
 

STUDY OF TURBULENT FLOW CONTROL USING SERPENTINE PLASMA ACTUATOR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

ARNOB DAS GUPTA 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL 

OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

UNIVERSITY OF FLORIDA 

 

2017 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

© 2017 Arnob Das Gupta 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my mom and dad 



 

4 

ACKNOWLEDGMENTS 

I would like to thank my advisor and chair Dr. Subrata Roy for his immense support and 

guidance. He has helped me not only to prosper as a student but also to adjust into this new 

environment. I admire his patience and dedication towards me as well and his students in 

Applied Physics Research Group. I would also like to thank my lab members Ankush, Tomas, 

Pengfei, Jignesh, Sherlie, Navya, Mark, Ariel, Moses, Bhaswati and Nick for providing me with 

the support and encouragement I needed. I appreciate the guidance and suggestions provided by 

my doctoral committee members Dr. William Lear, Dr. Sivaramakrishnan Balachandar and Dr. 

William Hager in improving my dissertation. 

I also acknowledge the support and inspiration my mom, dad, my brother Aritro, my 

family and my friend Shaleen gave throughout my life and career.  

 



 

5 

TABLE OF CONTENTS 

 

 page 

ACKNOWLEDGMENTS ...............................................................................................................4 

LIST OF TABLES ...........................................................................................................................8 

LIST OF FIGURES .........................................................................................................................9 

ABSTRACT ...................................................................................................................................17 

CHAPTER 

1 INTRODUCTION ..................................................................................................................19 

1.1  Background ......................................................................................................................19 

1.2  Flow Control Methods .....................................................................................................20 
1.3  Plasma Actuators as Active Flow Control Device ..........................................................23 

1.3.1  Dark Discharge Actuators .....................................................................................24 
1.3.2  Arc Discharge Actuators .......................................................................................25 
1.3.3  Glow Discharge Actuators ....................................................................................25 

1.4  Need for Studying Serpentine Plasma Actuators .............................................................28 

2 NUMERICAL METHOD ......................................................................................................34 

2.1  Background ......................................................................................................................34 

2.2  Discontinuous Galerkin Space Discretization .................................................................36 

2.2.1  Numerical Integration ............................................................................................38 
2.2.2  Inviscid Fluxes .......................................................................................................39 

2.2.3  Viscous Fluxes .......................................................................................................40 
2.3  Temporal Discretization ..................................................................................................43 

2.3.1  Explicit Time Integration ......................................................................................43 

2.3.2  Implicit Time Integration ......................................................................................45 
2.4  Convergence Study ..........................................................................................................45 
2.5  Parallel Implementation ...................................................................................................46 

3 GOVERNING EQUATIONS .................................................................................................49 

3.1  Compressible Navier-Stokes Equations ..........................................................................49 
3.2  Large Eddy Simulation ....................................................................................................50 

3.2.1  Smagorinsky Sub-Grid Scale Model .....................................................................52 
3.2.2  Dynamic Smagorinsky Sub-Grid Scale Model .....................................................53 

3.3  Implicit Large Eddy Simulation ......................................................................................54 

4 BACKGROUND OF RELEVANT FLOW PHYSICS ..........................................................59 

4.1  Relevant Flow Physics .....................................................................................................59 



 

6 

4.1.1  Laminar Boundary Layer ......................................................................................61 

4.1.2  Turbulent Boundary Layer ....................................................................................62 

5 CODE VALIDATION AND BENCHMARKING ................................................................70 

5.1  Taylor Green Vortex ........................................................................................................70 

5.1.1  Background ............................................................................................................70 
5.1.2  Effect of Reynolds Number ...................................................................................71 
5.1.3  Effect of Inviscid Numerical Flux .........................................................................72 
5.1.4  Effect of Spatial Order of Accuracy ......................................................................73 
5.1.5  Energy Spectrum ...................................................................................................76 

5.1.6  Flow Structures ......................................................................................................76 
5.2  Zero Pressure Gradient Turbulent Boundary Layer ........................................................77 

5.2.1  Background ............................................................................................................77 
5.2.2  Mesh Details ..........................................................................................................79 
5.2.3  Flow Field Parameters ...........................................................................................80 
5.2.4  Mesh Convergence ................................................................................................81 

5.2.5  Instantaneous Flow Field .......................................................................................82 
5.2.6  Turbulent Statistics ................................................................................................86 

6 INFLUENCING TRANSITION USING SERPENTINE PLASMA ACTUATORS ............94 

6.1  Surface Dielectric Barrier Discharge (SDBD) Plasma Actuators ...................................94 
6.2  Numerical Approach ........................................................................................................97 

6.2.1  Mesh Details ..........................................................................................................97 
6.2.2  Actuator Forcing Mechanism ................................................................................97 

6.2.3  Instantaneous Flow Field .....................................................................................101 
6.2.4  Turbulent Statistics ..............................................................................................109 

6.2.5  Modal Analysis ....................................................................................................117 

7 EFFECT OF ACTUATOR PARAMETERS ON TRANSITION ........................................120 

7.1  Background ....................................................................................................................120 
7.2  Effect of Geometry ........................................................................................................120 

7.2.1  Instantaneous Flow Field .....................................................................................121 
7.2.2  Turbulent Statistics ..............................................................................................123 

7.3  Effect of Frequency .......................................................................................................129 
7.3.1  Instantaneous Flow Field .....................................................................................129 
7.3.2  Turbulent Statistics ..............................................................................................131 

7.4  Effect of Amplitude .......................................................................................................136 
7.4.1  Instantaneous Flow Field .....................................................................................136 

7.4.2  Turbulent Statistics ..............................................................................................138 
7.5  Thermal Effects .............................................................................................................142 

7.5.1  Instantaneous Flow Field .....................................................................................143 
7.5.2  Turbulent Statistics ..............................................................................................145 

8 COLLOCATION OF ACTUATORS ...................................................................................150 



 

7 

8.1  Background ....................................................................................................................150 

8.2  Tripping Actuator Configurations .................................................................................150 
8.2.1  Impact on Instantaneous Flow Field ....................................................................151 
8.2.2  Impact on Mean Flow ..........................................................................................153 

8.3  Actuator Collocation ......................................................................................................155 
8.3.1  Effect of Actuator Configuration .........................................................................156 
8.3.2  Effect of Control Actuator Location ....................................................................168 
8.3.3  Modal Analysis ....................................................................................................175 

9 CONCLUSIONS AND EXPECTED IMPACT ...................................................................178 

9.1  Parallel Discontinuous Galerkin Method .......................................................................178 
9.2  Serpentine Plasma Actuator for Turbulent Transition ...................................................178 

9.3  Collocation of Serpentine Plasma Actuators .................................................................179 
9.4  Future Work ...................................................................................................................181 
9.5  Expected Impact ............................................................................................................182 

APPENDIX     PROPER ORTHOGONAL DECOMPOSITION ...............................................183 

LIST OF REFERENCES .............................................................................................................185 

BIOGRAPHICAL SKETCH .......................................................................................................203 

 

 



 

8 

LIST OF TABLES 

Table  page 

 

2-1 Basis functions ...................................................................................................................37 

2-2 Gauss – Legendre Quadrature ............................................................................................39 

5-1 Norm RMS Error in dissipation rate at different Reynolds number ..................................72 

5-2 Norm RMS Error in dissipation rate for Godunov and LLF fluxes ...................................73 

5-3 Computational mesh details ...............................................................................................80 

6-1 Computational mesh details ...............................................................................................97 

 

 



 

9 

LIST OF FIGURES 

Figure  page 

 

1-1 Classification of flow control devices and few examples ..................................................21 

1-2 Passive flow control devices ..............................................................................................22 

1-3 Active flow control devices ...............................................................................................23 

1-4 Particle image velocimetry images for a flow around a cylinder at Re = 33,000 ..............27 

1-5 Schematic of different shaped serpentine plasma actuators ..............................................29 

1-6 Increase in the sinuous streak waviness with the application of serpentine actuators 

(shown in black lines) causing advancement of turbulent transition .................................30 

1-7 Experimental study on the drag reduction obtained using different linear and circular 

serpentine actuators ............................................................................................................31 

1-8 Experimental data for flow control around backward facing step using linear and 

comb actuators ...................................................................................................................32 

1-9 Relation between power consumption and drag reduction under continuous mode 

and amplitude modulated mode .........................................................................................32 

