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ABSTRACT 
This paper presents a loosely-coupled algorithm which solves 
for electro-magnetic field variables using least squares 
method combined with an unequal order Galerkin weak 
statement that solves for fluid dynamic field variables. The 
combined loosely-coupled Galerkin Least Squares (GLS) 
algorithm is very stable, with excellent convergence 
properties, and is employed to enhance the theoretical 
understanding of self-induced magnetoplasmadynamic 
(MPD) thrusters. 
 
INTRODUCTION 
Most problems arising in fluid dynamics, solid mechanics, 
heat transfer, electromagnetic and other mathematical physics 
can be recast in the form of first-order differential equations 
that are derived from their appropriate conservation and 
constitutive laws, Eason, [1]. Eason provides the foundation 
for the method as it applies to general partial differential 
equations. The application of the least-squares methods for 
numerical solution of ellipitic boundary-value problems was 
initiated by Bramble and Schatz [2,3], with additional work 
by Varga [4], employing a finite-dimensional space of 
approximating functions similar to finite element methods. 

When compared to the classical Galerkin weak statement 
(GWS), LS generally results in a reduction of order for the 
continuity requirement at the expense of introducing more 
unknowns. The subject least-squares finite element method 
(LSFEM) [5,6] is based on the requirement that the sum of 
the squares of the residuals of these differential equations and 
boundary conditions should be a minimum at the correct 
solution. This reduction is achieved by transforming the 
original differential equations into an equivalent system of 
first-order differential equations and leads to more stringent 
continuity requirements for the trial functions. Hence, the 
smoothness requirement for the space of approximate 
functions would be reduced, and C0 elements would be 
applicable.  

A theoretical analysis of LSFEM for elliptic systems of 
the Petrovsky type was developed by Wendland [7], and the 
optimal error estimates were obtained. Petrovsky systems are 
an important sub-class of elliptic systems in which the 
equations and the unknowns have the same ‘differentiability 

order’. An LSFEM formulation for inviscid Euler equations 
was proposed by Fletcher [8]. Jiang and Chai [9], applied 
LSFEM  to a first-order quasi-linear system for compressible 
potential flow. Nguyen and Reyen [10] presented a space-
time LSFEM for the advection-diffusion problems. Their 
numerical results show that the use of upwinding techniques 
for the Taylor-Galerkin approach turns out to be unnecessary 
when the least-squares weak formulation is extended into the 
time domain using standard shape functions. 

An error estimate for the LSFEM solution of Cauchy-
Rieman type equations was given by Fix and Rose [11]. Jiang 
and Povinelli [12] emphasize the universality of LSFEM, the 
symmetry and positiveness of the algebraic systems, the 
accommodation of LSFEM to equal-order interpolations for 
incompressible flows, and the numerical dissipation of 
LSFEM for convective transport problems and high-speed 
compressible flows. Tang and Tsang [15] used the LSFEM to 
investigate the phenomenon of natural convection caused by 
temperature and concentration buoyancy effects in 
rectangular enclosures. In addition to being stable, the 
method did not require a good initial guess as most steady-
state solutions algorithms. 

The use of preconditioned conjugate gradient (PCG) 
iterative solvers with the LSFEM was investigated by Jiang et 
al. [16-17] for 2D and for 3D-cavity flow. Due to the systems 
of equations that are always symmetric and positive-definite, 
results in opportunities to employ robust matrix-free 
conjugate gradient methods. PCG iterative solves were also 
used by Tang and Tsang [18,19]. The implementation of the 
LSFEM for first-order electromagnetic systems, combined 
with the application of GWS for higher-order fluid dynamics 
systems, is first introduced by Berry and Roy [20]. 

As a complement to [20], this paper describes the 
theoretical and numerical development for the loosely-
coupled GLS. In the following sections the algorithm details 
are presented along with convergence and simulation results 
for MPD thrusters. 
 
