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The modal decomposition methods formulate the governing equations of a system as a linear
combination of the various modes to provide a powerful means for examining the influence
of any individual or combined modes of interest. They are commonly used to characterize
complex signal dominated fluid flows and their control. Three modal decomposition techniques,
namely, the proper orthogonal decomposition (POD), dynamic mode decomposition (DMD),
and higher-order dynamic mode decomposition (HODMD), are studied to understand their
ability to analyze a high-speed schlieren video for Mach 6 flow over a cone. The video is focused
on the base of the cone and the base flow region. The data-driven modal analysis techniques
are used to analyze the interference generated by the sting on the base flow region. The basic
characteristics of the base flow were under investigation in the experiment, so it was desirable to
gain insight into the impact that the presence of the sting has on the base flow. The POD, DMD,
and HODMD methods give different insights into the sting interference, but all three methods
appear to show that the disturbance originating from the sting appears in the base region of the
cone.

I. Nomenclature

Symbols Description
𝑎 POD time coefficient
𝑏 DMD/HODMD mode amplitudes
𝑑 Delay parameter for HODMD
𝑅 System matrix
𝑟 Truncated SVD rank
�̂� Reduced system/Koopman matrix
�̃� Modified Koopman matrix
�̄� Reduced modified Koopman matrix
𝑆 HOSVD core tensor
𝑇 HOSVD temporal mode/snapshot matrix
�̃� Modified HOSVD snapshot matrix
�̄� Reduced modified HOSVD snapshot matrix
𝑡 Time
𝑈, 𝑀 Matrices containing singular vectors
𝑉 Snapshot matrix or tensor
𝑊 Reduced system eigenvector matrix
𝑋,𝑌 HOSVD spatial mode matrices

Greek Symbols
𝛿 Growth rate
𝜀 RRMSE tolerance

𝜆 DMD/HODMD eigenvalue
Λ DMD/HODMD eigenvalue matrix
𝜔 Angular frequency
𝜓 POD mode
Ψ POD mode matrix
𝜙 DMD/HODMD mode
Φ Dynamic mode matirx
Σ Singular value matrix
𝜎 Singular value

Abbreviations
DMD Dynamic mode decomposition
HODMD Higher-order dynamic mode decomposition
HOSVD Higher-order singular value decomposition
RRMSE Relative root mean square error
SVD Singular value decomposition
POD Proper orthogonal decomposition

Subscripts
𝑖, 𝑗 Spatial dimension indices
𝑘 Temporal index

II. Introduction

The complex nature of the physics involved in high-speed aerodynamics requires expensive numerical simulation
validated by detailed experimental investigation. At high speeds, the flow produces thin boundary layers that are
∗PhD Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member. ghannadian.arman@ufl.edu
†Professor of Practice, Florida Applied Research in Engineering, AIAA Associate Fellow. ryan.gosse@ufl.edu
‡Professor, Department of Mechanical & Aerospace Engineering, AIAA Associate Fellow. roy@ufl.edu
§Graduate Research Assistant, School of Aeronautics and Astronautics, AIAA Student Member. zlawless@purdue.edu
¶John Bogdanoff Associate Professor, School of Aeronautics and Astronautics, AIAA Associate Fellow. jsjewell@purdue.edu

1

malito:ghannadian.arman@ufl.edu
malito:ryan.gosse@ufl.edu
malito:roy@ufl.edu
mailto:zlawless@purdue.edu
mailto:jsjewell@purdue.edu


sensitive to high-frequency acoustic perturbations. Traditional sensors such as high-frequency pressure transducers can
measure these perturbations but often do not give a complete picture of the physical processes acting on the disturbances.
Simple theories exist for laminar flow states where acoustic noise grows through linear processes. As the flow becomes
chaotic and complex, large eddy simulation (LES) or direct numerical simulation (DNS) computational fluid dynamics
(CFD) simulations are required to provide fundamental insight numerically.

