incoherent noise.
Figure 10 shows the 400th snapshot of the original data and cleaned
(reconstructed) data. The cleaned dataset retained 106 modes,

meaning the rank of the reconstruction was 106. Interestingly, the
reconstruction error for keeping these higher-amplitude modes
reaches RRMSE � 5:56� 10�1. This implies that the noise makes up
a significant portion of the fluctuating component of the pixel value.
This highlights the key difference that must be noted when setting
eSVD with Eqs. (6) vs (8). This allows a set tolerance based on a known
noise level or a desired reconstruction error based on the Frobenius
norm. Ultimately, the eHOSVD ¼ 1:2� 10�1 tolerance was used in the

FIG. 7. DMD-1 frequencies and growth rates for 7-degree cone.

FIG. 8. DMD-1 278.25 kHz mode contours for 7-degree cone case.
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DMD-1 with HOSVD analysis below for the spatial HOSVD mode
matrices to remove background noise. A similar analysis was done to
determine the noise levels for the 7-degree cone.

The singular values from the SVD of the snapshot matrix are
given in Fig. 11. The comparison to the eSVD is shown as well. This cri-
terion indicates that the dimension of the data should be limited to
approximately r¼ 27. It is seen in the figure that the singular values
level off relatively soon after this value. The standard DMD (DMD-1)
gives spurious time dynamics with this large of a truncation. This is
the general motivation for using DMD-d with d> 1. However, good
time dynamics (low RRMSE of the reconstruction) were found with a
delay parameter of d¼ 1 for the mean-subtracted dataset. For that rea-
son, the truncated HOSVD was applied to add spatial filtering without
heavily reducing the spatial complexity for the temporal analysis (trun-
cating the rank of X and Y but no T truncation). The results of this
analysis are presented in Sec. VIA4.

4. DMD-1 with truncated HOSVD

Due to good but noisy results from DMD-1 without truncation,
DMD-1 with truncated HOSVD was done. The tolerance eSVD was set
at the noise level in Sec. VIA3, 1:2� 10�1 for the spatial dimensions,
while the temporal tolerance was set much lower (1:0� 10�4) such
that no temporal modes were removed. This meant the number of
modes in each direction were ðP1; P2; P3Þ ¼ ð49; 13; 499Þ. This
resulted in very similar results to the DMD-1 without truncation, but
much of the noise was removed. One small difference is that the final
amplitudes of each mode were slightly different because the spatial
mode shapes reconstructed from the reduced HOSVD mode matrices
were rescaled to have unit RMS norm. The singular values from the
HOSVD are given in Fig. 12. The results for the mode shape of the
106.75kHz mode are given in Fig. 13.

The HOSVD singular values for the different dimensions of the
7-degree cone snapshot tensor are given in Fig. 14. For a similar analy-
sis to the 3-degree case, and to promote filtering in the directions tan-
gent and normal to the cone surface, the video of the 7-degree cone
was rotated 7 degrees and further cropped. Thus, the x and y directions
remain consistent for filtering. The results for the mode shapes of the
7-degree cone are given in Fig. 15. Note that these are displayed now
with x and y defined above being the horizontal and vertical directions
rather than the original orientation shown in Fig. 8. For this case, the
HOSVD spatial e tolerance was set to 1:5� 10�1, which kept mode
numbers ðP1; P2; P3Þ ¼ ð151; 14; 500Þ. The original sizes were

ðI; J;KÞ ¼ ð360; 14; 500Þ. Although the spatial resolution is somewhat
low, the mode shapes capture the wavepacket structure along with
intensity amplification from the magnitude plot despite the low spatial
resolution.

5. DMD-150

For the 3-degree cone, DMD-150 was chosen based on the con-
sistency of results and reconstruction error. The initial truncation was
performed by setting eSVD;1 ¼ eSVD;2 ¼ 1:2� 10�1, just below the
noise level described in the previous section. This was implemented
with Eq. (8). Figure 11 shows the singular values normalized by the
maximum singular value for the initial SVD. It is clear that this is a
high tolerance, and only 27 modes result from this. The low frequen-
cies are present as well as the cluster around 106 kHz. Based on the
idea presented in Ref. 27 for finding the most important dynamics that
could be embedded in noisy experimental data, we applied the iterative

FIG. 9. Retained modes for noise filtering for 3-degree cone.

FIG. 10. Original vs cleaned mean-subtracted data for 3-degree cone. The 400th
time step reconstruction is shown here.

FIG. 11. Singular values (rn=r1Þ for mean-subtracted 3-degree cone video.