2-1 Comparison between continuous and discontinuous Galerkin method .............................38 

2-2 Comparison of rate of convergence for P = 2, P = 3 and P = 4 uniform rectangular 

elements using the LDG scheme to solve Navier-Stokes equations for isotropic 

turbulence problem ............................................................................................................47 

2-3 Parallel performance for different number of elements .....................................................48 

3-1 Three-dimensional isotropic turbulence comparisons for one-dimensional energy 

spectrum using different LES methods for a 643 grid........................................................56 

3-2 Comparison of compressible Orszag Tang vortex at t = 0.5..............................................57 

3-3 Wavenumber analysis for an upwind discontinuous Galerkin framework of an 

advection problem for different spatial orders of approximation ......................................58 

4-1 Schematic of a boundary layer for a flow over a flat plate with zero pressure gradient ...60 

4-2 Different drag forces associated with a semi-trailer truck .................................................60 

4-3 Turbulent Boundary layer profile for flow over a flat plate showing different regions 

in the turbulent boundary ...................................................................................................63 



 

10 

4-4 TS wave fluctuating velocity components .........................................................................64 

4-5 Instantaneous streamwise velocity contours showing  vortices formed during the 

transition process ...............................................................................................................65 

4-6 Instantaneous iso-surfaces of the second invariant of velocity gradient tensor 

showing the formation of hairpin vortices from  vortices ...............................................66 

4-7 Schematic of a hairpin vortex structure showing head, neck, and legs .............................66 

4-8 Turbulent streaks and stability curve based on lift angle ...................................................67 

4-9 Flow visualization of oblique transition for a streamwise – spanwise plane with 

forcing frequency of 51 Hz ................................................................................................69 

5-1 Energy dissipation rate at different Reynolds numbers using third order accurate DG 

solution on a 603 mesh compared with DNS results ..........................................................72 

5-2 Comparison of energy dissipation rate for different inviscid numerical fluxes at 

different degrees of freedom and polynomial order ..........................................................74 

5-3 Comparison of MIG DG solution with published DNS results .........................................74 

5-4 Comparison of turbulent kinetic energy dissipation rate for different orders of spatial 

accuracy at approximately 3203 DOF. ...............................................................................75 

5-5 Kinetic energy spectrum for Taylor Green vortex problem at t = 10 ................................75 

5-6 Instantaneous Q – criterion colored with instantaneous velocity magnitude showing 

breakdown of coherent structures with time for a Taylor Green vortex problem .............76 

5-7 Mesh convergence study at Re = 900 compared to DNS data .........................................83 

5-8 Mesh convergence study at Re = 900 for Reynolds stresses compared with DNS 

data .....................................................................................................................................83 

5-9 Variation of two-point correlation at different y+ locations along the spanwise 

direction .............................................................................................................................84 

5-10 Instantaneous iso-surfaces of normalized Q – criterion (Q = 2) colored with 

normalized streamwise velocity at different Re  ..............................................................85 

5-11 Instantaneous contours normalized with freestream conditions at middle span plane ......86 

5-12 Normalized streamwise velocity streaklines over the 5iy   plane ..................................86 

5-13 Instantaneous perturbation velocities at middle z plane ....................................................87 



 

11 

5-14 Comparison of mean flow velocity with experimental and numerical results ...................88 

5-15 Variation of Reynolds stress at Re = 900 and comparison with DNS data ......................88 

5-16 Variation of total shear stress (solid line) and Reynolds shear stress (dashed line), 

with outer coordinates at Re = 1030 .................................................................................89 

5-17 Variation of integral quantities with Re ...........................................................................90 

5-18 Variation of wall-scaled Reynolds stress budget terms with inner wall coordinates at 

Re = 900 ...........................................................................................................................91 

5-19 Probability density function for the fluctuating components of velocity over a region 

of 30 < y+ < 50 using 40 bins .............................................................................................92 

5-20 The energy spectrum of fluctuating components in the spanwise direction at y =  * .......92 

6-1 Schematic of the operation of SDBD actuator and plasma formation ...............................95 

6-2 Schematic of SDBD power supply and voltage and current measurement .......................96 

6-3 Mesh comparison of turbulent mean statistics at Re = 1000 with DNS results at Re 

= 900 ..................................................................................................................................98 

6-4 Plasma body force contours and square serpentine plasma actuator schematic ................99 

6-5 Effect on velocity ratio based on different forcing amplitudes for a linear actuator. ......100 

6-6 Schematic of the actuation pinch plane and spread plane................................................100 

6-7 Instantaneous Q – criterion colored with velocity magnitude showing breakdown of 

coherent structures for the square serpentine actuator .....................................................101 

6-8 Instantaneous contours of velocity magnitude, vorticity and density variation for 

different planes.................................................................................................................102 

6-9 Instantaneous velocity streaklines at y+ = 10 with the oblique waves shown using 

dashed white lines. ...........................................................................................................102 

6-10 Instantaneous normalized Q – criterion iso-surfaces (Q = 0.1) shown at different 

instances in time depicting the growth of turbulent structures ........................................104 

6-11 Variations of instantaneous spanwise fluctuations over time depicting staggered 

pattern of oblique wave transition at Re = 500 ...............................................................105 

6-12 Approximate representation of vortical structures at different instances in time ............106 



 

12 

6-13 Schematic of the vortical structures generated by the actuation depicting the direction 

of streamwise perturbation vector at t+ = t
0
 + 166.3 ........................................................107 

6-14 Relative energy content for different modes ....................................................................108 

6-15 Relative energy content for different POD modes at different Re  locations .................110 

6-16 Relative energy content for different streamwise modes along two y - planes ...............110 

6-17 Relative energy content for different spanwise modes along two y - planes ...................111 

6-18 Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re  ..................................................................112 

6-19 Wall-scaled variation of Reynolds stresses at different Re values .................................112 

6-20 Variation of wall-scaled total shear stress and Reynolds shear stress with outer 

coordinates at Re = 1100 ................................................................................................113 

6-21 Variation of skin friction and integral quantities .............................................................113 

6-22 Variation of growth parameter for pinch and spread planes with Re
x
 .............................114 

6-23 Variation of higher moments of velocity fluctuations with inner wall coordinates at 

Re = 1100 .......................................................................................................................115 

6-24 Variation of higher moments of velocity fluctuations with inner wall coordinates at 

different Re  values .........................................................................................................116 

6-25 The energy spectrum of fluctuating components in the spanwise direction at y =  * .....117 

6-26 Comparison of normalized streamwise fluctuation amplitude for different  ,  -

modes ...............................................................................................................................118 

6-27 Comparison of normalized wall-normal fluctuation amplitude for different  ,  - 

modes ...............................................................................................................................119 

6-28 Comparison of normalized spanwise fluctuation amplitude for different  ,  -

modes ...............................................................................................................................119 

7-1 Schematic of the line of actuation for different actuator geometries with force vectors .120 

7-2 Instantaneous wall-normal velocity contours for different actuators at middle 

spanwise plane showing transition...................................................................................121 

7-3 Instantaneous spanwise vorticity contours for different actuators at y+ = 10 plane ........122 



 

13 

7-4 Instantaneous Q – criterion (Q = 0.04) iso-surface colored with velocity magnitude 

for different geometries....................................................................................................123 

7-5 Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x
 ....................................................................124 

7-6 Variation of integral quantities with Re
x
  for linear, circular serpentine and square 

serpentine SDBD actuator ................................................................................................125 

7-7 Variation of skin friction for linear, circular serpentine and square serpentine SDBD 

actuator. ............................................................................................................................125 

7-8 Variation of wall-scaled RMS velocity fluctuations variation with inner coordinates 

at different Re
x
 values ......................................................................................................127 

7-9 Variation of growth parameter with Re
x
 for wall-scaled Reynolds stresses. ...................128 

7-10 Variation of growth parameter with Re in the transitional region for wall-scaled 

Reynolds stresses. ............................................................................................................128 

7-11 Variation of normalized streamwise velocity for spread and pinch plane .......................130 

7-12 Variation of normalized streamwise velocity at different y – planes ..............................130 

7-13 Top view of Q – criterion iso-surface at different frequencies. .......................................131 

7-14 Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x
 ....................................................................132 

7-15 Variation of integral quantities with Re
x
 at different frequencies for the square 

serpentine SDBD actuator ................................................................................................132 

