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ABSTRACT 
 

This paper introduces a loosely-coupled computational method that combines the Galerkin Finite 

Element Method (GFEM) and the Least Squares Finite Element Method (LSFEM) that is 

applicable for self-induced magnetic field engineering applications. The combined Galerkin 

Least Squares (GLS) algorithm is employed to enhance the theoretical understanding for a fully 

ionized, single temperature fluid in magnetoplasmadynamic (MPD) thrusters. The computational 

model addresses the potential understanding of geometric and parametric scales, and predictions 

of self-induced magnetic effects. Documented results on practical two-dimensional 

computational domain show the capability of the GLS algorithm under different parametric 

design conditions.  
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NOMENCLATURE 

 
 
bl – Local Magnetic Field (Weber/m2) 
B – Magnetic Field (Weber/m2)   
E – Electric Field (V/m)  
h – Enthalpy (J/kg)    
J– Current Density (A/m2) 
k – Thermal Conductivity (W/m-K) 
p – Pressure (Pa)    
R – Gas Constant (J/kg-K)   
T – Temperature (K)    
V – Velocity (m) 
ρ - Density (kg/m3)    
µf - Fluid Viscosity (Pa-s)   

µ0 - Permeability of Free Space (W/A-m) 
Ec - Electron Charge (c)   
Im - Ion Mass (kg) 
H - Hall Parameter(bl σ/ΡnEc)   
Ρn – Plasma Number Density (ρ/Im- 
Particles/m3) 
σ - Electrical Conductivity (mho/m)  
φ - Voltage (V) 
Te – Thrust (N) 
Ve – Exit Velocity (m/s) 
 

 
Subscripts 
 
0 – reference value 
t – tank condition 
e – exit condition 
el – element 
 

1.0 Introduction 
 
The basic magnetohydrodynamics (MHD) equations are the Navier-Stokes equations that govern 

the fluid hydrodynamics [1] and Maxwell’s equations that govern the electromagnetics [2]. 

These equations form the basis of MHD for a moving media and are coupled through viscous 

and magnetic body forces that may be temperature dependent.  

This paper develops a two-dimensional steady state algorithm utilizing a combination of 

the Galerkin weak statement (GWS) and least squares finite element (LSFEM) methods [3] for 

MHD applications. The GWS is used to analyze the single fluid Navier-Stokes regime subjected 

to electromagnetic forces, while the LSFEM solves the electromagnetic Maxwell’s equations. 

This loosely-coupled Galerkin and Least Square (GLS) algorithm allows for a very robust and 

mathematically complete approach. The following sections highlights the theoretical 
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developments for the computational methodology, and presents quantitative documentation of 

achievable high quality practical MHD solutions.  

1.1 Fluid Dynamics Field Equations 

To obtain a better understanding of parameters affecting the behavior of MHD related 

problems, we derive a set of dimensionless equations using the following variables: 
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All other dimensionless and reference parameters are defined in Appendix A. 

The equations for the conservation of momentum and mass for steady compressible MHD flow 

are expressed in dimensionless vector notation as:  
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where the stress tensor τ is expressed as: 

( )
*

* * * * *( )

Re

TT
V V

µ
τ = − ∇ + ∇

r r
 

(1) 

(2) 



 
American Institute of Aeronautics and Astronautics 

5

The term J B×
r r

in (1) represents the electromagnetic body force caused by the interaction of the 

applied current J
r

and the induced magnetic field B
r

. Similarly, the conservation of energy may 

be expressed as: 

( ) ( )
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where E J•
r r

represents the Joulean dissipation body force from the interaction of the applied 

electric field E
r

 and the applied current field J
r

.  

The appropriate Fourier constitutive law and ideal gas closure relations are: 
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where Pe is the Peclect number and Ma is the Mach number. 

1.2 Electromagnetic Field Equations 

The non-dimensional Maxwell form for steady-state, single fluid assumptions may be derived as: 
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The necessary constitutive relation is expressed as: 
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(4) 
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In (6), Ohm’s law relates the current density J
r

to the plasma velocity V
r

, the electric field E
r

, 

and the magnetic field B
r

with the ion slip terms neglected due to the full ionization assumption. 