Modal decomposition techniques are commonly used in the field of fluid mechanics to characterize complex or
turbulent flows. Among modal decomposition techniques, the proper orthogonal decomposition (POD), dynamic
mode decomposition (DMD), and their variants are some of the most widely used. Modes can be extracted from any
unsteady data stream allowing analysis to be applied to experimental or computational data. In addition, data from a
wide variety of physical systems can be analyzed in the same way. For example, DMD and POD have been applied
successfully in various fields from fluid dynamics to neuroscience [1]. The detachment of these methods from the
governing physics also allows for the decomposition of flow visualization data such as schlieren video to be used in
analyzing the underlying physics. However, care must be taken in the acquisition of data as well as in interpreting the
physical significance of the modes

For POD and DMD, the data 𝑉 (𝑥𝑖 , 𝑡𝑘) is initially organized as a snapshot matrix 𝑉𝑖𝑘 with columns v(𝑡𝑘) containing
data at each time step. The POD, which was originally introduced in the 1960s to the fluid dynamics community to
study turbulence [2], represents this discrete data as

𝑉 (𝑥𝑖 , 𝑡𝑘) =
𝑁∑︁
𝑛=1

𝑎𝑛 (𝑡𝑘)𝜓𝑛 (𝑥𝑖), (1)

where 𝑎𝑛 (𝑡𝑘) are the time coefficients and 𝜓𝑛 (𝑥𝑖) are the spatial POD modes. It should be briefly noted that the focus of
this work is the space-only POD whose modes consist of deterministic spatial functions modulated by random time
coefficients [3]. Space-time formulations lead to other methods like spectral POD (SPOD) which finds single-frequency
modes that are coherent in both space and time. The goal of the POD remains the same, to optimally capture the variance
or energy of an ensemble of a stochastic process. The POD method does this by computing modes as eigenvectors of
the autocovariance matrix and ranking them according to energy content.

The DMD method was developed by Schmid in 2008 [4, 5]. In a standard DMD analysis, data sets representing
dynamic systems are written as

v(𝑡𝑘) ≈ vDMD (𝑡𝑘) ≡
𝑁∑︁
𝑛=1

𝑏𝑛𝝓𝑛e(𝛿𝑛+𝑖𝜔𝑛 )𝑡𝑘 , (2)

where 𝑏 represents the mode amplitude and 𝝓 represents the DMD mode vector. Both the amplitudes and modes are
generally complex-valued for standard DMD. The exponential term describes the system’s evolution in time, 𝛿 is the
temporal growth rate and 𝜔 is the angular frequency [4]. The modes are eigenvectors of a matrix 𝑅 which is defined to
be the best-fit matrix solution that advances the data over the entire domain at an instant (a snapshot) one time step into
the future. The frequencies and growth rates are computed from the eigenvalues of this matrix. Each mode has a single
growth rate and frequency associated with it. This differs from POD because POD mode time coefficients can contain
multiple frequencies, although for stationary stochastic processes, the SPOD can be used to express temporal correlation
among resolved structures that exhibit the optimality of POD. Additionally, since the DMD algorithm has the benefit of
finding the growth rates of each mode, stability can be analyzed. Due to Eq. (2), non-zero frequency modes must come
in complex-conjugate pairs if real data is represented.

There are many variants of DMD that attempt to improve noise robustness [4, 6], and HODMD is the one used
in this analysis. Le Clainche and Vega first developed the HODMD method in 2017 [7]. For HODMD, the data is
expanded similarly to Eq. (2), but the expansion is generalized to data sets organized as higher-order tensors. For
example, a third-order tensor could be represented as

𝑉𝑖 𝑗𝑘 ≈
𝑁∑︁
𝑛=1

𝑏𝑛𝜙𝑖 𝑗𝑛e(𝛿𝑛+𝑖𝜔𝑛 )𝑡𝑘 . (3)