NOMENCLATURE 
bl – Local Magnetic Field (Weber/m2) 
B – Magnetic Field (Weber/m2)   
E – Electric Field (V/m)  



2 

h – Enthalpy (J/kg)  
J– Current Density (A/m2) 
k – Thermal Conductivity (W/m-K) 
p – Pressure (Pa)    
R – Gas Constant (J/kg-K)   
T – Temperature (K)    
V – Velocity (m) 
ρ - Density (kg/m3)    
µf - Fluid Viscosity (Pa-s)   
µ0 - Permeability of Free Space (W/A-m) 
Ec - Electron Charge (c)   
Im - Ion Mass (kg) 
H - Hall Parameter (bl σ/Ρn Ec)   
Ρn – Plasma Number Density (ρ/Im- Particles/m3) 
σ - Electrical Conductivity (mho/m)  
φ - Voltage (V) 
γ - Specific Heat Ratio 
Te – Exit Thrust (N) 
Ve – Exit Velocity (m/s) 
 
Subscripts 
 
0 – reference value 
t – tank condition 
e – exit condition 
el – element 
 

The LSFEM discussed herein requires the minimization 
of the differential equation residual in the L2 norm, where 
L2(Ω) denotes the space of square-integrable functions. For a 
general state vector {u}, where ui = u(xi) and uj = u(xj), we 
define on Ω the inner product as: 

 

2( , ) , , ( ),i j i j i ju u u u d u u L
Ω

= Ω ∈ Ω∫  with norm: 

2

20
( , ), ( )i i iu u u u L= ∈ Ω

 

Consider the following boundary value problem (BVP): 
 
 
 
 
where f is a given vector-valued function, B is a boundary 
operator, g is a given vector-valued function on the boundary 
that is assumed to be zero, and L is a linear first-order partial 
differential operator, 

In (1), Ω∈Rn  is a bounded domain with a piecewise 
smooth boundary Γ, and n=2,3 represents spatial dimensions.  
Considering the boundary condition of the BVP and defining 
an appropriate Sobolev function space, S, the minimization of 
the residual with respect to unknown vector u, leads to the 
least-squares weak statement [7]:  

 
( , ) ( , )Lw Lu Lw f w S= ∀ ∈  

where δu = w and u∈S. 
 

 

 
FINITE ELEMENT DISCRETIZATION 

We first discretize the computational domain as a union 
of finite elements and then introduce an appropriate basis 
function. Let ‘ne’ denote the number of element nodes, ‘m’ 
denote the degrees-of-freedom per node, {u} denote a vector 
containing ‘M’ nodal parameter values  (M = ne x m), and 
{N(x)} denote the element basis or shape function vector. If 
equal-order interpolation is assumed for all unknown element 
variables, we can write the expansion: 
 

{ } { }( ) ( )
T

i iU x N x u=  

where U(xi) is the value of unknown state vector {u} at 
location xi. Introducing (3) into the least-squares weak 
statement (2) results in linear equation system of the form: 
 

[ ]{ } { }elK U F=  

where {U} is the global vector of nodal values. The global 
matrix [K] is assembled from the element matrices: 

[ ] { }
1 1

1

[ ] [ ( , )]

( ( )) ( ( ))
e

ne ne

el m
i j

T
n

i j

K k i j

L N x L N x U d

β
= =

+

Ω

=

 = Ω 

∑ ∑

∫
 

where [Kel] is a square matrix of size (β=ne x m)  and [k(i,j)] 
is a square sub-matrix of size m in which Ωe ⊂ Ω is the 
domain of the eth element. The body force/residual vector 
{F} is assembled from the element vectors: 
 

{ } [ ] 0( ( ))
e

T
n

e i e

A
F L N x f U d

tΩ

 = + Ω ∆ ∫  

 
in which from (1): 

[ ] [ ]

[ ]

0

1

( ( )) ( ) ( )

( )

i i i

nd
i

i
i i

A
L N x N x A N x

t
N x

A
x

∂
∂=

= +
∆

+∑
 

where ∆t =  tn+1- tn and n denotes the nth time level. The 
matrix [K] is always symmetric and positive definite (SPD) 
and thus, iterative robust solution methods may be employed. 
It is also important to emphasize that there are no weighting 
or upwind parameters, nor is there any added dissipation, or 
other non-physical ad-hoc modifications to the system of 
equations. The LSFEM solves the primary unknown variables 
in a fully-coupled manner, no splitting or projection (which 
may lead to convergence difficulties) is involved. Besides the 
finite element interpolation and the linearization, no other 
approximation is introduced. Therefore, the method is 
accurate and robust. In addition, LSFEM allows for the 

0

0 ,

Lu f in

Bu g on

− = Ω
− = Γ

(1) 

(2)

(3) 

(4) 

(5) 
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possibility of more system equations than unknown variables, 
which is a major advantage for electromagnetic applications. 
 