The Hall Parameter H0 is the product of the electron cyclotron frequency and the electron 

collision time expressed as: 

0 0
0

0

m

c

B I
H

E

σ
ρ

=   

where B0 is the magnitude of the reference magnitude field, Im is the ion mass, and Ec is the 

electron charge.  

The above coupled equation sets, (1)-(7), can be solved numerically for field variables of 

velocity{ }* *,
z r

v v , temperature{ }*T , density { }*ρ , pressure{ }*p , current { }* *,
z r

J J , voltage { }*φ , 

and induced magnetic field { }*B
θ

 for a wide range of practical engineering applications. From 

Appendix A and (1)-(7) it can be seen that primary input variables are the applied reference 

current 0I  , the reference plasma temperature 0T , the reference propellant tank pressure tP , and 

0Ψ defined as the ratio of electrical input energy to thermal input energy. 

2.0 MHD Numerical Implementation              

The MHD solution strategy integrates the Galerkin weak statement (GWS) to solve the fluid 

dynamic equations and the least-squares finite element method (LSFEM) to solve the 

electromagnetic equations. Both equation sets provide a coupled solution for all field variables to 

enhance convergence.   

(6) 

(7) 
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2.1 Galerkin Weak Statement (GWS) 

With the unequal velocity-pressure formulation, we assume that the velocity components are 

interpolated at 'r' nodes, while the pressure is interpolated at 's' nodes, where in general r > s. 

This representation is required to remove any spurious pressure fields and is similar to the 

staggered grid approach employed in the finite difference method. 

The finite element matrices are developed via Bubnov-Galerkin's weighted residual 

method. We require that a weighted value of a residual, R, be a minimum over the domain, Ω , by 

employing piece-wise continuous interpolation functions, N. With Galerkin's method the 

weighting or interpolation functions are defined as the element shape functions, iN . Thus, for 

each element node, i, we have: 

0 ( 1,2, , , )iRN d i n
Ω

Ω = =∫∫∫  

where for cylindrical coordinate the differential volume is defined as 2d rdrdzπΩ = . 

Using Galerkin's method along with Green's theorem for integration by parts in 2D, the 

element matrices always result in a set of non-linear simultaneous equations [4] of the form:  

[ ]{ } { }U F=K  

where { } { }* * * * *, , , ,
z r

U v v T pρ= is the global solution vector, { }F  is the global force vector and 

[K] is the global stiffness matrix expressed as: 
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The exact form of the global sub-matrices, [Kij], is provided in Appendix B. In the above 

stiffness matrix, {N} is the familiar shape function vector with its gradient matrix [B], where 

{Br} and {Bz} are the individual rows corresponding to the radial or axial axis. The superscript 

‘s’ in Appendix B corresponds to the pressure degrees-of-freedom. 

2.2 Least Square Finite Element Method (LSFEM) 

Most problems arising in fluid dynamics, solid mechanics, heat transfer, electromagnetic and 

other mathematical physics can be recast in the form of first-order systems [5-7]. These systems 

result in first-order differential equations that are derived from their appropriate conservation and 

constitutive laws. As such the LSFEM discussed herein requires the minimization of the 

differential equation residual in the L2 norm, where L2(Ω) denotes the space of square-integrable 

functions. For a general state vector {u}, where ui = u(xi) and uj = u(xj), we define on Ω the inner 

product as: 

2( , ) , , ( ),i j i j i ju u u u d u u L
Ω

= Ω ∈ Ω∫  

 with norm: 

2

20
( , ), ( )i i iu u u u L= ∈ Ω  

Consider the following boundary value problem (BVP): 

 
 

 

where f is a given vector-valued function, B is a boundary operator, g is a given vector-valued 

function on the boundary that is assumed to be zero, and L is a linear first-order partial 

differential operator, 
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In (8), Ω∈Rn  is a bounded domain with a piecewise smooth boundary Γ, and n=2,3 represents 

space dimensions.  

