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Abstract

For a large class of computational ¯uid dynamics (CFD) problems, the discrete approximate solution error is viewed as truncation

of a Taylor series expansion. In this paper, a recently developed weak statement Galerkin Matrix Perturbation (GMP) method, is

theoretically compared and combined with the well known Taylor Weak Statement (TWS) algorithm on a term by term basis yielding

simple tridiagonal forms that reduce, or annihilate in special cases, the Taylor series truncation error. Veri®cation hyperbolic solution

is documented for a linear smooth and non-smooth incompressible wave cluster propagation using a combination algorithm of GMP

and TWS. Ó 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Approximate CFD algorithms to the non-di�usive transient (Euler) problem class are characterized by a
phase lag dispersion error that can highly distort the approximation solution. The theoretical remedy is to
increase the mesh density or algorithm order-of-accuracy. Conversely, the ``practical'' remedy is to add an
elliptic perturbation with a (linear or non-linear) numerical viscosity coe�cient. A variation involves ¯ux
correction operators, to remove induced excessive dissipation via an antidi�usive contribution. The goal is
to induce a damping mechanism for control of non- monotonicity, but solutions tend to su�er from excess
di�usion even on a dense mesh. Detailed comparisons of this phenomenon for the 1-D and 2-D linear
convection veri®cation problems are available, cf. [1±5].

For the state variable q, the kinetic ¯ux vector f � uq, with convection velocity u, the dissipative ¯ux
vector fv � �oq=ox, with diffusion coef®cient �, and the source term s, the multidimensional form of the
general equation is

L�q� � oq
ot
� o�f ÿ fv�

ox
ÿ s � 0; on X� t � Rd �R�; 16 d 6 3: �1�

The Fourier representation of the analytical solution to the multidimensional non-di�usive (i.e., � � 0)
Euler form of the general Eq. (1) is a sum series of Aeixz�xÿut� where xz is the wave number of zth wave and
A's are the expansion coef®cients. Hence, the exact solution for any ®nite Fourier mode is exp�ix�xÿ ut��.
The phase dispersion error of the numerical solution is related to real part of the convective u while the
dissipation error is related to the imaginary part of u.
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The algorithm ampli®cation factor G determines how the fully discrete solution grows or decays in time,
for the temporal and spatial discretization measure dt and dx, the analytical ampli®cation factor is

G � exp�ÿiwu�ndt�� � exp�ÿimC�: �2�
In 1-D, G � exp�ÿimC�. Using Laurent series expansion on m with al coef®cients, one may write

G �
X1
l�0

alml � 1ÿ imC ÿ �mC�2
2!
� i�mC�3

3!
� �mC�4

4!
ÿ � � � ; �3�

where m � xdx is the virtual non-dimensional wave number with C � udt=dx the corresponding Courant
number.

The discrete approximation solution ampli®cation factor Gh is algorithm speci®c and may be computed
via a Fourier modal analysis of the discretized CFD recursion relation. The order of accuracy, hence
stability, of a numerical algorithm may be determined from its ampli®cation factor Gh by matching co-
e�cients of powers in wavenumber in the Laurent series expansion with the analytical solution G in Eq. (3).

Independent of the domain dimension, for general variation of physical properties and the ¯ux vector,
the semi-discrete ®nite element (FE) weak statement always yields an ODE system of the form

WSh � �M �fQ�t�g0 � fRg � f0g; �4�
�M � � Se�M �e; �5�
fRg � Se���U �e � �D�e�fQ�t�ge ÿ fb�t�ge�; �6�

where fQ�t�g is the time-dependent discrete approximation nodal coe�cient set. fQ�t�g0 denotes dfQg=dt,
which may be replaced by using a h-implicit or n-step Runge±Kutta time integration procedure. Se sym-
bolizes the ``assembly operator'' carrying local matrix coef®cients into the global arrays. �M � � S��M �e� is
the ``mass'' matrix associated with element level interpolation, the �U �e matrix carries the element con-
vection information, �D�e is the diffusion matrix resulting from genuine (not for Euler) or numerical ele-
mental viscosity effects, and fbg contains all known data.