Here, the eigenvectors come from a matrix relating a single snapshot to 𝑑 snapshots rather than just the snapshot at
the next time step as is the case with standard DMD. This will be expanded upon in section III.C. Another difference
is that 𝑖 and 𝑗 correspond to different spatial dimensions, whereas standard DMD stacks all the spatial information
into a single index. This allows for better control over noise removal and leads to a further extension of the method
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to obtain expansions in both space and time with wave number and spatial growth rate in addition to frequency and
temporal growth rate, referred to as spatio-temporal Koopman decomposition (STKD) [8]. Another benefit of HODMD
is that it handles situations with higher temporal complexity than spatial complexity better than standard DMD [7].
This is a result of the fact that HODMD uses time-delayed snapshots that allow for the complex-conjugate pair of
eigenvectors/eigenvalues necessary for representing a temporal frequency to be computed even when the corresponding
spatial modes do not increase the rank of the set of HODMD modes.

In this paper, we review the algorithms for POD, DMD, and HODMD and apply them to schlieren video of Mach 6
flow past a cone. We show preliminary results for an analysis of the effect of sting interference on the base flow of the
cone as the interference convects downstream. The experiment investigated the base flow of a hypersonic cone because
hypersonic flight vehicles in the Mach 5-10 range experience a significant amount of base drag [9]. In order to tackle the
problem of base drag, a fundamental investigation into the base flow is necessary. Therefore, the effects of experimental
phenomena such as sting interference on the base flow are important to characterize. This could, for example, modify
mixing in the shear layer that bounds the recirculation region. The spatial modes and DMD spectra are shown from an
initial analysis. We use the analysis of this sting interference to compare the insights, advantages, and disadvantages the
modal decomposition techniques offer in the analysis of flow-visualization data in general as well as the effect of sting
interference on the base flow of the experiment being analyzed.

III. Methodology
The geometry is labeled in Fig. 1 below, which shows the first frame of the video. The geometry is a 7 deg. half-angle

blunted cone with a tip radius of 16𝜇m and a base diameter of 4.31 inches. The tunnel was operated at initial stagnation
pressures and temperatures of 100 psia and 153.1°C, respectively. The schlieren setup is a standard z-type schlieren that
consists of two 8-inch parabolic mirrors that direct light through optical grade sapphire windows[10, 11]. The experiment
was carried out in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University, a low-disturbance facility
with freestream pitot pressure noise levels of 0.02% RMS or lower [12]. This schlieren configuration has been used in
BAM6QT to measure transient fluid effects including boundary layer instability growth[13–15], recirculation bubble
unsteadiness [16–19], and hypersonic inlet shock wave-boundary layer interaction [20].

Fig. 1 First frame/snapshot of video data.

The video is zoomed in to the base region of the cone. For both POD and standard DMD, the schlieren video is
organized into snapshot matrices. This is done by taking each frame of the video as a matrix of grayscale pixel values
and reshaping it into a column of the snapshot matrix. Thus,

𝑉𝑖𝑘 = 𝑉 (𝑥𝑖 , 𝑡𝑘), (4)

where the 𝑖 index contains pixel information along both spatial dimensions of the video. For HODMD, the video frames
are left as matrices and stacked into a third-order snapshot tensor, 𝑉𝑖 𝑗𝑘 , as shown in Fig. 2 below. It should be noted that
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the orientation of the video in Fig. 2 differs from Fig. 1 because Fig. 2 shows how the video was originally oriented
while Fig. 1 was changed to show the more traditional perspective of flow moving from left to right. The video used in
the preliminary analysis was captured at 100 kHz and 1000 snapshots were used in the analysis.

All three of these algorithms were implemented in MATLAB. Both POD and DMD results were compared to the
results for a Reynold’s number of 100 for a flow past a cylinder from [4], using the data set from [21]. The HODMD
spectrum was compared with the standard DMD spectrum for the cylinder case for verification.