Considering the boundary condition of the BVP and defining an appropriate Sobolev 

function space, S, the minimization of the residual with respect to unknown vector u, leads to the 

least-squares weak statement [7]:  

( , ) ( , )Lw Lu Lw f w S= ∀ ∈  

where δu = w and u∈S. 

2.3 Finite Element Discretization 

We first discretize the computational domain as a union of finite elements and then introduce an 

appropriate basis function. Let ‘ne’ denote the number of element nodes, ‘m’ denote the degrees-

of-freedom per node, {u} denote a vector containing ‘M’ nodal parameter values  (M = ne x m), 

and {N(x)} denote the element basis or shape function vector. If equal-order interpolation is 

assumed for all unknown element variables, we can write the expansion: 

{ } { }( ) ( )
T

i iU x N x u=  

where U(xi) is the value of unknown state vector {u} at location xi. Introducing (10) into the 

least-squares weak statement (9) results in linear equation system of the form: 

[ ]{ } { }elK U F=  

where {U} is the global vector of nodal values. The global matrix [K] is assembled from the 

element matrices: 

 

(8) 

(9) 

(10) 
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where [Kel] is a square matrix of size (β=ne x m)  and [k(i,j)] is a square sub-matrix of size m in 

which Ωe ⊂ Ω is the domain of the eth element. The body force/residual vector {F} is assembled 

from the element vectors:{ } [ ] 0( ( ))
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where ∆t =  tn+1- tn and n denotes the nth time level. The matrix [K] is always symmetric and 

positive definite (SPD) and thus, iterative robust solution methods may be employed. It is also 

important to emphasize that there are no weighting or upwind parameters, nor is there any added 

dissipation, or other non-physical ad-hoc modifications to the system of equations. The LSFEM 

solves the primary unknown variables in a fully-coupled manner, no splitting or projection 

(which may lead to convergence difficulties) is involved. Besides the finite element interpolation 

and the linearization, no other approximation is introduced. Therefore, the method is accurate 

and robust. In addition, LSFEM allows for the possibility of more system equations than 

unknown variables. 

2.4 Loosely-Coupled GLS Algorithm 

The loosely-coupled GLS algorithm is described as follows: 

 

(11) 

(12) 
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1. Initialize variables. 

2. Compute currents, voltages and magnetic fields via LSFEM. 

3. Update momentum loads. 

4. Compute velocity, temperature, density, and pressure via GFEM. 

5. Update thermal properties. 

6. If not converged goto 2. 

7. Post-process efficiency. 

8. Stop. 

The algorithm as described is efficient and very robust due to coupling of magnetic and flow 

variables using a direct wave front solver. The exact form of the LSFEM [A] matrix along with 

the schematic overview is provided in [8]. 

3.0 MPD Thruster Simulation  

The magnetoplasmadynamic (MPD) thruster is being considered as a high power in-space 

propulsion system to support missions of interest to the NASA Earth Science, Space Science, 

and Human Exploration and Development of Space Strategic Enterprises. In this robust electric 

propulsion device arc current is utilized as an ionizer for the gaseous propellant that interacts 

with the self-induced magnetic field to accelerate the plasma, and produce the required thrust 

through an inherently unsteady process [9-11]. The MHD equations as presented above (1)-(5) 

can be used for MPD thruster analysis assuming a single fluid/ single temperature 

approximation. This implies the plasma to be fully and singly ionized. We also assume the 

plasma is described by a perfect gas equation of state. 
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Computational researchers have tried to effectively capture the physics of self-field MPD 

thrusters [12,13] using two-dimensional time-independent computational fluid dynamics (CFD) 

model for argon propellant. While finite difference methodology is utilized in [12] to solve the 

fully ionized MPD equations with ideal gas equation of state, the velocity, pressure, electron-ion 

temperature and current field solutions in [13] are computed by the finite volume methodology. 