2. Galerkin matrix perturbation (GMP) algorithm

Assuming that an arbitrary order of the Taylor series truncation error for the temporal and spatial
discretization may be expressed in the form of FE perturbation matrices, the temporal and convection
matrices of linear basis rank form become

�M � � Se��M �e ÿ �APERT�e� �7�
fRg � Se���U �e ÿ �APERX�e�fQ�t�ge ÿ b�t��; �8�

where �APERT�e and �APERX�e are element level pertubation matrices that may be determined via com-
paring the Laurent series of the algorithm Gh and matching arbitrary coe�cients for order accuracy with
the Laurent series of G in Eq. (3), [6]. The forms of the elements of �APERT�e and �APERX�e are a sum
series of ar exp�imr�; 06 r6 a; b; c; d, where a's are determinable coef®cient and a; b; c; d estimates the order
of accuracy of the algorithm. Details for arbitrary order-accurate algorithms are available in Ref. [6].

The resulting temporal (7) and convective (8) matrices in 1-D are

1

Dxe
�M �e � �A200L� ÿ �APERT� � 1

6

2 1
1 2

� �
2�2

ÿ 1

6

K1 W1

C1 � 1

� �
2�2

� 1

6

2ÿ K1 1ÿW1

1ÿ C1 2ÿ � 1

� �
2�2

�9�

and

1

U
�U �e � �A201L� ÿ �APERX� � 1

2

ÿ1 1
ÿ1 1

� �
2�2

ÿ 1

2

K2 W2

C2 � 2

� �
2�2

� 1

2

ÿ�1� K2� 1ÿW2

ÿ�1� C2� 1ÿ � 2

� �
2�2

:

�10�
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In Eqs. (9) and (10), [A200L] and [A201L] remain the GWS linear basis constructions, while

K1 � t1

Xa

r�0

arzÿr; W1 � t2

Xb

r�0

arzr; C1 � t3

Xc

r�0

arzÿr; � 1 � t4

Xd

r�0

arzr; �11�

K2 � t5

Xa

r�0

arzÿr; W2 � t6

Xb

r�0

arzr; C2 � t7

Xc

r�0

arzÿr; � 2 � t8

Xd

r�0

arzr; �12�

where z � eim is the complex modulus. The superscripts �a; b; c; d�P 0 are integers, to be determined for
desired order of accuracy ([6], Appendix A). To maintain time accuracy of the algorithm, one necessary
condition for Eqs. (11) and (12) is

Ki �Wi � Ci � � i � 0; for i � 1; 2: �13�
For Eqs. (9) and (10) the fully discrete weak statement algorithm (4)±(6) assembly at mesh node j with
variable Qn

j � Q�jDx; t � nDt� yields the recursion relation

Dx�1ÿ C1�
6hDt

�
ÿ �1� C2�U

2

�
e

Qjÿ1 � Dx�4ÿ K1 ÿ � 1�
6hDt

�
� �K2 � � 2�U

2

�
e

Qj

� Dx�1ÿW1�
6hDt

�
� �1ÿW2�U

2

�
e

Qj�1 � data from �nÿ 1� timestep: �14�

The ampli®cation factor (2) for Eq. (14) is

G � Qt�Dt
j

Qt
j
� GN

GD
�
X1
l�0

Alml; �15�

where GN and GD can be resolved into spatial G�x� and temporal G�t� components as

GN � G�t� ÿ �1ÿ h�CG�x� and GD � G�t� � hCG�x�; �16�
where

G�t� � �1ÿ C1�eÿim � �4ÿ K1 ÿ � 1� � �1ÿW1�eim

6
;

G�x� � �1ÿW2�eim ÿ �K2 � � 2� ÿ �1� C2�eÿim

2
:

�17�

Hence, Eq. (16) becomes

GN � 1ÿ C1

6

�
� �1ÿ h�C 1� C2

2

�
eÿim � 4ÿ K1 ÿ � 1

6
� �1ÿ h�C

2
�K2 � � 2�

� 1ÿW1

6

�
ÿ �1ÿ h�C 1ÿW2

2

�
eim; �18�

GD � 1ÿ C1

6

�
ÿ hC

1� C2

2

�
eÿim � 4ÿ K1 ÿ � 1

6
ÿ h

C
2
�K2 � � 2� � 1ÿW1

6

�
� hC

1ÿW2

2

�
eim:

The GMP algorithm ampli®cation factor (15)±(18) may now be expanded in a Laurent series on m. The
coef®cients of the series may be functionally expressed as

Al � f �C; h; t1; t2; t3; t4; t5; t6; t7; t8; a; b; c; d�; �19�
where l corresponds to the power of m in the Laurent expansion. Comparing the sets al of Eq. (3) to Al of
Eq. (15), for a given degree of m a general correlation between C, h and the elements of [APERT] and
[APERX] may be derived that can yield progressively higher order accurate algorithms without adding a
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diffusion term to the algorithm. For example, a � b � 0 � c � d yields a general fourth order accurate
algorithm while a � b � 2 � c � d is at least sixth order accurate which nearly annihilates the phase dis-
persion error [6], cf. Fig. 1.