7-16 Variation of skin friction for different frequencies of actuation of the square 

serpentine actuator ...........................................................................................................133 

7-17 Variation of wall-scaled RMS velocity fluctuations with inner coordinates at 

different Re
x
 values ..........................................................................................................134 

7-18 Variation of growth parameter with Re
x 
 for wall-scaled Reynolds stresses. ..................135 

7-19 Variation of growth parameter with Re 
 in the transitional region for wall-scaled 

Reynolds stresses .............................................................................................................135 

7-20 Iso-surface of instantaneous normalized Q - criterion (Q = 0.01) at different velocity 

ratios .................................................................................................................................136 



 

14 

7-21 Instantaneous velocity streaklines at different velocity ratios .........................................137 

7-22 Instantaneous wall pressure at different velocity ratios ...................................................137 

7-23 Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x
 ....................................................................138 

7-24 Variation of skin friction at different velocity ratios .......................................................139 

7-25 Variation of integral quantities with Reynolds number for different velocity ratios .......139 

7-26 Variation of wall-scaled RMS velocity fluctuations with inner coordinates at 

different Re
x
 values ..........................................................................................................140 

7-27 Variation of growth parameter for fluctuations and Reynolds stress with Re ...............141 

7-28 Schematic of the heating element applied at the pinch location of the actuator ..............142 

7-29 Instantaneous normalized Q – criterion for different heating element temperatures .......143 

7-30 Instantaneous normalized Q – criterion for different heating element temperatures at 

later stages of transition ...................................................................................................144 

7-31 Instantaneous velocity streaklines for different heating element temperatures at y+ = 

10......................................................................................................................................145 

7-32 Instantaneous temperature contours for different heating element temperatures at y+ 

= 10 ..................................................................................................................................145 

7-33 Variation of skin friction at different heating element temperatures ...............................146 

7-34 Variation of mean velocity profiles for different heating element temperatures and 

Reynolds numbers. ...........................................................................................................147 

7-35 Variation of mean temperature profiles at different heating element temperatures and 

Reynolds numbers ............................................................................................................147 

7-36 Variation of wall-scaled RMS fluctuations and Reynolds shear stress at different 

heating element temperatures and Reynolds number ......................................................148 

7-37 Variation of wall-scaled RMS fluctuations and Reynolds shear stress growth 

parameter with Reynolds number for different heating element temperatures ................149 

8-1 Schematic of actuators for co-flow and counter-flow orientations with arrows 

depicting force direction ..................................................................................................151 

8-2 Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity ..........................................................................................................152 



 

15 

8-3 Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity at the later stage of transitional region ............................................152 

8-4 Instantaneous normalized streamwise velocity streaklines at y+ = 10 plane ...................153 

8-5 Variation of skin friction for different tripping actuator configuration ...........................154 

8-6 Variation of integral quantities with Reynolds number for different tripping actuator 

configuration ....................................................................................................................154 

8-7 Schematic of various control actuator configurations showing the distance between 

the tripping and control actuator ......................................................................................155 

8-8 Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with the 

normalized streamwise velocity with the control actuator placed at LA = 2500 .............157 

8-9 Instantaneous streamwise velocity with the control actuator placed at LA = 2500 

showing velocity streaklines at y+ = 25 ...........................................................................158 

8-10 Instantaneous streamwise velocity with the control actuator placed at LA = 2500 

showing velocity streaklines at y+ = 30 ...........................................................................159 

8-11 Instantaneous wall-normal fluctuating velocity contours at mid z plane with the 

control actuator placed at LA = 2500 ...............................................................................160 

8-12 Instantaneous spanwise fluctuating velocity contours at mid z plane with the control 

actuator placed at LA = 2500 ............................................................................................160 

8-13 Variation of skin friction for different control actuator configuration ............................161 

8-14 Variation of mean velocity profiles for different actuator configuration and Reynolds 

number .............................................................................................................................162 

8-15 Variation of integral quantities with Reynolds number for different control actuator 

configuration ....................................................................................................................163 

8-16 Variation of growth parameter with Re for wall-scaled fluctuations and Reynolds 

shear stress .......................................................................................................................164 

8-17 Variation of growth parameter with Re
x
 in transitional region for wall-scaled 

fluctuations and Reynolds shear stress ............................................................................164 

8-18 Variation of 
2u  production rate at various Re

x
 locations in the transitional region for 

different control actuator configuration. ..........................................................................165 



 

16 

8-19 Variation of 
2u  production rate at various Re  locations in the transitional region 

for different control actuator configuration .....................................................................166 

8-20 Variation of 
2u  dissipation rate at various Re

x
 locations in the transitional region for 

different control actuator configuration ...........................................................................167 

8-21 Variation of 
2u  diffusion rate at various Re

x
 locations in the transitional region for 

different control actuator configuration ...........................................................................167 

8-22 Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity for case B ........................................................................................168 

8-23 Instantaneous streamwise velocity streaklines at y+ = 30 with the control actuator 

placed at different locations .............................................................................................169 

8-24 Instantaneous wall-normal velocity fluctuations at mid z plane with the control 

actuator placed at different locations ...............................................................................170 

8-25 Instantaneous spanwise velocity fluctuations at mid z plane with the control actuator 

placed at different locations .............................................................................................170 

8-26 Variation of skin friction for different control actuator locations....................................171 

8-27 Variation of mean velocity profiles for different control actuator locations ...................172 

8-28 Variation of RMS velocity fluctuations and mean Reynolds shear stress with inner 

coordinates at various Re values for different locations of control actuator ..................173 

8-29 Variation of 
2u  production rate at various Re  locations in the transitional region 

for different control actuator location. .............................................................................174 

8-30 Variation of growth parameter for different control actuator locations ...........................174 

8-31 Comparison of normalized streamwise fluctuation amplitude for different  ,  -

modes. ..............................................................................................................................177 

8-32 Relative energy content for different energetic modes based on POD analysis ..............177 



 

17 

 Abstract of Dissertation Presented to the Graduate School 

of the University of Florida in Partial Fulfillment of the 

Requirements for the Degree of Doctor of Philosophy 

 

STUDY OF TURBULENT FLOW CONTROL USING SERPENTINE PLASMA ACTUATOR 

By 

Arnob Das Gupta 

 

December 2017 

 

Chair: Subrata Roy 

Major: Mechanical Engineering 

 

The current work involves the numerical study of plasma actuators and their applications 

for flow control. A parallel time explicit discontinuous Galerkin (DG) formulation suitable for 

compressible turbulent flow problems has been implemented due to its advantage to solve 

equation systems on an element by element basis with high-order accuracy and capability of 

highly efficient parallelization. This research incorporates the implicit large eddy simulation 

model into our in-house DG augmented multi-scale ionized gas flow codes for flow simulations 

with practical Reynolds numbers.  

A study involving vectored momentum and energy addition is performed since they play 

a crucial role in flow control. The method used mimics the actual plasma actuation process 

where momentum is induced by the electric field and energy is added by the thermal energy 

generated at the electrodes of the actuator. Specifically, an in-depth study of the flow structures 

generated by serpentine shaped plasma actuators is done to understand how they alter the 

neighboring laminar or turbulent flow field.  

The analysis of serpentine actuator shows that the transition mechanism for a finite 

amplitude perturbation generated by the actuator resembles oblique wave transition. The actuator 

generates subharmonic sinuous streaks which break down due to nonlinear interactions and 
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undergoes bypass transition. The different geometries of the serpentine actuator follow similar 

transition process. The frequency and amplitude of the actuator are crucial in order to avoid 

decay of disturbances. The important parameter governing the transition process by the 

serpentine actuator is the ratio of the maximum mean velocity magnitude of the actuator in 

quiescent condition to the freestream velocity. For specific ranges of temperature generated by 

the actuator and the flow regime, only localized impact on the flow field is obtained. The 

transition behavior is found to be similar regardless of the orientation (co-flow or counter-flow) 

of the actuator. Collocation of two serpentine actuators is found to favorably manipulate 

turbulent streaks to accentuate or mitigate turbulence for aerodynamic applications. It is found 

that the orientation, as well as the location of the second actuator, also called the control actuator, 

is crucial to obtain the maximum impact on the flow field. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

The field of fluid dynamics has an inexhaustible range of practical applications ranging 

from microscopic scales in biological systems to astronomical scales found in interstellar events. 