Results in both these papers were reasonably compared with experimental thrust data. 

Numerical solutions reported in [14] included the temporal contributions via a special 

consideration to the difference between characteristic time scale of fluid-thermal (msec) and 

electromagnetic (µsec) effects. A detail comparison of thrust versus current curves for various 

mass flow rates is presented in [15]. These results show a wide variation of numerical solution 

accuracy for DT series and hot anode thrusters (HAT). Applications of finite volume method in 

general two-dimensional unsteady plasma dynamics have also been reported by Air Force 

Research Laboratory researchers [16]. The methodology involves solutions of mass, momentum, 

electron and ion energy, radiation energy density, magnetic induction and elastic stress equations 

in arbitrary Lagrangian/Eulerian (ALE) coordinate. A recent publication [17] documents the 

application of this code for applied-field MPD thrusters. However, the solution stability and 

boundary condition issues are not clearly addressed. 

In this section, we document the numerical simulation of an annular self-field thruster. 

Figure 1 shows a detailed schematic of the axis-symmetric thruster geometry showing 

dimensions, nodal locations, and region generation scheme. The model employed 8,576 

biquadratic elements with velocity, temperature, density, current, magnetic field, and voltage 

computed at all nine nodes of the element while pressure solution is computed at corner nodes 

only. 
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Argon gas propellant enters at temperature 0T , pressure, tP , mass flow rate m& , and is ionized 

(within a few millimeters) caused by the applied current density, 0J . Therefore, in this model, 

the inlet temperature is chosen high enough such that the propellant is sufficiently ionized. As 

such, the upstream computational boundary is in reality a few millimeters downstream of the true 

gas entry through the backplate. 

3.1 Geometry and Boundary Conditions 

Figure 2 show the MPD velocity boundary conditions with zero pressure gradient boundary 

conditions downstream. Figure 3 show the MPD thermal boundary conditions with an assumed 

isothermal condition for the inlet and the annode. All other surface have a zero temperature 

gradient boundary condition which represent an upper bound for thruster operation. Figure 4 

show the MPD electromagnetic boundary conditions. We assume the annode and cathode have a 

constant potential difference, the entry back-plate is electrically insulated, zero downstream axial 

magnetic field gradients, and magnetic fields are constant at the computational boundary 

downstream. Although there are other boundary condition combinations, these appear to be ones 

that are logical and provide physically realistic results. 
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Figure 1. MPD Thruster Geometry (cm) 
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From Figure 1 the following geometric variables are defined as: 

Electrode Length ( eL ): 10.0 cm 

Inner Radius ( 1R ):  1.0 cm 

Outer Radius ( 2R ):  4.0 cm 

3.2 Plasma Properties 

The propellant is Argon gas with the following specified properties and conditions: 

Specific Heat Ratio (γ ): 1.667  

Constant Pressure Specific Heat ( pc ): 522 J/kg-K 

Prandtl Number ( rp ): 0.670 

Inlet Temperature ( 0T ): 5,000K 

Inlet Pressure ( tP ): 1000 Pa 

Gas Constant ( gasR ): 208 J/kg-K 

Other property values are computed as follows: 

• Viscosity : 
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• Electrical Conductivity (Spitzer-Harm): 
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Plasma Core: 

 

  

 

 

 

• Thermal Conductivity 
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4.0 MPD Thruster Simulation Results 

An overall schematic for the MPD algorithm is provided in [8].  The algorithm employs 9-node 

quadrilateral finite elements with the following modeling parameters: 

Elements:   8,576 9-node Quadrilateral Elements 

Nodes:      34,412 

DOF:       147,849{ }, , , ,z rv v T Pρ  

       137,648{ }, , ,z rJ J Bθ φ  

Wave Front: 895 

The convergence parameter is defined as the Residual Norm expressed as: 