Fig. 2 Organization of schlieren video as a third-order tensor. This data is oriented differently than in Fig. 1
because this orientation is how the video frames were initially organized.

Finally, before applying the methods, the video was cropped to the region of interest depicted below in Fig. 3 in
order to capture the sting effect more closely. This is because it is evident when watching the schlieren video, that the
bottom half of the base flow region is darker and appears to contain some kind of unsteady fluctuation not apparent in
the top half. Additionally, it is expected that the disturbance would be confined to the bottom half of the base flow due
to the physics of the problem. The recirculation region results in downward-moving air at the bottom half of the cone
base which counters the advancement of the disturbance across the centerline. If the dynamics of interest are not in the
top half of the video frame then it is undesirable to compute modes that capture the desired dynamics and additional
dynamics not of interest simultaneously. This saves computational time as well.

Fig. 3 Region of interest for analysis.
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A. POD of Schlieren Video
Here, we use the singular value decomposition (SVD) approach for performing POD [2, 4]. The video is read as a

series of matrices of pixel values representing a series of video frames. Pixel values for each frame at a specific time are
stacked into a single column of a new matrix referred to as the snapshot matrix. The goal is to represent this time-series
of data as Eq. (1). Taking the singular value decomposition of the mean-subtracted snapshot matrix, we have

𝑉 = 𝑈Σ𝑀∗, (5)

where 𝑈 and 𝑀 are left and right singular vector matrices, respectively [4]. The asterisk in the superscript denotes
the conjugate transpose. The columns of these matrices are the left and right singular vectors, u and m, respectively.
The matrix Σ contains singular values on the diagonal, which are the square roots of the eigenvalues of 𝑉𝑉∗. The left
singular vectors (𝑈) give the POD modes, so that

Ψ = 𝑈. (6)

The time coefficients can be given as the product of the singular values and the rows of the right singular vector matrix.
This connection is made more clear by rewriting Eq. (5) as

𝑉 =

𝑁∑︁
𝑛=1

u𝑛 (𝑥)𝜎𝑛m∗
𝑛 (𝑡), (7)

where 𝜎𝑛 are the singular values that are related to the mode energy. Here, in the analysis of schlieren video, modal
energy is related to the variance of the density gradient rather than kinetic energy which would be the case if velocity
data was being used. This recovers Eq. (1).

The SVD gives the POD modes because it gives the optimal representation of the data given 𝑁 modes by maximizing
the amount of energy captured by solving for the singular vectors and singular values of the snapshot matrix [2]. Thus,
truncating the SVD matrices to rank 𝑟 will minimize the error for the lower rank representation. Additionally, the
singular vectors are orthogonal so that the columns of 𝑈 contain only spatial correlations while the columns of 𝑀
contain only temporal correlations, each of which depends on only one mode [2, 4].

A downside to POD is that many modes can be required to capture dynamics of interest if many of the snapshots
have small but unique spatio-temporal fluctuations. This can be the case with noisy data as the noise increases the
temporal complexity, especially if the desired dynamics are on the same order as the noise levels. This can lead to many
POD modes with very small singular values and multiple frequencies in the associated time dynamics. The flow is then
decomposed into a sum of a great number of low-energy modes so that the importance of each mode can be difficult to
decipher. Then, removing noise by eliminating low-energy modes will potentially result in eliminating low-energy
high temporal complexity dynamics that may be desirable to keep. Thus, energy alone may not always be the optimal
criterion for mode organization for this spatial POD where the modes are only functions of space and do not necessarily
exhibit temporal coherence. The benefit of DMD and its higher-order extension is the organization of modes based
on dynamical relevance (via a least-squares fitting) and frequency, though the modes are not necessarily optimal in
capturing energy. The SPOD method also finds single-frequency modes that do satisfy this property. In fact, in [3] the
SPOD modes are shown to be optimally averaged DMD modes. However, the HODMD and DMD have several more
advantages. Namely, they are suitable for nonstationary dynamics, and the HODMD method allows for spatio-temporal
expansions (STKD) [8] that can decouple and simultaneously describe evolution in individual spatial dimensions and
time.