LEAST SQUARES MHD 

To obtain a better understanding of parameters affecting 
the behavior of MHD (Electromagnetics and Fluid 
Dynamics) related problems, we derive a set of dimensionless 
equations using the following variables: 

 
 
 
 
 
 
 
 
 
 
 
 
 

All other dimensionless and reference parameters are defined 
in Appendix A. 

The basic MHD equations are the Maxwell’s equations 
that govern the electromagnetics [21] and the Navier-Stokes 
equations that govern the fluid hydrodynamics [22]. These 
equations form the basis of MHD for a moving media and are 
coupled through viscous and magnetic forces that may be 
temperature dependent. 

The steady state non-dimensional Maxwell equations are 
expressed as: 
 
 
 
 
 
 
The necessary constitutive relation is Ohm’s law expressed 

as:    
 
 
 
 

In (7), Ohm’s law relates the current density J
r

to the 

medium velocity V
r

, the electric field E
r

, and the magnetic 

field B
r

. 
 
Two-dimensional Axis-symmetric Electromagnetics 

Two-dimensional electromagnetics assume motion in the 
r-z plane and an induced magnetic field in the azimuthal 
direction only. The cylindrical electromagnetic field 

equations for { }, , ,z rJ J Bθ φ are expressed in scalar form 

and dropping the “*” notation as: 
 
 
 
 
 
 

 

 
 
where: 
 
 
 

In the above we imposed 0E∇ × =
r

 (which implies that 

E φ≡ −∇
r

, where φ  is a scalar potential, i.e. Voltage). 

Equation (8) is of first order and appears to be well posed 
with four equations and four unknowns. However, the current 
densities and the induced magnetic field must be also satisfy: 

 
 
 
 
 
 
 
 

As such we have six equations and four unknowns that 
provides another degree of complexity. However, the LSFEM 
has no difficulty handling more equations than unknowns. 
 
Least Square Electromagnetics Formulation 

With reference to (5) the LSFEM [A] matrices 
(Appendix B) are evaluated for each node “i” to form the 
operator [L] and assembled to evaluate the element stiffness 
matrix using equation (4). To assist the reader, the horizontal 
labels represent the nodal degrees of freedom while the 
vertical labels represent the number of nodal system 
equations. 

 
Two-dimensional Axis-symmetric Fluid Dynamics 
 The equations for the conservation of momentum and 
mass for steady compressible MHD flow are expressed in 
dimensionless vector notation as:  
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where the stress tensor τ is expressed as: 
 

( )( )

Re
TT

V V
µ

τ = − ∇ + ∇
r r

                  (11) 

The term J B×
r r

in (10) represents the electromagnetic body 

force caused by the interaction of the applied current J
r

and 

the induced magnetic field B
r

. Similarly, the conservation of 
energy may be expressed as: 
 

            
 
 
 
 
 

where E J•
r r

represents the Joulean dissipation body force 

from the interaction of the applied electric field E
r

 and the 

applied current field J
r

.  
The appropriate Fourier constitutive law and ideal gas 

closure relations are: 
 

2

0

( )

t

k T
q T

Pe

PMa
P

T P

γ
ρ

= − ∇

 
= + 

 

r

                     (13) 

 
where Pe is the Peclect number and Ma is the Mach number. 
 
Galerkin Finite Element Method (GFEM) 

With the unequal velocity-pressure formulation, we 
assume that the velocity components are interpolated at 'r' 
nodes, while the pressure is interpolated at 's' nodes, where in 
general r > s. This representation is required to remove any 
spurious pressure fields and is similar to the staggered grid 
approach employed in the finite difference method. 

The finite element matrices are developed via 
Bubnov-Galerkin's weighted residual method. We require 
that a weighted value of a residual, R, be a minimum over the 
domain, Ω , by employing piece-wise continuous 
interpolation functions, N. With Galerkin's method the 
weighting or interpolation functions are defined as the 

element shape functions, iN . Thus, for each element node, i, 

we have: 
 

0 ( 1,2, , , )iRN d i n
Ω

Ω = =∫∫∫  

 
where for cylindrical coordinate the differential volume is 
defined as 2d rdrdzπΩ = . 