Although fluid dynamics concerns itself with only continuum mechanics, where physical scales 

are large compared to the distances between individual molecules, applications such as blood 

flow through capillary beds, water flow through common house pipes, air flow around airplanes, 

weather phenomenon, movement of molten magma inside earth’s core, solar wind of charged 

particles, spacecraft propulsion etc. apply this field of study. The maturity of this field comes 

from the well-established governing equations (Navier-Stokes) and approximations which 

provide a fundamental understanding of the system. Despite all the applications and centuries of 

research, persistent challenges remain and are still being investigated. Among all the challenges, 

one that stands out as an interesting phenomenon is turbulent flow. Turbulent flow is associated 

with wide space and time scales in addition to the nonlinear governing equations. This makes it 

extremely challenging to precisely predict and reproduce the behavior of a turbulent flow field.  

To appreciate the concept of turbulence, one must understand what type of flow can be 

termed turbulent. The three integral and necessary characteristics of a turbulent flow field are 

disorders or chaotic behaviors which makes it unpredictable, highly efficient mixing and random 

vortical structures in three spatial dimensions. Despite their chaotic behavior, the mean flow 

characteristics of turbulence are reproducible which makes it a tractable problem.  

Although turbulence is a commonly occurring phenomenon, other types of flow regimes 

exist alongside it. Any given flow can be broadly categorized as either laminar or turbulent. The 

famous pipe flow experiment [1] conducted by Osborne Reynolds, showed that the key 
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parameter which relates to the type of flow regime is Reynolds number, Re (more details in 

Chapter 4). There exists a critical Reynolds Number, Rec
 above which naturally occurring 

perturbations grow and cause the transition to turbulence. In most applications these 

perturbations decay, if the Reynolds numbers are below Rec
. The value of Rec

 varies for 

different problems. There are scenarios where finite nonlinear perturbations added to a flow field 

can result in the growth of disturbances even below Rec
. This dissertation focuses on using these 

types of nonlinear perturbations to control the turbulent flow field for applications such as drag 

reduction, noise mitigation, flow mixing, improving heat transfer etc.  

1.2  Flow Control Methods 

Understanding turbulent flow provides information on how vehicle experiences drag 

during motion, how noise vibrations can impact an airplane landing gear system, how fuel and 

air mix in an internal combustion engine, the behavior of separated flow behind a semi-trailer 

truck and much more. This information can be utilized for developing flow control methods to 

improve efficiency and reliability of a system. Depending on the application, suppressing 

turbulence can lead to a reduction in skin friction drag or mitigate flow-induced noise, while 

enhancing it can result in mitigation of flow separation. Due to this, flow control has been a 

major topic of research in fluid mechanics. Following the work of Prandtl [2] in control of 

boundary layer and free shear flows, flow control has progressed from defense industry 

applications to everyday civilian applications. The history of flow control over the 20th century 

has been well summarized by Gad-el-Hak [3] as five eras of flow control.  

In general, flow control methods can be categorized based on the applied location or 

mechanism of energy expenditure.  For the first category, the method can be applied either in the 

highly viscous region of a boundary layer near a wall or away from it where flow becomes more 
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nearly inviscid. The latter category focuses on whether the method falls under active or passive 

flow control [3], [4]. Here passive control methods are defined as flow control methods which 

influence the flow field without using a continuously monitoring external energy signal and 

generally requires geometric modification. Whereas, active control involves the use of a 

continuous external energy signal to alter the background flow field. For the present work, the 

second category is chosen to classify the flow control methods. Figure 1-1 gives the 

classification of commonly used flow control methods and devices [5].  

 
 

Figure 1-1.  Classification of flow control devices and few examples [5]. 

 

Some passive devices [3] have found real-world applications. For example, bleed devices 

and spoilers [6], [7], [8] have been used to control noise generated in an aircraft weapons bay 

and landing gear system. They work on the principle of manipulating the incoming boundary 

layer or by distributing the energy present in the flow. Airfoil slats and flaps [9] were studied to 

reduce the separation bubble formed around it. Riblets [10] were designed to diminish turbulent 

drag over a flat plate. A reduction of drag up to 8% was reported depending on the height and 

shape of the Riblets. Both numerical and experimental work was performed to understand the 
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flow structures around the Riblets which lead to drag reduction [11], [12]. Other techniques 

include vortex generator tabs which have been used in a variety of applications such as backward 

facing ramp [13], supersonic shock-induced separation [14] and flat plate boundary layer [15], 

[16]. Some of the passive control methods are depicted in Figure 1-2. Despite their popularity, 

near wall manipulation of boundary layer using passive control remains a difficult task since they 

do not perform well over a wide range of operating conditions and are not adaptable to variations 

in the incoming flow.  

 
 

Figure 1-2.  Passive flow control devices. (A) Vortex Generator Tabs [17], (B) saw tooth spoiler 

[18] and (C) Riblets [11]. 

 

Contrarily, active control devices have shown reasonable promise in flow control 

applications even when the flow conditions vary. Representative active flow control devices are 

shown in Figure 1-3. Examples include synthetic jets, piezoelectric actuators, plasma actuators, 

resonance tubes, resonating rods etc.  Synthetic jets are like pulsed flow actuators but are based 

on reusing the same fluid by the process of suction and injection which results in zero net mass 



 

23 

flux addition. They have been applied in a variety of applications such as flow control around 

bluff bodies [19], [20], airfoils [21] and reduction of skin friction drag on a flat plate [22]. A 

detailed analysis of synthetic jets has been discussed and reviewed by Glezer and Amitay [23]. 

Piezoelectric actuators have also been studied for airfoil flow control [24], [25]. For noise control 

in aircraft weapons bay and landing gear systems different active control strategies have been 

employed such as synthetic jets and pulsed blowing [26], [27], piezoelectric actuators [28], and 

plasma actuators [29], [30]. MHD actuators have been implemented mostly for high-speed flow 

control applications such as in hypersonic flow around a cylinder [31]. A review of different 

kinds of active control actuators can be found in Cattafesta & Sheplak [4].  

 
 

Figure 1-3.  Active flow control devices. (A) Synthetic Jets [32], (B) piezoelectric Actuator [28], 

(C) plasma Actuator [33], [34] and (D) MHD actuators [31]. 

 

1.3  Plasma Actuators as Active Flow Control Device 

Plasma actuators have increased in prevalence as active flow control devices over the last 

three decades [35]. In general, plasma actuators can be classified into three main categories 
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based on their discharge characteristics [36]. These are dark discharge, glow discharge, and arc 

discharge. Dark discharge is associated with low current and high voltage while arc discharge 

has high current and low voltages. Glow discharge falls in between the dark and arc discharge 

regimes. These actuators can be operated using direct current (DC) or alternating current (AC) 

signals to create surface or volume plasmas. Most of the plasma actuators developed for flow 

control operate in one of these three regimes. Corona discharge actuators fall under the dark 

discharge regime. Arc filament and spark-jet actuators operate in the arc discharge regime. 

Surface dielectric barrier discharge (SDBD) plasma actuators operate in the glow discharge 

regime. These actuators work by the principles of electrohydrodynamics (EHD). They control 

the background flow field by adding thermal energy and inducing a wall jet type fluid motion 

also called ionic wind. Unlike most flow control devices, plasma actuators do not have any 

moving parts and are cheap to design. Since they are EHD devices, they directly convert 

electrical energy to kinetic energy and provides fast response time. Most flow control methods 

do not provide the flexibility of controlling the direction of energy added to the flow. Plasma 

actuators on the other hand can easily manipulate the direction of the wall jet by alteration of the 

input signal. Additionally, these actuators are surface compliant and can be applied at receptive 

locations for optimal flow control. However, these actuators are highly inefficient in converting 

electrical energy to kinetic energy. This can result in greater power consumption compared to 

power saved by controlling the flow. Nonetheless, for low-speed applications, these actuators 

can easily overcome this drawback. 

1.3.1  Dark Discharge Actuators 

Corona discharge actuators have been used to reduce drag, improve heat transfer, control 

flow separation and create thrust. Early use of these actuators involved delaying transition to 

turbulence for a flat plate boundary layer [37]. Velkoff and Godfrey [38] also showed 
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improvement in heat transfer at low velocities. Van Rosendale et al. [39] numerically simulated 

the impact of ionic wind on skin friction in channel flow as well as flow over a flat plate. Léger 

et al. [40] and Moreau et al. [41] conducted an experimental study of corona discharge actuators 

to show separation control over an inclined flat plate. Moreau et al. [42] also showed 

improvement in thruster effectiveness using corona discharge actuators. Zhao et al. [43]  used 

needle plasma actuators to show improvement in convective cooling over a flat surface.  