( )1

50

0

10

n
m m

n
m

Y Y
R

Y

+

−

−
= ≤

∑

∑
 

where Y is the individual nodal degree of freedom, ‘m’ is the iteration index, and where the sum 

is over all nodal degrees of freedom. Figures 5 and 6 show the fluid dynamics and 

electromagnetics equations convergence history, respectively, for a mass flow rate of 2 gm/s and 

a current of 4,000 amps.  Note the rather stable computational behavior of the both the GFEM 

and the LSFEM algorithms. Additional sample results are provided in Figures 7-10 that show 

contour plots for Speed, temperature, Density, and Voltage, respectively.  Results are shown for 

a mass flow rate of 2.25 gm/s and a current of 4,000 amps. Note the temperature increase along 

the insulated cathode surface and the velocity increase within a narrow region above the cathode 

surface. This velocity increase corresponds to the location of the maximum induced magnetic 

field (i.e. along the cathode surface). Also note the velocity decrease in the plasma core 

downstream of the inlet due to mass conservation. Observe the exit velocity increase due to heat 
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transfer from the cathode to the anode. This heat transfer provides increased density and a 

corresponding increased convective fluid acceleration. Finally, the increased density creates 

density gradients that provide additional axial and radial momentum thrust forces. 

  Although not shown, the induced magnetic field has a maximum value along the cathode 

surface associated with a maximum radial current density. The larger cathode temperature and 

the associated temperature dependent electrical conductivity result in this maximum radial 

current density. 

 

4.1 Parametric Studies 

To evaluate the system performance the total thrust is defined as:  

( ) ( )
ext e

e e ext e t e

V A

T mv J B dV p r dA p A= + × + −∫ ∫
r r

&  

where the integration of the electromagnetic body force is performed over the current carrying 

volume ‘external’ to the thruster (Vext). This is necessary due to possible electromagnetic 

accelerations that may occur outside the thruster. The pressure force corresponds to an imbalance 

between the pressure at the anode exit plane (pe) and the background gas pressure (pt) evaluated 

over the thruster exit area Ae. 

The total thrust is now used to calculate the plasma flow efficiency: 

2

2
e

f

T

mP
η =

&
 

where P  is the power deposited in the plasma, equal to the product of the plasma voltage and the 

plasma resistivity, i.e.  

2
0

0

I
P

σ
= . 
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Unfortunately, due to significant electrode power losses that consume a large fraction of the total 

thruster power, experimentally measured thruster efficiencies will be lower [19]. However, the 

finite element model can provide trends, parametric studies, and design comparisons. 

Plots of exit thrust, density, and temperature are shown in Figures 11, 12, and 13 

respectively for 0 1Ψ =  (ratio of electrical input power to thermal input power). The maximum 

thrust occurs at a radial distance of 3 cm (Figure 11) with a corresponding density maximum 

(Figure 12) and a corresponding temperature minimum (Figure 13) slightly less that 3cm. Note 

the “flat” temperature profile between radial values of 3-4cm and the slight temperature increase 

prior to the upper boundary at 4.0 cm. This affect is also reflected in the exit density plot and is 

attributed to the coupling of density, temperature, and velocity within the element stiffness 

matrix. Negative density gradients reduce the local velocity and the corresponding convective 

heat transfer toward the upper radial boundary. 

4.2 Understanding  ΨΨ 

The dimensionless parameter Ψ is analogous to the physical parameter I2/m used to compare 

MPD thrusters. For constant Ψ, and constant I2/m, the thrust and efficiency increases with 

increasing current (Figure 14) as expected. For constant current and varying Ψ (or varying I2/m) 

the efficiency increases with increasing mass flow and resulting increased thrust as expected 

(Figures 15,16).  Finally, Figure 17 shows that a decreasing Ψ results in higher flow efficiencies 

and Figure 18 shows that increasing current result in higher flow efficiency for constant Ψ. 

These trends are consistent with other simulations provided within the literature [2]. 