Using Galerkin's method along with Green's theorem for 
integration by parts in 2D, the element matrices always result 
in a set of non-linear simultaneous equations [4] of the form:  
 

[ ]{ } { }U F=K  

 

where { } { }, , , ,z rU v v T pρ= is the global solution vector, 

{ }F  is the global force vector and [K] is the global stiffness 

matrix expressed as: 
 

[ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

11 12 13 14 15

12 22 23 24 25

31 32 33 34 35

41 42 43 44 45

15 25 53 54 0

T

T T

K K K K K

K K K K K

K K K K K K

K K K K K

K K K K

 
 
   

 =  
 
 
        

 

 
The exact form of the global sub-matrices, [Kij], is provided 
in [20].  
 
Loosely-Coupled GLS Algorithm 

The loosely-coupled GLS algorithm is described as 
follows: 
 

1. Initialize variables. 
2. Compute currents, voltages and magnetic fields via 

LSFEM. 
3. Update momentum loads. 
4. Compute velocity, temperature, density, and 

pressure via GFEM. 
5. Update thermal properties. 
6. If not converged goto 2. 
7. Post-process efficiency. 
8. Stop. 

 
The algorithm as described is efficient and very robust due to 
coupling of magnetic and flow variables using a direct wave 
front solver [23].  
 
MPD THRUSTER SIMULATION  

The magnetoplasmadynamic (MPD) thruster is being 
considered as a high power in-space propulsion system to 
support missions of interest to the NASA Earth Science, 
Space Science, and Human Exploration and Development of 
Space Strategic Enterprises. In this robust electric propulsion 
device arc current is utilized as an ionizer for the gaseous 
propellant that interacts with the self-induced magnetic field 
to accelerate the plasma, and produce the required thrust 
through an inherently unsteady process [24-26]. The MHD 
equations as presented above (1)-(5) can be used for MPD 
thruster analysis assuming a single fluid/ single temperature 
approximation. This implies the plasma to be fully and singly 
ionized. We also assume the plasma is described by a perfect 
gas equation of state. 

In this section, we document the numerical simulation of 
an annular self-field thruster. Figure 1 shows a detailed 
schematic of the axis-symmetric thruster geometry showing 
dimensions, nodal locations, and region generation scheme. 
The model employed 8,576 biquadratic elements with 

(12) ( ) ( )
( )

0

0

0

:hV q V

V p

E J

ρ τ∇ • = −∇ • − Φ ∇

+Π •∇

+Ψ •

r rr

r

r r
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velocity, temperature, density, current, magnetic field, and 
voltage computed at all nine nodes of the element while 
pressure solution is computed at corner nodes only. 

Argon gas propellant enters at temperature 0T , pressure, 

P , mass flow rate m& , and is ionized (within a few 

millimeters) caused by the applied current density, 0J . 

Therefore, in this model, the inlet temperature is chosen high 
enough such that the propellant is sufficiently ionized. As 
such, the upstream computational boundary is in reality a few 
millimeters downstream of the true gas entry through the 
backplate. 
 
Geometry and Boundary Conditions 

The MPD velocity boundary conditions assume a 
uniform inlet velocity, zero velocity along the fixed 
boundaries and  a zero pressure gradient condition imposed at 
the downstream exit and along the upper downstream radial 
boundary. The thermal boundary condition assume an 
isothermal condition for the inlet and the anode, with a zero 
temperature gradient boundary condition imposed for all 
other surfaces. This represents an upper bound for thruster 
operation The electromagnetic boundary condition assume 
the anode and cathode have a constant potential difference, 
the entry back-plate is electrically insulated, zero downstream 
axial magnetic field values, and magnetic fields are constant 
at the computational boundary downstream. Although there 
are other boundary condition combinations, these appear to 
be ones that are logical and provide physically realistic 
results. 

 
 
 
 
 
 
 
 
 
 
 
From Figure 1 the following geometric variables are defined 
as: 

Electrode Length ( eL ): 10.0 cm 

Inner Radius ( 1R ):  1.0 cm 

Outer Radius ( 2R ):  4.0 cm 
 
Plasma Properties 
The propellant is Argon gas with the following specified 
operating conditions and property values: 
 
Specific Heat Ratio (γ ): 1.667  

Constant Pressure Specific Heat ( pc ): 522 J/kg-K 

Prandtl Number ( rp ): 0.670 

Inlet Temperature ( 0T ): 5,000K 

Inlet Pressure ( tP ): 1000 Pa 

Gas Constant ( gasR ): 208 J/kg-K 

 
Other property values are determined from [27]. 