1.3.2  Arc Discharge Actuators 

Arc discharge actuators have numerous applications, especially in high-speed flows. 

These actuators utilize either high thermal energy addition or shock propagation to control the 

background flow field. These actuators are generally referred by different names such as arc 

filament actuators [44], spark-jet actuators [45], [46] or pulsed plasma jet actuators [47]. Leonov 

et al. [48] showed that these actuators can be used to suppress instabilities in supersonic flow. A 

pulsed arc filament plasma actuator was used to enhance mixing for a supersonic jet (M = 1.3) 

[49]. Noise reduction of almost 20 dB in cavity flow [29] was achieved by placing the arc 

filament actuators at the leading edge of the cavity. Arc discharge actuators have been also used 

in underwater applications [50], [51] but most of them do not fall under flow control.  

1.3.3  Glow Discharge Actuators 

The most frequently used glow discharge plasma actuators are surface dielectric barrier 

discharge (SDBD) actuators. The standard design of an SDBD actuator is depicted in Figure 1-3 

(B). It involves two asymmetrically placed electrodes, one exposed and the other encapsulated, 

separated by a dielectric material. A high voltage (~ kV) alternating current (~kHz) is applied to 

the electrodes across the dielectric material, which ionizes the air surrounding the exposed 

electrode. Due to an asymmetry of the electrodes, the electric field accelerates the ionized 

particles in the required direction, generating a wall jet via a collisional mechanism. This can be 
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used to manipulate the background flow field. Depending on the input signal waveform or 

geometry of the electrodes, all SDBD actuators can be categorized as standard linear SDBD 

actuators [34], [33], nanosecond pulsed discharge (NPD) actuators [52], [53], sliding discharge 

actuators [54], [55], serpentine plasma actuators [56], [57], [58] or plasma synthetic jet actuators 

[59], [60]. From here on all actuators operating on sinusoidal AC waveform will be called SDBD 

actuators distinguishing them from NPD actuators. 

NPD actuators have been applied to both low-speed and high-speed flows. These 

actuators use nanosecond width pulsed signal instead of sinusoidal AC signal. Similar to arc 

filament actuators, NPD actuators generate compression waves [61]. Rouopassov et al. [52] and 

Little et al. [61] showed flow attachment for an airfoil at different angles of attack and Mach 

numbers ranging from subsonic to transonic regimes using NPD actuators. Nishihara et al. [62] 

used these actuators to alter the shock standoff distance for a Mach 5 air flow. A comparative 

numerical study [63] between the NPD and standard linear SDBD actuators showed the 

difference in mechanism of flow control between the two actuator types. They showed that 

SDBD actuators act as a momentum source by creating wall jet, whereas NPD actuators act as an 

aero-acoustic source by generating micro-shock waves. The EHD effects dominate in SDBD 

actuators while thermal heating is dominant in NPD actuators. Due to this, NPD actuators have 

found applications in high-speed flows while SDBD actuators are mainly used in low subsonic 

flows. 

The first detailed study using SDBD plasma actuator as a flow control device was 

conducted by Roth et al. [34]. They placed arrays of SDBD actuators in streamwise and 

spanwise orientation to study their impact on the coefficient of drag for a flat plate. Since then 

SDBD actuators have been used for separation control, drag reduction, improving lift in aircraft 
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wings, reducing flow-induced noise etc. In a standard SDBD actuator, plasma forms along the 

straight edge of the exposed electrode. These actuators can be either applied individually or in a 

parallel array arrangement. A single SDBD actuator was shown to control flow separation and 

pitching moment around a NACA 0015 airfoil [64], [65]. Since the last two decades, these 

actuators have been experimentally studied to control flow around airfoils to improve stability as 

well as lift to drag ratio [66], [67], [68]. SDBD actuators have also been used to control flow 

separation around low-pressure turbine blades [69], [70]. Li et al. [71] studied the effect of 

SDBD actuators on broadband noise levels for a flow over a cylinder. Huang and Zhang [72] 

conducted a similar study on noise levels for a cavity flow. Figure 1-4 shows one of the 

applications of SDBD actuator to control flow separation behind a cylinder [33].  

 
 

Figure 1-4.  Particle image velocimetry images for a flow around a cylinder at Re = 33,000. (A) 

Plasma off (B) Plasma on [33].  

 

Along with experimental studies, numerical simulations of SDBD actuators have also 

been performed and validated with experimental data. Numerical investigations provide detailed 

information about the control methodology of SDBD actuators which is difficult to obtain 

experimentally. Different plasma body force models were developed based on first principles 

and compared to the experimentally obtained data [73, 74, 75]. These models were incorporated 

in flow simulations to mimic the behavior of these actuators. Numerical studies have shown the 
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benefits of using plasma actuators to delay transition in flow over airfoils [76, 77]. They have 

been also used for controlling flow separation around turbine blades [78, 79]. SDBD actuators 

[30] were also used along with a geometric modification at the trailing edge of a cavity to reduce 

the acoustic tones. It involved the use of plasma actuators along with a passive receptive channel, 

which allowed up to a 15dB reduction in sound pressure levels (SPL).  

To improve the efficiency of these actuators, the geometry or orientation of these 

actuators need to be altered. This allows vectoring of the plasma jet at an angle to the wall. This 

led to the development of SDBD actuators such as traveling wave actuators [80], plasma 

synthetic jet actuator [59, 60] and serpentine plasma actuators [56, 57]. Although the 

fundamental mechanism of momentum generation is through EHD force, these actuators have 

completely different flow structures when compared to standard SDBD actuators. Just by 

changing the orientation and input signal of the standard actuators, Choi et al. [80] showed 

almost 45% skin friction reduction on a turbulent flat plate using traveling wave actuators. 

Caruana et al. [60] used plasma synthetic jet actuators to reduce separation near the trailing edge 

of a NACA 0015 airfoil. These actuators generally have annular electrodes to generate wall-

normal jets. The present study focuses on using active, shaped plasma actuation for turbulent 

flow control. Different types of serpentine plasma actuators fall under this category and will be 

the focus of the current work. 

1.4  Need for Studying Serpentine Plasma Actuators 

 Despite all the applications of SDBD actuators, their use has generally been limited to 

low-speed incompressible flows. This is due to the low induced velocity of the wall jet 

(maximum induced velocity recorded ~11 m/s [81]) generated by these actuators. Therefore, a 

novel design of the SDBD actuator was required to improve the control authority, while keeping 

the input signal waveform the same as the standard SDBD actuator. This led to the development 
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of serpentine plasma actuators. These actuators can be categorized by differences in geometry of 

the electrodes. It should be noted that traveling wave actuators also fall under this category. 

Various designs of serpentine actuators are depicted in Figure 1-5. All the serpentine actuators 

can be related to the standard SDBD actuator in Figure 1-5 (B) by their amplitude A and 

wavelength . It should be noted that traveling wave actuators are similar to comb actuators and 

sawtooth [82] or zig-zag [83] actuators are similar to a triangular serpentine actuator. 

 
 

Figure 1-5.  Schematic of different shaped serpentine plasma actuators. (A) Schematic of plasma 

formation on a standard SDBD actuator. (B) Linear, (C) Circular serpentine, (D) 

Square serpentine, (E) Comb and (E) triangular serpentine actuator [84].   