Fig. 1. Comparison square wave solutions for C � 0:5 [6].
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A simpli®ed example is pertinent to illustrate the process. Selecting

h � 1

2
; a � b � c � d � 0; and t5 � t8 � 0 �20�

then for the choice

t1 � t4; t2 � t3; and t6 � ÿt7 �21�
one may produce a fourth order accurate GMP algorithm by satisfying the relationships

t1 � t2 � 0;

t6 � ÿt7 � t2 � t1

3
� 0 � t5 � t8;

t1 � t4 � 3C2 � �4ÿ C2�t2

C2 � 2
� ÿt2 � ÿt3;

i:e: t1 � t4 � C2

2
� ÿt2 � ÿt3:

�22�

A generally fourth order accurate solution for Eq. (1) may be achieved for the temporal matrix

�M �e �
Dx
6

2ÿ C2

2
1� C2

2

1� C2

2
2ÿ C2

2

" #
; �23�

while, the convection matrix remains

�U �e �
U
2

ÿ1 1
ÿ1 1

� �
�24�

Using Eq. (22), the solution ampli®cation factor (15) is

G � 1ÿ i�Cm� ÿ �Cm�2
2
� i
�Cm�3

3!
� �Cm�4

4!
ÿ i

1
6
�5C5 � 5C3 ÿ 4C�m5

5!
ÿ �5C4 ÿ 4C2�m6

6!

ÿ i
1

12
�35C7 ÿ 245C5 � 238C3 ÿ 40C�m7

7!
ÿO�m8�: �25�

One can readily see that Eq. (25) matches exactly with Eq. (3) up to the fourth order term (O�m4�). A similar
result may be obtained by using TWS algorithm (see Section 3), which can be made fourth order accurate.

However, as a special case, for C � 1, (23) and (24) annihilates the phase dispersion error completely.
Selecting C � 1 yields t1 � t4 � 1

2
� ÿt2 � ÿt3 and t6 � t8 � t1 � t2=3 � 0 � ÿt5 � ÿt7, hence

�M �e � Dxe �A200L�� ÿ �APERT�� � Dxe

4

1 1

1 1

� �
;

�U �e � U �A201L�� ÿ �APERX�� � U
2

ÿ1 1

ÿ1 1

� � �26�

for which the ampli®cation factor of the approximation solution for Eq. (1), in terms of wave number m, is
exact (matched) with the analytical solution ampli®cation factor to umpteenth order.

For another example, selecting C � 2 yields

�M �e �
Dxe

2

0 1

1 0

� �
;

�U �e �
U
2

ÿ1 1

ÿ1 1

� � �27�

Here, again, the solution ampli®cation factor, in terms of wave number m, is exact (matched) to umpteenth
order with the analytical solution ampli®cation factor (3). However, in this case, one may not obtain the
exact solution numerically using Eq. (27). In general, a von Neumann frequency analysis is necessary but
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not suf®cient to guarantee the approximate solution accuracy. Speci®cally, matching the coef®cients of
equal powers of m in Eqs. (3) and (15) only guarantees that the ratio Ch=C � 1, but does not guarantee the
phase velocity relationship Uh � U .

A speci®c order of solution accuracy, e.g. tenth order, can be achieved by selecting the summation limits
a; b; c; d in Eqs. (11) and (12) for [APERT] and [APERX]. The corresponding coef®cients t1±t8 in Eqs. (11)
and (12) can then be determined. For example, selecting b � c � a � d � 2 guarantees a sixth order
accurate solution for any ar, 06 r6 a; b; c; d.

Although the GMP algorithm needs only two element support for each node, i.e. the equation for Qj

involves Qjÿ1 and Qj�1 only, the procedure Eqs. (9) and (10) results can be compared directly with compact
®nite di�erence schemes, cf. Ref. [3]. However, the theory and implementation of GMP is much simpler.
Also note that the GMP assembly matrices in Eqs. (23)±(26) retain the e�ciency of a linear basis
(or centered FD) algorithm form.