FIG. 12. HOSVD singular values for temporal mean-subtracted 3-degree cone
video.
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version of DMD-150. This meant applying the algorithm, reconstruct-
ing, and re-applying the algorithm to the reconstruction until the
number of retained modes from the same tolerances remained con-
stant. Spurious artifacts can be removed along the way during the
reconstruction stages. For this analysis, a tighter tolerance of eHOSVD
¼ eSVD;2 ¼ 6:54� 10�2 was used. This was chosen to retain the first
200 SVD modes. The second SVD (on the modified snapshots)
reduced the dimension to 107. However, the benefits of this iteration
were not clear because the results did not significantly improve before
desired modes like the higher harmonics of the primary second mode
disturbance frequency in the 3-degree cone video started to be
removed. Truncating too much resulted in eigenvalues with damping
rates that were potentially unphysical. This is improved by increasing
the delay parameter. However, as mentioned earlier, the delay parame-
ter cannot be too large compared to the number of snapshots so this
did not alleviate the high damping rates. Thus, for the temporal analy-
sis, mean subtraction with a delay parameter of one and no truncation
was considered sufficient. Essentially, we exploited the reduction of

DMD-1 to a DFT to obtain purely oscillatory time dynamics and
reserved the DMD-d algorithm for the spatial analysis. As will be dis-
cussed, obtaining physically meaningful spatial growth required the
higher-order algorithm.

B. Spatiotemporal analysis: STKD

The STKD algorithm was implemented to the videos organized
as snapshot tensors. The input data were exactly that used in Sec.
VIA4. The output of the STKD is a set of modes that are a function of
the surface normal coordinate y. These modes are associated with
growth rates and wavenumbers in the surface-tangent direction and in
time. The mode shapes, dispersion diagrams, and growth rates for
both cases are given below. For scatter plots in this section, the color
bar represents normalized amplitude amn of the STKD modes, which
differ from the amplitudes for the temporal (atn) and spatial analyses
(axm), unless otherwise noted in the figure description.

For the 3-degree cone case, the application of the HOSVD gave
the singular values shown in Fig. 12. The same values of P1, P2, and P3
were used as before. The delay parameter for DMD-d of the spatial

FIG. 13. DMD-1 with HOSVD 106.75 kHz mode contours for 3-degree cone case.

FIG. 14. HOSVD singular values for temporal mean-subtracted 7-degree cone
video.

FIG. 15. DMD-1 with HOSVD 278.25 kHz mode contours for 7-degree cone case.
Flow is moving left to right, and the surface normal direction is vertical.
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matrix was 300, while DMD-1 was used for the temporal matrix. This
is because DMD-1, as shown above, gave frequencies that aligned with
experimental measurements. However, although DMD-1 was able to
reconstruct the X HOSVD mode matrix with a small error, the spatial
modes computed were spurious and did not capture the spatial growth
clearly present in the mode shapes from DMD-1. This is related to the
DMD–DFT equivalence, where exponential growth is implicitly given
by the wavenumber spectrum rather than explicitly represented
through growth rates. Thus, DMD without mean subtraction and with
a higher delay parameter than 1 was chosen for the spatial analysis.
DMD-300 allowed for the physically expected modes (modes with
non-zero growth rates associated with frequencies whose DMD-1
mode shapes show clear growth) to be computed, as will be shown
below.

The dispersion diagram from the analysis along with spatial
growth rates is shown in Fig. 16. The traveling waves representing the
fluctuating components of the video are clear, due to the general trend
of the negative slope in the dispersion diagram. This is because wave
speed c is given by the relation c ¼ �x=j. Thus, there are a number
of traveling waves with wave speed given by the slope of the line con-
necting each point in Fig. 16(a) to the origin.

For the 7-degree cone case, the same values of P1, P2, and P3 were
used as the DMD-1 with HOSVD case. A delay parameter of 60 was
found to be the most effective. This is smaller than that used for the 3-
degree cone case. This is because the delay parameter scales with the
number of snapshots, which for the spatial analysis corresponds to
I¼ 360 for the 7-degree case. The 7-degree cone case counterpart of
Fig. 16 is given in Fig. 17. Figure 17(b) shows the various growth rates
colored by normalized spatial amplitudes axm. It is noted that trunca-
tion based on amplitudes via Eq. (30) here needed to be done carefully,
as a significant flow feature could have a small amplitude but a high
growth rate to best fit the data. Then, the high growth rate would result
in the importance of the mode shape relative to other higher-
amplitude modes. The figure shows the most relevant STKD modes
are waves traveling between 700 and 900m/s that have positive spatial
growth rates.

Another way the STKD can be beneficial is by plotting the mode
shapes just as was done for the purely temporal analysis. This shows
the variation in disturbance magnitude with surface normal coordi-
nates. Here, only two representative high-amplitude modes are plotted,
though there are M�N STKD modes before truncation based on
amplitudes. For the 7-degree cone, a representative mode u1;2 was
plotted since it is the mode associated with the highest amplitude fre-
quency (278.25 kHz) and highest spatial growth rate. The absolute
value of the complex mode shape is plotted in Fig. 18. For the 3-degree
cone case, the highest amplitude mode u2;1 is plotted in Fig. 19. The
3-degree mode shape visually appears more jagged despite the higher
spatial resolution, but the variation in the y-direction corresponds with
the visual variation in the absolute value of the spatial mode shapes
[for example, in Fig. 13(c)].