 

The improvement in efficiency of these actuators in turbulent flow control comes from 

their transient growth based vortex generation. Turbulent flows involve three-dimensional 

vortices and streaks which can be controlled to manipulate turbulence production and achieve 

better flow control authority. The turbulence production is associated with these three-

dimensional vortices in a turbulent flow field. In a wall-bounded turbulent flow, these vortices 

bring fast-moving fluid towards the wall (sweeping event) and slow-moving fluid away from the 

wall (ejection event). These events are generally associated with streamwise vortices which are 

closely related to elongated low-speed streaks near the wall [85]. These streaks also called 

Klebanoff modes [86], are fluctuations in the turbulent boundary layer with low frequencies, 
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generally arising due to low frequency filtering of free stream perturbations [87, 88] by the 

boundary layer. In a transitional flow, these streaks exhibit algebraic or transient growth [89] and 

lead to bypass transition due to their nonmodal nature [90]. This type of mechanism is commonly 

found in pipe flow [91] and turbomachinery applications [92]. The two significant mechanisms 

by which streaks break down are via sinuous and varicose modes [85], which can be either 

fundamental or subharmonic in nature. One of the ways to promote the break down is to amplify 

the sinuous streak waviness (nonlinear Streak Transient Growth) [85]. The use of serpentine 

geometry plasma actuator allows this kind of amplification. One of the examples for this 

amplification is clearly visible in Figure 1-6 [84]. The standard linear geometry actuators are 

compared with serpentine geometry [56, 57] actuators. The transition from laminar to turbulent 

for the serpentine actuator is more rapid when compared to the linear actuator. Although the 

structures at the end of the airfoil look similar, the tubular structures also called Tollmien – 

Schlichting (TS) waves are more sinuous for serpentine actuators, indicating secondary 

instabilities. The early formation of secondary instabilities allows better near wall three-

dimensional flow control and advance transition to turbulence [84].  

 
 

Figure 1-6.  Increase in the sinuous streak waviness with the application of serpentine actuators 

(shown in black lines) causing advancement of turbulent transition. [84]  

 

In accordance with the space act agreement (SAA1-23461) between NASA Langley and 

APRG, UF, experiments were conducted at NASA Langley (Mr. Stephen Wilkinson) for drag 
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reduction on a flat plate using serpentine and linear actuators. A drag reduction of almost 29% 

could be achieved using serpentine geometry actuators when compared to 12% for linear 

actuators. Figure 1-7 shows the effect of linear and serpentine actuators on the skin friction and 

drag over a flat plate. PIV study on a backward step using comb actuators were conducted and 

are shown in Figure 1-8 [93]. This measurement was carried out at a velocity of 13.5 m/s and the 

actuators were operated in an amplitude modulated mode and a continuous mode showing a 

reduction in reattachment length by almost 15%.  Further applications include testing these 

actuators on bluff bodies like semi-trailer trucks. A 1:60 scale model of the truck was tested in a 

wind tunnel at 31.2 m/s (70 mph) and 26.8 m/s (60 mph) and was found to give almost 13% and 

15% drag reduction respectively [94]. The data on drag collected at various voltages for the 26.8 

m/s case is shown in Figure 1-9. All these benefits make these actuators highly versatile for flow 

control applications. 

 
 

Figure 1-7.  Experimental study on the drag reduction obtained using different linear and circular 

serpentine actuators. (A) Normalized drag and (B) skin friction obtained from drag 

measurement (Data extracted from NASA Langley report with permission). 
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Figure 1-8.  Experimental data for flow control around backward facing step using linear and 

comb actuators [93]. (A) Contour of time averaged velocity magnitude along with 

actuators run at 28kVpp in AM mode (B) Variation of pressure along the floor after 

the step for different actuators and actuation methods. 

 

 
 

Figure 1-9.  Relation between power consumption and drag reduction under continuous mode 

and amplitude modulated mode [94]. 

 

Despite all the efforts of using serpentine plasma actuators as a flow control device, 

underlying fundamental questions remain unanswered. Questions such as what is the inherent 

transition mechanism caused by these actuators? How do the structures generated by these 

actuators interact and break down? What is the optimal design and configuration of these 
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actuators to maximize efficiency in control authority? Can multiple arrays of these actuators be 

used to control transitional or turbulent flow as for a traveling wave actuator? All of these 

questions are addressed in this current study by conducting numerical simulations of serpentine 

shaped plasma actuators. 

This work is organized as follows: In Chapter 2, the numerical method used for all 

simulations is described. This includes implementation of discontinuous Galerkin method with 

different types of inviscid and viscous numerical fluxes along with different time discretization. 

Chapter 3 covers the governing equations used to perform this study along with a description of 

different methods to solve turbulent flow. In Chapter 4, the relevant flow physics for laminar, 

transitional and turbulent flow are discussed. Chapter 5 provides benchmarking and validation of 

the implemented numerical scheme for two types of turbulence problem. Chapter 6 provides an 

in-depth analysis of the transition mechanism for a square serpentine actuator. The breakdown of 

flow structures as well as the behavior of coherent flow structures are discussed to show how the 

flow transitions to turbulence. The effect of different parameters on flow transition such as 

geometry, the frequency of operation, amplitude and thermal heating of the actuator are 

discussed in Chapter 7. The influence of these parameters on instantaneous and mean flow 

properties are explained for optimal operation of these actuators. Chapter 8 describes the use of 

collocation of square serpentine actuators as a method to modify turbulent streaklines and 

thereby control drag as well as heat transfer. Finally, a summary and conclusions along with the 

future work and expected impact of this research are presented in Chapter 9. 
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CHAPTER 2 

NUMERICAL METHOD 

2.1  Background  

To simulate practical problems which involve partial differential equations, different 

numerical methods have been used over the past century. These include finite difference method, 

finite element method, finite volume method, discontinuous Galerkin (DG) method etc. 

However, this study only covers DG finite element method due to its advantage to solve equation 

systems on an element by element basis with high-order accuracy and capability of highly 

efficient parallelization. This method was first proposed by Reed and Hill [95] to solve the linear 

system of neutron transport equations.  However, the fundamental challenge is to solve the 

nonlinear systems of equations such as the hyperbolic conservation laws which govern most 

physical systems. For this an explicit version of DG method was devised [96] which employed 

the use of Runge – Kutta time discretization with a total variation diminishing in the means 

(TVDM) and total variation bounded (TVB) slope limiter. This method was called the RKDG 

method. This was extended to high order RKDG methods [97] which showed 1P  order of 

convergence for P  order space discretization.  

The development of DG method for nonlinear hyperbolic systems occurred rapidly over 

the last two decades. However, the need to solve problems both hyperbolic and elliptic in nature 

led to the extension of this method to convection-diffusion problems. A generic convection-

diffusion equation is given in Eq. (2-1). 

    , 0
inv vU

F U F U U
t


   


  (2-1) 

The first study of this form of equations was conducted on hydrodynamic models for 

semiconductor device simulations [98], [99]. This was further studied for compressible Navier-
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Stokes equations [100] to achieve a higher order of accuracy. It involved the simple break down 

of the second order equation into two first-order equations with U and U  as independent 

variables and then solving the system using the original RKDG method. This method, also 

known as the first Bassi – Rebay (BR1) method [100] was further extended to achieve higher 

stability. This incorporated the explicit evaluation of the term dU without making it a new 

variable. This is also known as the second Bassi – Rebay (BR2) method [101]. There are 

numerous other methods [102] to tackle these type of equation systems and can also be 

generalized as the local discontinuous Galerkin (LDG) methods [103]. It should also be noted 

that different methods have been implemented on DG framework. Some of these methods 

include Spectral DG method and hp-adaptive methods. The first DG spectral method was 

conducted for elliptic problems [104] and linear hyperbolic problems [105]. It was further 

studied for advection-diffusion problems, compressible flow and complex geometries [106], 

[107], [108]. Implementation of adaptive methods in DG is straightforward. This is because there 

is no inter-element continuity requirement which allows changing the order of the element based 

on the gradient simple. Lower orders are achieved by making the higher order terms zero. This 

method has been applied to both hyperbolic conservation laws [109] and convection-diffusion 

problems [110], [111]. 

The entire DG framework was implemented in an in-house code called the Multiscale 

Ionized Gas (MIG) flow code. This is a FORTRAN 90 modular code which can be used to solve 

various problems like plasma drift-diffusion equations [112], hypersonic Non-Equilibrium flow 

[113] and magnetohydrodynamic equations [114].   

Although the MIG code has been used for a variety of problems, it has been limited to 

laminar flow physics. Therefore, a capability of simulating three-dimensional turbulent flow 
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physics using DG method was added into the code as a part of this research. To utilize the 

method’s ease of parallelization and high order of accuracy, a fully explicit modal DG method 

was implemented. Simulating turbulent flow physics requires many computations and 

parallelization becomes necessary to make the problem tractable. The fully explicit approach 

allows matrix free computations and reduces inter-element communications, thereby improving 

the parallel efficiency. The modal approach allows higher order spatial accuracy by simply 

adding higher order basis functions. Therefore, high-fidelity simulations can be conducted 

without altering the mesh or expanding the stencil. The Sections 2.2 through 2.5 ahead will 

describe different methods for space and time discretization of Discontinuous Galerkin finite 

element framework, convergence study, and parallelization of the code.  