3. Combining GMP with TWS class of algorithm

The Taylor class of algorithms has been widely veri®ed and documented in the literature, cf., [1,7±13].
The Taylor± Galerkin algorithm [9,12] couples the Taylor time series with fourth order accurate spatial
Galerkin approximation. The Taylor-least-square method [11] utilizes the least square method of [10] with
the high-order time approximation of Taylor series. Later, the TWS algorithm [1] evolved from the Taylor±
Galerkin method with some optimization of parameters to reduce dispersion error in linear basis ®nite
elements. These methods have been successfully implemented for solving the multidimensional form of
Eq. (1). In this section, the combination TWS±GMP algorithm is developed to extract the multidimensional
capability of Galerkin spatial discretization of TWS and the high order accuracy of GMP implicit time-step
algorithm in order to produce high order accurate fully discrete method for the numerical solution of the
®rst order hyperbolic and advection±di�usion type problems.

Assuming su�cient continuity in the solution, the forward time semi-discretized Taylor series is

qn�# � qn � #Dt
oqn

ot
� #

2Dt2

2

o2qn

ot2
� #

3Dt3

6

o3qn

ot3
� #

4Dt4

24

o4qn

ot4
� #

5Dt5

120

o5qn

ot5
�O�Dt6�; �28�

where # is an upwind level. The corresponding backward time semi-discrete Taylor series is

qn��1ÿ#� � qn�1 ÿ #Dt
oqn�1

ot
� #

2Dt2

2

o2qn�1

ot2
ÿ #

3Dt3

6

o3qn�1

ot3
� #

4Dt4

24

o4qn�1

ot4
ÿ #

5Dt5

120

o5qn�1

ot5
�O�Dt6�:

�29�
Using Eq. (28), for # � 1=2 and 1, [8] derived

qn�1 ÿ qn ÿ Dt
oqn

ot
� Dt2

6

o2qn

ot2
ÿ Dt4

144

o4qn

ot4
ÿ Dt5

480

o5qn

ot5
�O�Dt6�: �30�

Similarly, for # � 1=3 and 2=3 in Eq. (28)

qn�1 ÿ qn ÿ Dt
oqn

ot
� Dt2

9

o2qn

ot2
ÿ Dt4

486

o4qn

ot4
ÿ Dt5

2430

o5qn

ot5
�O�Dt6�: �31�

Finally, a weighted combination of Eqs. (30) and (31) yields

qn�1 ÿ qn ÿ Dt
oqn

ot
� 5Dt2

57

o2qn

ot2
� Dt5

10

o5qn

ot5
�O�Dt6�: �32�

Similarly, using Eq. (29), for # � 1=2 and 1, one may derive

qn�1 ÿ qn ÿ Dt
oqn�1

ot
� ÿDt2

6

o2qn�1

ot2
� Dt4

144

o4qn�1

ot4
ÿ Dt5

480

o5qn�1

ot5
�O�Dt6�: �33�
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Again, for # � 1=3 and 2=3 in Eq. (29), we ®nd

qn�1 ÿ qn ÿ Dt
oqn�1

ot
� ÿDt2

9

o2qn�1

ot2
� Dt4

486

o4qn�1

ot4
ÿ Dt5

2430

o5qn�1

ot5
�O�Dt6�: �34�

and a weighted combination of Eqs. (33) and (34) yields

qn�1 ÿ qn ÿ Dt
oqn�1

ot
� ÿ 5Dt2

57

o2qn�1

ot2
ÿ Dt5

10

o5qn�1

ot5
�O�Dt6�: �35�

Finally, multiplying Eq. (32) by �1ÿ h� and Eq. (35) by h and then adding them together (since
qn�h � hqn�1 � �1ÿ h�qn), we get

qn�1 ÿ qn ÿ Dt h
oqn�1

ot

�
� �1ÿ h� oqn

ot

�

� ÿ 5Dt2

57
h
o2qn�1

ot2

�
ÿ �1ÿ h� o

2qn

ot2

�
ÿ Dt5

10
h

o5qn�1

ot5

�
ÿ �1ÿ h� o

5qn

ot5

�
�O�Dt6�: �36�

For the 1-D form of Eq. (1), L�q� � oq=ot � U ÿ ��o =ox�� �oq=ox, one may write

oq
ot
� ÿ U

�
ÿ � o

ox

�
oq
ox

�37�

and

o2q
ot2
� o

ox
U
�
ÿ � o

ox

�
U
�
ÿ � o

ox

�
oq
ox
: �38�

Hence, from Eq. (36) via Eqs. (37) and (38)