 
MPD THRUSTER SIMULATION RESULTS 

An overall schematic for the MPD algorithm is provided 
in [20].  The algorithm employs 9-node quadrilateral finite 
elements with the following modeling parameters: 
 
Elements:   8,576 9-node Quadrilateral Elements 
Nodes:      34,412 

DOF:       147,849{ }, , , ,z rv v T Pρ  

             137,648{ }, , ,z rJ J Bθ φ  

Wave Front: 895 
 
The convergence parameter is defined as the Residual Norm 

expressed as:

( )1

50

0

10

n
m m

n
m

Y Y
R

Y

+

−

−
= ≤

∑

∑
 

where Y is the individual nodal degree of freedom, ‘m’ is the 
iteration index, and where the sum is over all nodal degrees 
of freedom.  

Figures 2 and 3 show the fluid dynamics and 
electromagnetics equations convergence history, respectively, 
for a mass flow rate of 2 gm/s and a current of 4,000 amps.  
Note the rather stable computational behavior of the both the 
GFEM and the LSFEM algorithms. 
 Additional sample results are provided in Figures 4-7 
that show contour plots for Speed, Temperature, Density, and 
Voltage, respectively.  Results are shown for a mass flow rate 
of 2.25 gm/s and a current of 4,000 amps. Note the 
temperature increase along the insulated cathode surface and 
the velocity increase within a narrow region above the 
cathode surface. This velocity increase corresponds to the 
location of the maximum induced magnetic field (i.e. along 
the cathode surface). Also note the velocity decrease in the 
plasma core downstream of the inlet due to mass 
conservation. Observe the exit velocity increase due to heat 
transfer from the cathode to the anode. This heat transfer 
provides increased density and a corresponding increased 
convective fluid acceleration. Finally, the increased density 
creates density gradients that provide additional axial and 
radial momentum thrust forces. 
  Although not shown, the induced magnetic field has a 
maximum value along the cathode surface associated with a 
maximum radial current density. The larger cathode 
temperature and the associated temperature dependent 
electrical conductivity result in this maximum radial current 
density. 
 
CONCLUSIONS 

This paper presents a loosely-coupled single-fluid and 
single temperature MHD algorithm that combines the 
traditional Galerkin Finite Element Method and the Least 
Square Finite Element Method. The algorithm has good 
convergence properties, is very stable for typical MPD 
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operating conditions, and is applicable for steady 
compressible Magnetohydrodynamics fluid flow with heat 
transfer, assuming a fully ionized plasma. 

Additionally, the Least Square Finite Element Method 
provides a framework for a unified approach applicable to 
interdisciplinary problems in fluid dynamics. This method is 
based upon a first-order differential equation formulation. 
Using C0 finite elements to discretize the equations and 
minimize the L2 norm of the residuals leads to a symmetric 
and positive-definite algebraic system that can be effectively 
solved by simple yet robust matrix-free iterative methods. 
Furthermore, using an Element-by-Element (EBE) 
Preconditioned Conjugate Gradient (PCG) approach will 
allow algorithm development that does not require the 
assembly of the global or local elemental stiffness matrices. 
This characteristic can effectively be utilized for the solution 
of large-scale problems on parallel computers.  
 
Modeling improvements for increased accuracy are: 
 

• An Equation of State (EOS) for real fluids 
• Accurate Plasma Properties 
• Transient Simulations 
• Temperature dependent specific heats 
• Inclusion of a two component model for ions 

and electrons 
• Radiation effects 

 
We anticipate these modeling improvements will be very 
useful when combined with geometry optimization 
algorithms to study thruster geometry affects on efficiency. 
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Figure 2. Residual Norm Convergence History – Fluid Dynamics 
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Figure 3. Residual Norm Convergence History – Electromagnetics 

Figure 4. Contour Speed Plot Figure 5. Contour Temperature Plot 

Figure 6. Contour Density Plot Figure 7. Contour Voltage Plot 
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APPENDIX A 
DIMENSIONLESS AND REFERENCE 

PARAMETERS 

APPENDIX B 
LEAST SQUARES [A] MATRIX 
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