2.2  Discontinuous Galerkin Space Discretization 

To understand the discretization process for convection-diffusion problems, a generic 

scalar equation is chosen which can be extended to any equation system. This is given by  

    , 0inv vU
F U F U U

t


   


  (2-2) 

    0,0U x U x   (2-3) 

Where U denotes the conserved scalar variable, invF and vF  denote the inviscid and 

viscous fluxes respectively and x  , which is the multidimensional domain. All the boundaries 

are considered periodic in this section. For an element, the approximate solution  ,hU x t  is 

represented by Eq.  (2-4). 

       
0

,
P

l

h K l

l

U x t U t x


  (2-4) 
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Where subscript K denotes the element, l

KU  denotes the modal degrees of freedom of that 

element, 
l  denotes the basis function. Legendre polynomials are chosen as local basis functions 

because of their property of L2 – orthogonality, which leads to a diagonal mass matrix and is 

beneficial when performing explicit calculations. The list of basis functions for a transformed 

coordinate system of  , , 1,1x y z   are provided in Table 2-1. 

Table 2-1.  Basis functions 

Order ( )l x  ( , )l x y   ( , , )l x y z  

0 1 1 1 

1 x  ,x y  , ,x y z  

2 23 1x   
2 23 1,3 1,x y xy   2 2 23 1,3 1,3 1, , ,x y z xy yz xz    

3 35 3x x  
   

3 3

2 2

5 3 ,5 3 ,

3 1 , 3 1

x x y y

x y y x

 

 
 

   

       

3 3 3 2 2

2 2 2 2

5 3 ,5 3 ,5 3 , 3 1 , 3 1 ,

3 1 , 3 1 , 3 1 , 3 1

x x x x x x x y x z

y x y z z x z y

    

   
 

 

To obtain the weak form of the equation, the variable U is replaced by U
h
 and Eq.  (2-2) 

is multiplied with the basis function 
l
. After integration by parts, Eq.  (2-5) is obtained. 

 

     

   

,

, 0

inv inv

h e K

eK K e

v v

e K

eK e

d
U x dx F x dx F n x d

dt

F x dx F n x d

  

 





    

     

  

 
  (2-5) 

In Eq.  (2-5), ,e Kn  denotes the outward unit normal for the edge e (it can be a face or an 

edge) of element K. Figure 2-1 shows a representation of these elements. The element boundary 

space is denoted by  . For the terms in summation, where fluxes are to be evaluated at the 

element interfaces, the solution U
h
 is discontinuous and cannot be uniquely defined. Thus, the 

terms must be replaced by a locally Lipschitz, consistent, monotone flux to maintain the stability 

and convergence properties of the scheme with a higher order of accuracy [97].  In Eq.  (2-5),  
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vF  is a function of both U andU, which implies that either U needs to be evaluated as a new 

variable or treated explicitly.  Detailed descriptions of the numerical integration, inviscid 

numerical fluxes, and viscous numerical fluxes are provided in Sections 2.2.1, 2.2.2 and 2.2.3 

respectively.   

 
 

Figure 2-1.  Comparison between continuous and discontinuous Galerkin method. (A) 

Continuous element with interface solution U for element K and K' and (B) 

discontinuous element with interface solutions U 
–
 and U 

+
 for element K and K' 

respectively sharing the edge e with an outward unit normal n
e,K 

. 

 

2.2.1  Numerical Integration 

All the integrals can be written in a discrete form using Gauss – Legendre quadrature rules. 

  
1

11

( ) ( )
N

n n

nK

f x dx jac f x dx jac w f x dx


         (2-6) 

In Eq.  (2-6)  jac is obtained when transforming from global coordinate system to local 

coordinate system. Also for all the integrals shown, the basis functions vary with space, while the 

degrees of freedom vary in time as shown in Eq.  (2-4). Since the basis functions are already in 

transformed space nx  are the Gauss – Legendre points provided in Table 2-2. One should note 

that for multidimensional integration the single summation becomes multiple summations with 

quadrature points nx  and weights w
n
 being obtained via the tensor product of one-dimensional 

weights and points.  
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Table 2-2.  Gauss – Legendre Quadrature 

 n 1 2 3 4 5 

nw  2 1 
8

9
  

5

9
 

18 30

36


 

18 30

36


 

128

225
 

322 13 70

900


 

322 13 70

900


 

nx  0 
1

3
  0 

3

5
  

3 2 6

7 7 5
   

3 2 6

7 7 5
   0 

5 2 10

9 9 7
   

5 2 10

9 9 7
   

 

2.2.2  Inviscid Fluxes 

As mentioned earlier, the discontinuity at the element interfaces requires the use of 

numerical fluxes. There are a wide variety of numerical fluxes which satisfy the locally 

Lipschitz, monotone and consistent criteria [115]. However, the present work uses either 

Godunov flux or Local Lax-Friedrichs flux [116]. The later, also known as ENO-LLF, provides 

better shock capturing with improved accuracy. Although it is more diffusive than the Roe flux 

and the Godunov flux, its impact on the solution is insignificant for higher order approximations 

[115]. After replacing the inviscid flux in Eq.  (2-5) with the numerical flux ,

inv

e Kh , the first 

summation term can be written as  

      , , ,inv inv

e K e K

ee e

h

e

hU UF n x d h x d 


 

 

        (2-7) 

The + and – states of the solution refer to the outside and inside solution along edge e as 

depicted in Figure 2-1. The Godunov flux is given by 

  ,

min ( ), if 
,             

max ( ), otherwise

inv

inv U U U
e K inv

U U U

F U U U
h U U

F U

 

 

 

   

 

  
  
  

  (2-8) 

Eq.  (2-8) can be interpreted as, if the neighboring solution U 
+
 is bigger than the inside 

solution U 
–
 then choose the minimum flux     min ,inv invF U F U  

 
 otherwise choose the 

maximum of the two. The Lax – Friedrichs flux is given by 
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        , , , ,
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e K h h h e K h e K e K h hh U U F U n F U n U U           
 

  (2-9) 

In Eq.  (2-9) 
e,K

 is obtained by evaluating the largest absolute eigenvalue of the Jacobian 

matrices for the outside and inside elements.  
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  (2-10) 

For Euler equations or Navier-Stokes equations, the eigenvalues are u + a, u – a and u, 

where a is the speed of sound. In Eq.  (2-10) U  is the mean solution of the inside or outside 

element depending on the  being evaluated.   

2.2.3  Viscous Fluxes 

The viscous terms in Eq.  (2-5) can be modeled in numerous ways. Some of the common 

methods are Local Discontinuous Galerkin (LDG) [103], Bassi – Rebay (BR1 and BR2) [100], 

[101] method, Interior Penalty (IP) methods [117], Baumann – Oden [110] etc. A detailed 

comparison and insight on these methods can be found in Arnold et al. [102]. However, for 

brevity, only the LDG, BR1 and BR2 schemes are described here.  

The viscous fluxes include U as an unknown which must be evaluated either a priori or 

along with the equation system. To evaluate U, Eq.  (2-2) is first changed to Eq.  (2-11) and Eq.  

(2-12). 

    , 0inv vU
F U F U

t



  


  (2-11) 
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 U    (2-12) 

The same procedure as mentioned before is followed and finally, equations like Eq.  (2-5) 

are obtained.  
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       
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eK e

d
U x dx F U x dx F U n x d

dt

F U x dx F U n x d

  

   
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

    

     

  

 
  (2-13) 

      ,    0h h h e K

eK K e

x dx U x dx U n x d   


         (2-14) 

It should be noted that in Eq.  (2-13) and Eq.  (2-14)
h
 denotes the approximate solution 

of   like the definition given in Eq.  (2-4). As discussed earlier, the discontinuous interface 

requires the fluxes in the summation terms to be evaluated using a locally Lipschitz, consistent 

and monotone flux. Therefore, the last terms in Eq.  (2-13) and Eq.  (2-14) are represented as Eq.  

(2-15) and Eq.  (2-16). 

        , , ,, , , ,v v

h h e K e K h h h h e K

e ee e

F U n x d h U U n x d       

 

         (2-15) 

      , , ,, , ,h e K e K h h h h e K

e ee e

U n x d h U U n x d      

 

       (2-16) 

The choice of numerical fluxes ,

v

e Kh  and ,e Kh  gives rise to different methods.  