qn�1 ÿ qn ÿ Dt U
�
ÿ � o

ox

�
o
ox

hqn�1
ÿ � �1ÿ h�qn

�
� ÿ 5Dt2

57
U 2

�
ÿ 2U�

o
ox

�
o2

ox2
hqn�1
ÿ ÿ �1ÿ h�qn

��O�Dt5; �2�: �39�

Note that Eq. (39) is naturally O�Dt5; �2�, i.e. fourth-order accurate in time.
Again, for trapezoidal condition (h � 1=2)

qn�1 ÿ qn ÿ Dt
2

U
�
ÿ � o

ox

�
o
ox

qn�1
ÿ � qn

�� Dt2

12
U 2

�
ÿ 2U�

o
ox

�
o2

ox2
qn�1
ÿ ÿ qn

� � O�Dt4; �2�: �40�

De®ning the global term integrals as

M �
Z

X
/j/i dX; U �

Z
X

/j/i;x dX;

D �
Z

X
/j;x/i;x dX; E �

Z
X

/j;x ;x/i;x dX

�41�

Eq. (39) may be written in a general form as

M
�
� �hÿ â��CDx�U� �ĉ� b̂h��CDx�2D� l̂h�CDx�3E

�
Qn�1

� M
�
ÿ �1ÿ h� â��CDx�U� ĉÿ �1ÿ h�b̂��CDx�2Dÿ l̂�1ÿ h��CDx�3E

�
Qn; �42�

where for Eq. (40), â � 0, b̂ � �=�U 2Dt� � e (non-dimensional di�usion coe�cient), ĉ � ÿ1=12 and
l̂ � �e=3. In Ref. [12], a similar Bubnov±Galerkin scheme with a and b as free perturbation parameters is
proposed.
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In comparison the corresponding GMP algorithm general form can be written as [6]

�MÿMe� � h �CDx��UÿUe� � �CDx�2�DÿDe� � �CDx�3�Eÿ Ee�
h i� �

Qn�1

� �MÿMe� ÿ �1ÿ h� �CDx��UÿUe� ÿ �CDx�2�DÿDe� ÿ �CDx�3�Eÿ Ee�
h i� �

Qn; �43�

where upon full discretization M) �M �e, and Me ) �APERT�e; U) �U �e, and Ue ) �APERX�, and so on.
One may see that for no physical di�usion, i.e. � � 0, Eq. (42) is identical with GMP algorithm Eq. (7) and
(8) for �APERT�e � 0 and

�APERX�eCDx hfQgn�1
�

� �1ÿ h�fQgn
�
� a�U ��Qn�1 ÿ Qn�: �44�

Here, the general form of ampli®cation factor (2) for Eq. (43) is

G � Qn�1

Qn
� G�t� ÿ �1ÿ h� CGu�x� ÿ C2Gd�x� ÿ C3Ge�x�� �

G�t� � h CGu�x� � C2Gd�x� � C3Ge�x�� � : �45�

Here the spatial G�x� and temporal G�t� components of Eq. (16) can be written as

G�t� �MÿMe;

Gu�x� � Dx�UÿUe�;
Gd�x� � �Dx�2�DÿDe�;
Ge�x� � �Dx�3�Eÿ Ee�:

�46�

Note that the GMP±TWS algorithm ampli®cation factor (45) is unconditionally stable for all C.

4. Discussion and results

4.1. Veri®cation smooth and non-smooth wave convection, C61

An isolated energy packet is a standard veri®cation problem that has been studied for one dimensional
pure convection wave propagation by Refs. [1,5±13] using FE, ®nite volume (FV), and various ®nite dif-
ference (FD) algorithms. The analytical solution q�x; t� to Eq. (1) , for f �u� � u and s � 0, is exact pres-
ervation of the initial condition q�x; t � t0� as it is convected parallel to x on X over nDt. Computational
result herein verify theory and summarize performance for the traveling wave propagation veri®cation
problem, for a range of Courant numbers with a cluster of four different initial condition sets including a
step function, a gaussian wave, a cosine hill and a sharp cone of different initial wavelengths, [14]. The non-
dissipative trapezoidal rule (h � 0:5) time integration algorithm is used for all veri®cation problems.

