Finite Element Based Hydrodynamic Sheath Model

Subrata Roy and Birendra P. Pandey

Computational Plasma Dynamics Laboratory Kettering University, Flint, MI 48504 http://cpdl.kettering.edu

Presented by Prof. Joseph Shang

AIAA-2002-2169

Problem of Interest

- 1D formulation of collisional plasma-sheath
 - High-power in-space electric propulsion systems.
 - MPD, SPT type thrusters.
 - High speed air vehicles.
 - Electromagnetic flow control.
 - Magnetically confined fusion plasmas.
 - Tokamak.
 - Material processing in micro-electronics.
 - Thin film deposition, plasma etching.

Challenges

- Very high property gradients.
- Better resistivity models.
- Ionization and recombination processes.
- Accurately calculating fall voltage and energy losses.
- Predicting sheath-presheath boundary.
- Understanding unsteady edge instability (RT modes?).
- Improving flow control.

Collision Model

CPDL, Kettering University

Sheath Criteria

 $\label{eq:pre-sheath} \mbox{ Pre-sheath thickness } \sim \lambda_{mfp} \mbox{ plasma neutral interaction} \\ \mbox{ Sheath thickness } \sim \lambda_D \mbox{ Debye length } \\$

- Developed by the Computational Plasma Dynamics Laboratory at Kettering University.
- A family of complex geometry subroutines that can study macroscopic collisional plasmas.
- Written in Fortran 77, use Cray-style Fortran pointers, and are designed for UNIX-type environment.
- Two and half dimensional formulation (so far).
- Implemented Sub-Grid eMbedded (SGM) FE for Coarsegrid Solution Stability, Accuracy and Tri-diagonal Efficiency.
- Utilized to model low pressure Hall (SPT) and MPD thruster applications.

Numerical Details

Weak Statement

Discrete Approximation

$$\int_{\Omega} w L(\mathbf{U}) \, d\Omega = 0, \ w \text{ is any admissible test function.}$$

 $\Omega^{h} = \bigcup_{i} \Omega_{el}; \ u(t, x_{j}) \approx u^{h}(t, x_{j}) = \bigcup_{i} u_{el}(t, x_{j}); \text{ and } u_{el}(t, x_{j}) = N_{k}(x_{j}) U_{el}(t)$ N_k is appropriate basis function; Chebyshev, Lagrange or

Hermite interpolation polynomials complete to degree k.

 $L(\mathbf{U}) = 0$; where $\mathbf{U} = \{n_{e}, n_{i}, n_{n}, V_{e}, V_{i}, T_{e}, \varphi\}^{T}$

FE Formulation

eMbedded

 $\Omega^{h} = \bigcup_{el} \Omega_{el} ; WS^{h} = S_{el} \left(\int_{\Omega_{el}} N_{k} L(\mathbf{U}_{el}) d\tau \right) \implies \mathbf{M} \frac{d\mathbf{U}}{dt} + \mathbf{R}(\mathbf{U}) = 0; \mathbf{M} = S_{el}(\mathbf{M}_{el})$

Sub-Grid
edded FE
$$\int_{\Omega_{el}} \frac{\partial N_{S=1}}{\partial x_j} \frac{\partial N_{S=1}^{\mathrm{T}}}{\partial x_j} d\tau = \left[\int_{\Omega_{el}} g(h_j, V_j) \frac{\partial N_{k=2}}{\partial x_j} \frac{\partial N_{k=2}^{\mathrm{T}}}{\partial x_j} d\tau \right]^R \Rightarrow \mathbf{M} \frac{d\mathbf{U}}{dt} + \mathbf{R}_S(\mathbf{U}) = 0 \quad \text{Roy and Baker} \quad (1997, 1998)$$

Solution Procedure

NR Iteration

$$\mathbf{U}_{\tau+1}^{i+1} = \mathbf{U}_{\tau+1}^{i} + \Delta \mathbf{U}^{i} = \mathbf{U}_{\tau} + \sum_{p=0}^{i} \mathbf{U}^{p+1}, \text{ where}$$
$$\Delta \mathbf{U}^{i} = -\left[\mathbf{M} + \mathcal{P}\Delta t(\partial \mathbf{R} / \partial \mathbf{U})\right]^{-1} \mathbf{R}(\mathbf{U})$$

Convergence Criteria

$$\frac{\|\mathbf{U}_{j} - \mathbf{U}_{j-1}\|}{\|\mathbf{U}_{j}\|} \leq \epsilon = 10^{-4} \text{ for all integrated quantities.}$$

Steady state takes ~100 microsecond. Average timestep 50 nanosecond (2,000 steps).

Boundary Conditions

- Zero Plasma Velocity and Finite Plasma Density Imposed at C_L.
- Finite Neutral Density Imposed at C_L .
- Wall Maintained at an Imposed Negative Potential.
- Fixed Electron Temperature at C_L .
- Homogeneous Neumann (Zero Flux) Condition at all other Boundaries.
- Ion Drift Speed = Modified Bohm Velocity at the Plasma-Sheath Interface.
- Imposed Electric Field at the Plasma-Sheath Boundary.

Steady State Solutions (Number Densities)

Electron Number Density

Ion Number Density

Steady State Solutions (Number Densities)

CPDL, Kettering University

Steady State Solutions (Potential and Electric field)

CPDL, Kettering University

Steady State Solutions

(Ion Velocity and Electron Temperature)

S. Roy CPDL, Kettering University

FE Solution for a Hall Thruster

FE Solution Details

Conclusions

Finite element code is developed and applied to modeling collisional sheath and bulk plasma.

- Theoretical development for a modified Bohm criteria documented.
- Simulation performed for a single temperature macroscopic partially ionized gas model shows reasonable agreement with recent experiments.
- Understanding the collision effects, geometric and magnetic shape effects inside sheath and plasma-wall interaction will be critical for improved electromagnetic flow control.

What's Achieved

- Numerical Investigation of Partially Ionized Macroscopic Flow utilizing a new Sub-Grid eMbedded Finite Element Code.
- Inclusion of Ionization and Recombination Effects inside the Sheath-Bulk Plasma.
- Calculation of Electron, Ion and Neutral Number Density Distributions.
- Prediction of Electron and Ion Velocities.
- Calculation of Electron Temperature Distribution.
- Determination of Potential and Electric Field Distribution.

Acknowledgements

- NASA Research Grants
- NSF/NPACI Supercomputer
- AFRL Summer Fellowship