B. DMD of Schlieren Video
A full description of the DMD method can be found in [4]. We focus on a short summary with application to

schlieren video analysis. For an 𝐼 × 𝐾 snapshot matrix, which is the same snapshot matrix of pixel values used for the
POD analysis, the time between snapshots Δ𝑡 is related to the current time as

𝑡𝑘 = (𝑘 − 1)Δ𝑡. (8)

The snapshot matrix is divided into 𝑉1, which takes the first through 𝐾 − 1 columns of 𝑉 , and 𝑉2, which takes the second
through 𝐾 th columns of 𝑉 . The columns of 𝑉 must be spaced out evenly in time so that Δ𝑡 is constant. Then, for some
matrix 𝑅,

𝑉2 ≈ 𝑅𝑉1. (9)
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The matrix 𝑅 is defined as
𝑅 ≡ 𝑉2𝑉

+
1 , (10)

and the + in the superscript denotes the pseudo-inverse. With this definition for 𝑅 as the best-fit matrix satisfying Eq.
(9), 𝝓𝑛 are the eigenvectors of 𝑅. The growth rates and frequencies are then

𝛿𝑛 + 𝑖𝜔𝑛 =
ln(𝜆𝑛)
Δ𝑡

, (11)

where 𝜆𝑛 are the eigenvalues of 𝑅 corresponding to 𝝓𝑛.
In general, 𝑅 is a large matrix of size 𝐼 × 𝐼, but the eigenvalues and eigenvectors of 𝑅 can be found from the

eigenvalues and eigenvectors of a reduced matrix �̂�, given by

�̂� = 𝑈∗𝑉2𝑀Σ+. (12)

Here 𝑈 and 𝑀 are matrices of left and right singular vectors from an SVD of the 𝑋1 matrix. It is noted that a rank
truncation is often performed at this step, keeping only the first 𝑟 singular values and columns of 𝑈 and 𝑀. If the
eigenvectors of �̂� are stored as the columns of a matrix𝑊 , the modes 𝝓𝑛 stored in the columns of a matrix Φ, can be
obtained as

Φ = 𝑉2𝑀Σ+𝑊. (13)

The DMD representation of the data can be written as

vDMD (𝑡𝑘) = ΦΛ𝑘−1b. (14)

The matrix Φ contains the eigenvectors of 𝑅 in its columns, Λ is a matrix containing eigenvalues, 𝜆𝑛, in its diagonal
elements, and b is a vector containing mode amplitudes. Then the amplitudes are solved as

b = Φ+v(𝑡 = 0), (15)

which gives the least-squares solution of b based on the first snapshot.
A downside for the standard DMD in the application to experimental data like schlieren videos is that it can

give spurious results for data with higher temporal complexity than spatial complexity. This is often the case with
experimental data, and the HODMD algorithm described in the next section exploits time-delayed snapshots to overcome
this limitation.

C. HODMD of Schlieren Video
The Multi-dimensional HODMD algorithm [8] is summarized here. The method starts with a higher-order singular

value decomposition (HOSVD). The HOSVD decomposes a tensor into matrices of singular vectors corresponding to
each dimension separately. The video is organized as a third-order tensor and the HOSVD is applied. This is given
below as [22]

𝑉𝑖 𝑗𝑘 ≈
𝑁∑︁
𝑛=1

𝑃1∑︁
𝑝1=1

𝑃2∑︁
𝑝2=1

𝑆𝑝1 𝑝2𝑛𝑋𝑖 𝑝1𝑌 𝑗 𝑝2𝑇𝑘𝑛. (16)

Here, 𝑇𝑘𝑛 is a matrix corresponding to the time dimension, and 𝑋 and 𝑌 correspond to the two spatial dimensions. The
tensor 𝑆𝑝1 𝑝2𝑛 is referred to as the core tensor. The subscripts 𝑝 correspond to the number of singular values, and a
rank-truncation can be performed in each dimension separately to approximate the original snapshot tensor with a
relative root mean square error (RRMSE) tolerance, 𝜀 [7].