VII. N-FACTORS FROM HODMD AND STKD

The N-factor is the natural log of the ratio of a disturbance’s
amplitude at one point in space to its initial location. The N-factor can
be calculated as the integrated growth rate along the x-direction. For
DMD, the value

DNDMDðxi; yjÞ ¼ ln ½Aðxi; yjÞ=A1	; (32)

was taken, where A1 ¼ Aðx1; yjÞ and A was defined in Eq. (31). This
formula corresponds with the formulation used for examining cross-
flow instabilities by Le Clainche et al.8 The DMD N-factor is then a
function of the surface normal coordinate and can vary nonlinearly
with the streamwise direction. In Fig. 20, we present an estimate of the
change in N-factor DN for the 3-degree cone mode at 101.5 kHz is
plotted along the change in streamwise coordinate Dx. The trend fol-
lows expected shapes from LST calculations.23 For this plot, the value
at yj¼38 ¼ 2:8 mm is given as a representative example.

For STKD, the growth rates are fixed for a given frequency and
sample domain, which allows an estimation of N-factor from

DNSTKDðxiÞ ¼ �max xi � x0ð Þ: (33)

The STKD N-factor defined in Eq. (33) is useful for estimating
transition location as it shows the maximum exponential growth in
the domain of the data and therefore the most dominant growing
wave. For this reason, this formula was used to estimate transition by
estimating the maximum growth of T–S waves in previous studies

FIG. 16. STKD dispersion diagram, growth rates, and wave speed for 3-degree
cone case.
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with the purely spatial analysis.7 A similar plot to Fig. 20 could be
made from STKD results, but this would only give straight lines based
on Eq. (33). Alternatively, the STKD could be used to reconstruct
(approximately) the corresponding HODMD mode for a given fre-
quency xn by summing over all m in Eq. (4). This way, the additional
spatial filtering inherent to the STKD will make the result smoother.
However, the STKD results allow a more efficient way to visualize the

approximated maximum growth: a scatterplot of the growth rates for
each frequency colored by amplitude. These plots are given in Figs. 21
and 22 for the 7� and 3� cases, respectively. These plots are useful
because, based on Eq. (33), the y-axis represents the change in N-
factor per unit change in x. Therefore, for example, a red dot means a
high-amplitude mode, the y-location of that dot gives the value of
DNSTKD=Dx, and the x-axis gives the associated frequency.

VIII. CONCLUSION

The spatiotemporal Koopman decomposition developed by Le
Clainche and Vega was applied to Mach 6 flow schlieren videos depict-
ing second mode instability waves. Crucial parameters such as wave
speeds, temporal frequencies, growth rates, and spatial wavenumbers
were computed. The standard DMD–DFT similarity for mean-
subtracted data was exploited to decompose the data into spatially
growing waves with fixed wave speeds and time dynamics without
growth or decay. Additionally, spatial mode shapes obtained through
temporal analysis involving DMD-1 with HOSVD elucidated wave-
packet structures and spatial growth. Compared to conventional meth-
ods, the application of STKD yielded clearer results due to the superior
spatial filtering capabilities and explicit modeling of coupled

FIG. 17. STKD dispersion diagram, growth rates, and wave speed for 7-degree
cone case.

FIG. 18. Plot of mode shape ju1;2ðyÞj for 7-degree cone case.

FIG. 19. Plot of mode shape ju2;1ðyÞj for 3-degree cone case.

FIG. 20. DMD estimate of DN for 101.5 kHz mode.

FIG. 21. Spatial growth rates vs temporal frequencies for 7-degree cone.
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spatiotemporal dynamics. The ability to determine wave speeds and
spatial growth rates is clearly advantageous for tracking disturbances
in unsteady experimental or numerical datasets. This study has pre-
sented the power of advanced spatiotemporal decomposition techni-
ques in unraveling complex flow phenomena from schlieren video
data via application to videos that clearly depicted the desired physics.
Future work remains in improving results for tracking single frequency
single wavenumber disturbance growth from various data sources that
depict many more flow features in addition to noise, where the filtering
process with the HOSVD and amplitude truncations could be more
difficult. Despite potential difficulties with truncation tolerances, the
ability of the STKD with HODMD and HOSVD to perform well for
multiscale noisy data suggests that the method could be more readily
applied to flows where traditional methods like LST and PSE fail, for
example, beyond the laminar regime. Eventually, applying Le Clainche
and Vega’s STKD algorithm to more complex unsteady experimental
datasets like schlieren videography, including videos that potentially
do not depict the desired flow structures as clearly as those in the pre-
sent study, should be able to provide fast low-cost estimates of wave-
speeds, magnitude, and growth rates of various flow structures in
addition to modal growth.
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