However, for constant mass flow (m) and increasing current (I), the thrust and efficiency 

decreases with increasing current. Although this appears strange, an analysis of the formulation 

provides two possible explanations: 
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1. The non-dimensionless parameters ∆, which controls the Magnetohydrodynamics momentum 

body force, and Ψ, which controls the Magnetohydrodynamics Joulean heating load within 

the energy equation, both vary as I2 for this case. Although both increase, negative 

momentum density gradients retard the developing axial velocity (Equation 8), and therefore 

reduce thrust and efficiency. 

2. The increase in the Joulean heating is offset by the convective heat transfer increase. This 

result in cooler cathode temperatures and small density gradients combined with lower thrust 

and efficiency. 

It is clear that additional research is needed to understand this result. 

We also define the “conversion” efficiency as: 

( ) ( )
0

e eT V

Q
β =   

where the numerator is the mechanical thrust power at the exit plane and the denominator is the 

reference plasma thermal power at the inlet.  Figure 19 shows the current vs. conversion 

efficiency for constant Ψ. Note that for increasing current and decreasing Ψ, the conversion 

efficiency increases. This result follows from the increased reference magnetic velocity and the 

decreased reference magnetic force ratio, 0∆ . A smaller magnetic force ratio subsequently 

results in increased convective acceleration and increased convective heat transfer due an 

increased Peclect number. The increased convection of momentum and energy creates larger 

temperature and density gradients and as such, increased thrust and conversion efficiency. 

Conclusions 

This paper presents a loosely-coupled single-fluid and single temperature MHD algorithm that 

combines the traditional Galerkin Finite Element Method and the Least Square Finite Element 

(13) 
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Method. The algorithm has good convergence properties, is very stable for typical MPD 

operating conditions, and is applicable for steady compressible Magnetohydrodynamics fluid 

flow with heat transfer, assuming a fully ionized plasma. 

Additionally, the Least Square Finite Element Method provides a framework for a unified 

approach applicable to interdisciplinary problems in fluid dynamics. This method is based upon a 

first-order differential equation formulation. Using C0 finite elements to discretize the equations 

and minimize the L2 norm of the residuals leads to a symmetric and positive-definite algebraic 

system that can be effectively solved by simple yet robust matrix-free iterative methods. 

Furthermore, using an Element-by-Element (EBE) Preconditioned Conjugate Gradient (PCG) 

approach will allow algorithm development that does not require the assembly of the global or 

local elemental stiffness matrices. This characteristic can effectively be utilized for the solution 

of large-scale problems on parallel computers.  

We also presented a non-dimensional numerical formulation that provides insight into 

fundamental parameters governing MPD thrusters. As a result we propose the “PSI” factor 

( )Ψ along with the conversion efficiency β as dimensionless parameters to compare MPD 

thrusters. 0Ψ along with the applied current, reference temperature, geometry data, and fluid 

property data is sufficient for the parametric analysis of MPD thrusters. 

Modeling improvements for increased accuracy are: 

• An Equation of State (EOS) for real fluids 

• Transient Simulations 

• Temperature dependent specific heats 

• Inclusion of a two component model for ions and electrons 

• Radiation effects 
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We anticipate these modeling improvements will be very useful when combined with geometry 

optimization algorithms to study thruster geometry affects on efficiency. 
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Figure 2. MPD Velocity Boundary Conditions 
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Figure 3. MPD Thermal Boundary Conditions 
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Figure 4. MPD Electromagnetic Boundary Conditions 
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Figure 5. Residual Norm Convergence History – Fluid Dynamics 
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Figure 6. Residual Norm Convergence History – Electromagnetics 
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Figure 7. Contour Speed Plot 

 

Figure 8. Contour Temperature Plot 
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Figure 9. Contour Density Plot 

Figure 10. Contour Voltage Plot 
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Figure 11. Exit Thrust vs. Current 
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Figure 12. Exit Density vs. Current 
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Figure 13. Exit Temperature vs. Current

Figure 14. Current vs. Thrust 
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Figure 16. Thrust vs. Efficiency 
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Figure 17. PSI vs. Efficiency 
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Figure 18. Current vs. Efficiency 
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Figure 19. Current vs. Conversion Efficiency (β) 