Now, 𝑇𝑘𝑛 is scaled by the temporal singular values, 𝜎𝑡𝑛, so that Eq. (16) can be written as

𝑉𝑖 𝑗𝑘 ≈
𝑁∑︁
𝑛=1

𝑃1∑︁
𝑝1=1

𝑃2∑︁
𝑝2=1

𝑆𝑝1 𝑝2𝑛𝑋𝑖 𝑝1𝑌 𝑗 𝑝2

1
𝜎𝑡𝑛
𝑇𝑘𝑛. (17)

Additionally, 𝑁 is reduced to truncate the rank of the temporal modes based on the singular values corresponding to the
temporal SVD. The final step is applying the DMD-𝑑 algorithm to the rescaled temporal matrix 𝑇𝑛𝑘 . The resulting
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modes are plugged into Eq. (17) in place of 𝑇𝑘𝑛 to obtain the final HODMD modes, 𝜙𝑖 𝑗𝑛. The DMD-𝑑 algorithm alters
the standard DMD approximation in Eq. (9) as

v𝑘+𝑑 = 𝑅1v𝑘 + 𝑅2v𝑘+1 + ... + 𝑅𝑑v𝑘+𝑑−1 (18)

for 𝑘 = 1, ..., 𝑘 + 𝑑 [22]. Following [22], Eq. (18) is rewritten for the rescaled temporal modes 𝑇 as

𝑇𝐾𝑑+1 ≈ �̂�1𝑇
𝐾−𝑑
1 + �̂�2𝑇

𝐾−𝑑+1
2 + ... + �̂�𝑑𝑇

𝐾−1
𝑑 , (19)

where the original temporal mode matrix has been divided into 𝑑 blocks of size 𝑘 − 𝑑. The superscript index signifies
the column extent of the matrix block, while the subscript index signifies the first column. For example, 𝑇 𝑘−𝑑2 would be
the matrix block from the 2nd through 𝑘 − 𝑑th columns of the matrix 𝑇 . This is further rewritten as

𝑇𝐾−𝑑+1
2 = �̃�𝑇𝐾−𝑑

1 , (20)

where 𝑇 are referred to as the modified snapshots and �̃� is the modified Koopman matrix [7, 8, 22]. The algorithm
proceeds by applying a truncated SVD to the modified snapshot matrix, keeping enough singular values to ensure the
RRMSE tolerance is adhered to. Defining 𝑇𝐾−𝑑+1

1 as the product of the new singular value matrix and right singular
vectors of the modified snapshots, we can write

𝑇𝐾−𝑑+1
2 = �̄�𝑇𝐾−𝑑

1 . (21)

Here, the overbar denotes a reduced modified value so that �̄� is the reduced modified Koopman matrix, and the 𝑇 is a
reduced modified snapshot matrix. The reduced modified Koopman matrix can be solved for by right multiplying Eq.
(21) by the pseudo-inverse of 𝑇𝐾−𝑑

1 , and the eigenvectors and eigenvalues of �̄� give the reduced HODMD modes and
HODMD spectrum [22]. The reduced modes can be substituted into Eq. (17) to construct the full HODMD modes. The
amplitudes can be found similarly to the standard DMD mode amplitudes, via a least-squares fit [7]. The amplitudes
and modes here are rescaled to obtain real amplitudes and modes with unit RMS norm.

IV. Results and Discussion
This section presents results from the POD, DMD, and HODMD algorithms applied to the video. It should be

clarified here that the video frames are 2D slices merging a truly 3D flow-field into a single slice depicting density
gradient. Camera focus is used to introduce a weighted bias of a 2D planar assumption. This adds another layer of
difficulty in analyzing the modes. Nonetheless, it is still possible to take away some meaning from the results.