Fig. 2 documents the initial condition and the computational solutions of the four wave cluster con-
vection using GWS, TWS, FV and GMP algorithms. Solution data are compared for Courant number
C � 1 after 50 s. The GWS solution is non-dissipative and dispersive, as theoretically predicted, with
trailing oscillatory maxima about 40% and with peak level reduced (via distortion) by almost 50%, Fig. 2a.
Similar dispersion error wave is observed in Fig. 2c for FV algorithm. Corresponding TWS solution, Fig.
2b, for b̂ � 0:9 is less dispersive but highly distorted by numerical disspation. The comparative GMP al-
gorithm (26) C � 1 solution for b � c � 0 is dispersion free and nodally exact to within round-o� error
(order 10ÿ16), Fig. 2d.

In a theoretical analysis [6] proved that only for C � 0; 1 and 2 one may match the numerical and an-
alytical solution to Eq. (1) identically. Hence, a non-unit Courant number, say C � 0:4, solution will be the
test. Note that choice of C � 0:4 is arbitrary. The GMP±TWS algorithm of Eq. (43) is guaranteed for
solution stability and improved accuracy for all C (see Section 3). For the speci®cation of C � 0:4,
propagation of the wave cluster for 50 seconds reduces the leading (negative) extremum of the GWS so-
lution by nearly 20% and trailing dispersion error dominates the entire solution, Fig. 3a. Arti®cial diffusion
generally smoothes out these ``wrinkles''. However, determining the appropriate coef®cient b̂ for damping
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Fig. 2. Wave group propagation at C � 1:0.
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Fig. 3. Wave group propagation at C � 0:4.
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mechanism is not easy and any particular choice of b̂ almost always either retains some dispersion error
wrinkles or dissipates the solution excessively distorting its analytical characteristics.

For example, selecting b̂ � 0:5, TWS solution in Fig. 3b is totally non-dispersive, although excess dif-
fusion nearly annihilates the convected wave peaks. Corresponding FV solution, Fig. 3c, has more trailing
dispersion error than the GWS solution, Fig. 3a, while the leading oscillations remain relatively unchanged.
For this non-unit Courant number, the fourth order accurate (b � c � 0) GMP algorithm (23), Fig. 3d,
reduces large wavelength leading edge oscillations of the companion GWS or FV solutions by �50%.
However, the solution still suffers from a non-dissipative dispersion error wave.

Examples of very high order accurate GMP options (e.g., at least sixth order accurate with a; b; c; dP 2)
for this problem class are documented in [6,7] that yields a non-dissipative dispersion error-free solution, cf.
Fig. 1c. However, deriving the problem speci®c temporal and convective matrices for sixth order accuracy is
computationally complicated and requires symbolic logic expertise. In addition, very high order accurate
algorithms are generally prone to solution instability. In this paper a different approach is introduced. The
idea is to simultaneously reduce the dispersive and dissipative error to an optimum level by using TWS
b̂ > 0 arti®cial diffusion matrix along with the GMP fourth order accurate Eq. (23) matrices. This com-
bination (GMP±TWS) guarantees minimal arti®cial diffusion and a good solution stability.

Fig. 4 documents the comparison C � 0:4 TWS and GMP±TWS solutions after 50 seconds. In Fig. 4a,
the TWS solution for b̂ � 0:5 has no dispersion error although the solution is nearly ``¯at'' and the in-
formation peaks have dissipated by almost 70%. The step function is also lost. A smaller value of b̂ may
bring back the peaks at the expense of dispersion error waves. Conversely, for b � c � 0; b̂ � 0:2 GMP±
TWS algorithm solution is nearly dispersion-error free, Fig. 4b. The essential character of the wave cluster
is also retained. In particular, note that the step function is fully preserved after 50 s.

Fig. 4. Comparison TWS and GMP±TWS solution, C � 0:4.
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5. Conclusions

A weak statement perturbation technique based on Fourier modal analysis of the approximation so-
lution ampli®cation factor has been developed for generating progressively higher order accurate CFD
algorithm constructions for non-di�usive (pure convection) applications. It exhibits the e�ciency of a
strictly linear basis FE GWS (or centered FD) algorithm. Using the TWS numerical di�usion along with
analytical fourth order accurate GMP matrix is a viable option to improve the solution resolution at
minimal computational cost. The multidimensional theoretical analysis is necessary for e�ective practical
application of GMP±TWS algorithm.
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