A. POD Modes
Each mode contour is a visualization of correlations of the pixel value data related to the density gradient. The POD

modes are in descending order in terms of their mode energies, which correspond to the variance of density gradient for
schlieren videos. The 9th, 10th, and 13th modes appear to show an influence of the sting interference on the base region
most clearly. The time coefficients 𝑎9, 10, 13 (𝑡) are plotted alongside the associated power spectrum below in Fig. 4
below. The highest peaks in the PSD occur 12.9 kHz, 3.0 kHz, and 0.5 kHz for the 9th mode and at 9.2 kHz, 5.2 kHz,
and 10.3 kHz for the 10th mode time coefficients. The largest peaks for the 13th mode occur at frequencies of 6.7 kHz,
4.0 kHz, and 3.6 kHz. All three time coefficient plots have peaks in the 10 kHz, 20 kHz, 30 kHz, and 40 kHz regions
with similar gaps between them, likely corresponding to oscillations and their harmonics. These could be related to a
vortex shedding-like disturbance pattern traveling from the sting. The POD gives two modes to capture traveling waves
similarly to the DMD having a complex conjugate pair, so two sequential modes with peaks at the same frequencies
likely represent this. The results are similar to the DMD and HODMD results that will be presented (see Figs. 7 and 10).
Figure 5 contains a plot of the POD eigenvalues 𝜎2 for each mode as well as a PSD contour for the time coefficients 9 to
21.
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(b) Mode 9 PSD.
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(d) Mode 10 PSD.
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(f) Mode 13 PSD.

Fig. 4 POD mode time coefficients and frequencies.
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Fig. 5 POD results: (a) Mode energies; (b) PSD of time coefficients for modes 9 to 21.
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The POD modes that most clearly show sting interference are plotted in Fig. 6 below.
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Fig. 6 POD mode contours.
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B. DMD Modes
The rank truncation in the DMD analysis was set to 21 based on the magnitude of the singular values and the fact that

lower energy modes appeared to show less sting interference. The RRMSE value 𝜖 based on the magnitude of singular
values was then 0.04. Standard DMD finds several modes that exhibit a similar pattern depicting sting interference
reaching the base flow. However, the DMD spectrum contains eigenvalues that are much less than unity in magnitude.
This could suggest that the modes found have a noise-corrupted spectrum. It is well-known that standard DMD is
highly sensitive to the presence of random noise. It is argued in [6] that this can reduce the magnitudes of the DMD
eigenvalues, leading to errors in frequency and growth rate. The growth rate computation is especially sensitive to
noise. Thus, although the DMD modes do have frequencies that come close to those given in the PSD plots above,
a definitive comparison of the DMD spectrum and the power spectrum obtained from the POD time coefficients is
difficult. The complex conjugate pairs of modes and their associated frequencies could represent vortex shedding or
general oscillatory behavior of disturbances originating from the sting and their harmonics, and inspection of the spatial
modes suggests this as well. The DMD eigenvalues are plotted with the complex unit circle in Fig. 8 below. The
normalized absolute value of amplitude is plotted against associated frequencies and growth rates in Fig. 7. In addition,
the 4 modes that most closely depict the sting disturbance are given in Fig.9 below. The modes are multiplied by their
associated amplitude before plotting.
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C. HODMD Modes
The results presented here are for 𝐾 = 1000 snapshots, 𝜀 = 0.04, and a delay parameter value of 𝑑 = 300. This value

of 𝜀 keeps 21 temporal HOSVD modes. The HODMD algorithm found more modes that show points behind the sting
having the same frequency and growth rate in the base flow, showing the potential influence of the sting interference
downstream. The actual number of modes found with these parameters was 208. The initial HOSVD kept 21 temporal
modes and then the DMD-𝑑 algorithm decomposed this into 208 modes to keep the RRMSE of the expansion below 𝜀.

The frequencies and growth rates from the initial HODMD analysis are given below in Fig. 10 below. Each arrow
represents a single mode and the modes are ordered in terms of descending amplitude. Thus, the first mode is the tallest
arrow, seen in both the frequency and growth rate plots with a value of zero for both. Noise present in experimental data
has the effect of moving the DMD eigenvalues further inside the unit circle [6]. This is seen in the larger negative growth
rates in the standard DMD analysis (Fig. 7). Despite this, the HODMD algorithm finds modes whose eigenvalues are
very close in magnitude to unity. This likely represents permanent or minimally damped oscillating dynamics as an
eigenvalue with an absolute value of unity signifies zero growth rate, or pure oscillation in time. Thus, the data is
represented by modes with potentially more relevant frequencies than the standard DMD analysis gives. The HODMD
eigenvalues are plotted with the complex unit circle in Fig. 11 below.
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Fig. 10 HODMD frequencies and growth rates.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Re( )

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(

)

Fig. 11 HODMD eigenvalues.

Some of the HODMD modes are shown below in Figs. 12 and 13. Virtually all of the modes appear to show the
interference from the sting, so the highest-amplitude modes whose real or imaginary part shows this most clearly are
given here. The mode number given is the 𝑛 from the DMD expansion, but the modes come in complex conjugate pairs.
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Therefore, mode 3 for example is the complex conjugate of mode 2 rather than an entirely different mode. Then mode 5
is the complex conjugate of mode 4 and the mode 4-5 pair is the second distinct complex conjugate pair. The first mode
is real-valued mean flow so it does not have the conjugate.
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Fig. 12 Real part of HODMD modes scaled by their amplitudes.
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Fig. 13 Imaginary part of HODMD modes scaled by their amplitudes.

The HODMD analysis computes more modes showing the interference convecting to the base region than DMD.
The higher-amplitude HODMD modes that show this influence on the base region could result from the application of
HOSVD and the higher-order assumption (Eq. 18) finding relevant dynamics better from the experimental data which
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contain inherent noise. The improvement of HODMD over DMD is evident because it finds more modes showing
base-flow influence and the growth rates are smaller. For analyzing the effect of the sting, it is desirable to find permanent
modes rather than transients that rapidly decay. This is because it is difficult to decipher whether rapidly decaying
modes persist in different realizations of the same experiment or if they are spurious due to noise or random additional
environmental factors. The HODMD method leads to potentially lower errors in computed frequencies due to the
higher-order assumption and seems to be more robust to the application of the present schlieren video.

V. Conclusions
We have reviewed three modal decomposition techniques and their applications in analyzing schlieren video. The

results from applying these algorithms to schlieren video of Mach 6 flow past a cone model to analyze sting interference
have been given. The HODMD algorithm appears to be more robust in finding persisting dynamics from limited
experimental data, as expected. The HODMD mode contours show that HODMD has predicted more frequencies
associated with the sting interference in the base region than standard DMD. This is partly because noise elimination
via the standard DMD with SVD rank truncation limits the number of modes that can be predicted. The temporal
complexity of the data necessitates more modes to represent it than is possible with the rank truncation necessary to
remove noise. The HODMD method gets around this limitation with the HOSVD along with the delay parameter 𝑑.
This allows the application of HODMD to pull out potentially more-relevant frequencies from flow visualization data
like schlieren videography where standard DMD can be sensitive to noise and give spurious results. The result of the
HODMD is spatial modes that resemble coherent flow structures like the POD but with single frequencies in time and
smaller decay rates than standard DMD, meaning more persistent dynamics. All methods appear to give some insight
into the dynamics involved with the sting interference and suggest the presence of vortex shedding-like disturbances
and acoustic propagation that enters the base flow region due to the presence of the sting. Future work plans will
involve comparing with experimental base pressure measurements and applying the HODMD in space to gain a better
understanding of the disturbance propagation in space that is implicitly described by the HODMD mode contours.
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