Local discontinuous Galerkin method 

 The viscous numerical fluxes for this method can be written as 
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 

 
  
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C U U

C U

  (2-17) 

Using Eq.  (2-17) and since vF  for Eq.  (2-12) is U, obtain the expressions for ,

v

e Kh  and ,e Kh  are 
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         
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 
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      
 

   

  (2-18) 

A detailed discussion about the choice of constants c
11

 and c
12

, as well as the extension to 

multidimensional problems have been described by Cockburn and Shu [103]. 

Bassi – Rebay method I 

The numerical fluxes ,

v

e Kh  and ,e Kh  are obtained by averaging the fluxes at the edge of the 

element and its neighbor. This is provided in Eq.  (2-19) and Eq.  (2-20). 

      ,

1
, , , , ,

2

v v v

e K h h h h h h h hh U U F U F U            
 

  (2-19) 

  ,

1
, , ,

2
e K h h h h h hh U U U U             (2-20) 

The above method describes the BR1 scheme. However due to the method’s deficiencies, 

such as non-optimal accuracy for purely elliptic problems, spread stencil and increase in the 

number of degrees of freedom per element (specifically for an implicit algorithm) [101], lead to 

the implementation of the BR2 scheme.  

Bassi – Rebay method II 

This scheme uses the property that, the evaluation of solution gradient inside the element 

is trivial and can be obtained using the gradients of the basis functions. However, for P = 0 

elements and at interface discontinuities it is not trivial.  To obtain U without adding an extra 

equation a correction term R is added. This is known as the lift operator. After few mathematical 

manipulations [101] Eq.  (2-14) can be rewritten as Eq.  (2-21). 

        ,

1
  

2
h h h h e K

eK K e

x dx x U dx U U n x d    



         (2-21) 
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Thus, we can write
h
 = U

h + R
h
 , where R

h
 is defined like Eq.  (2-4) and can be 

obtained using Eq.  (2-22). 

      ,

1
 

2
h h h e K

eK e

R x dx U U n x d  



      (2-22) 

Using the global lifting operator leads to a non-compact stencil which can be avoided by 

using local lift operators r
h . This is defined by 
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h h h e K
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h h
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  
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

 


  (2-23) 

When performing volume integrals, global lift operators are used and for element 

boundary integrals, local lift operators are used. Using this scheme leads to the reduction in the 

number of degrees of freedom and making the stencil compact due to information exchange only 

between immediate neighbors. 

2.3  Temporal Discretization 

The choice of time integration depends on the problem in hand. For transient accuracy, 

high order time accurate scheme needs to be implemented. Problems involving acoustic wave 

propagation fall in this category. This section will describe some of the common time integration 

methods implemented and their advantages and disadvantages. 

2.3.1  Explicit Time Integration 

 To solve the nonlinear hyperbolic conservation laws in DG framework led to the 

implementation of the explicit version of the method [118]. This overcame the issue of solving 

nonlinear problems on an element by element basis. However, a simple Euler explicit method is 

restricted by the CFL condition. To improve the stability of the scheme a TVDM slope limiter 

was implemented [119]. However, this method was only first order in time and the slope limiter 
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affected the smooth regions of the solution reducing the spatial accuracy. This was finally 

overcome by using the RKDG method and a modified slope limiter which was second order in 

time and maintained the accuracy of the scheme in smooth regions [96]. This made the scheme 

stable for CFL ≤ 1/3. To show the explicit time integration Eq.  (2-5) is written in a modified 

form given by Eq.  (2-5).  
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  (2-24) 
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
   
   

  (2-25) 

The mass matrix [M], is diagonal for the present choice of basis functions. For simple Euler 

explicit, Eq.  (2-25) can be written as Eq.  (2-26) which will give only first-order accurate in 

time. 

          
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K K h hU t U t t L U x t M
     

   
  (2-26) 

Using the second order RKDG method the solution can be more time accurate. This is described 

in Eq. (2-27). 
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  (2-27) 



 

45 

The RKDG method has been proven to give CFL ≤ 1/3 for P = 1 and CFL ≤ 1/5 for P = 2 case 

[96]. Although RKDG scheme has high parallelizability like any explicit scheme, it has CFL 

restrictions.  

2.3.2  Implicit Time Integration 

 Since the problems studied are nonlinear in nature, Newton Raphson method is employed 

to solve the equation system. The goal here is to find a value iteratively, which would be closest 

to the actual solution. Thus, Eq.  (2-25) is written as Eq.  (2-28) for iteration q  

         
1, , ,, 0l n q l n q n q

k K h h

d
f U t U t L U x t M

dt


     
   

  (2-28) 

To get the next time step solution Eq.  (2-28) is discretized in time using Euler Implicit algorithm 

to obtain Eq.  (2-29). 
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   
  (2-29) 

Therefore, for q ≥ 1, Newton’s method can be applied to Eq.  (2-29). It should be noted that 

when q = 1 in Eq.  (2-29),    1, 1l n q l n

K KU t U t   .  
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  (2-30) 

2.4  Convergence Study 

Most of the initial convergence studies for DG methods were done for problems with 

smooth exact solutions. The first analysis on convergence was carried out for generalized mesh 

and Cartesian mesh which gave P and P + 1 convergence respectively [120]. Further studies 

were carried out on the dependence of mesh on the rate of convergence [121]. Cockburn et al. 

[122] used a local post-processing to double the order of convergence of the method. 
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To test the convergence of the method, Navier-Stokes equations are solved for a Taylor 

Green vortex isotropic turbulence problem. The details of the governing equations, problem 

statement and boundary conditions will be provided in Chapter 5. For convergence study, the 
2L  

error estimates are obtained by comparing kinetic energy dissipation rate to the DNS solutions. 

Only the LDG scheme is analyzed here. Three different spatial order polynomials are studied 

namely P = 2 (quadratic), P = 3 (cubic) and P = 4 (quartic). The degrees of freedom (DOF) 

corresponding to a N 
3
 mesh is N 

3
× (P+1)

3
. It can be seen in Figure 2-2 that the rate of 

convergence obtained for a polynomial of order P is P + 1.  

2.5  Parallel Implementation  

To parallelize the MIG code, open MPI was used and the code was tested at the University of 

Florida high-performance computing center. All the tests were run on servers with Intel E5-2698 

v3 processors with the capability to achieve HPL R
max

 of 7.381×105 GFlops. The domain was 

decomposed lexicographically with equal elements in each processor. The solution time for 

Navier-Stokes equations was studied for processors 1, 8, 16, 32, 64, 128, 256 and 512. The 

parallel performance is studied by solving time explicit Navier-Stokes equations for Taylor 

Green vortex isotropic turbulence problem. Two cases were tested with a total number of 

elements, 323 (DOF = 5570560) and 643 (DOF = 44545480). The number of elements was 

chosen low, to have a significant inter-processor communication time with respect to the 

calculations performed. The problem is run for hundred time steps to average out the total time 

duration and the all the tests are repeated three times.  
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Figure 2-2.  Comparison of rate of convergence for P = 2, P = 3 and P = 4 uniform rectangular 

elements using the LDG scheme to solve Navier-Stokes equations for isotropic 

turbulence problem. 

 

Figure 2-3 (A) shows that the speedup on a log-log plot is similar for both 323 and 643 

cases up to 512 processors. The power data fit to 323 case shows a speedup slope of 0.94 while 

for 643 it shows 0.95. Based on the data fit the parallel speedup (speedup/ideal) efficiency ranges 

from 99% for 8 processors to 63% for 512 processors. In Figure 2-3 (B) the speedup is plotted on 

a linear scale and the 323 case starts to plateau due to increase in communication time between 

processors while the 643 case maintains a linear slope. The processors show different 

performances for different runs since each case is not run on the same server, which gives a 

deviation in the speedup of up to 5%. The initial higher speedup for the 323 case compared to the 

643 case is within this tolerance limit. Further improvements can be made by using non – 

blocking instead of blocking MPI send and receive commands. Also using better domain 

decomposition can allow lower communication time. 
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Figure 2-3.  Parallel performance for different number of elements. (A) Comparison of speedup 

on a log-log plot with data fit using power curves and (B) speedup on a linear scale 

plot with data fit using quadratic polynomial. 
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CHAPTER 3 

GOVERNING EQUATIONS 

 To understand the mechanics of fluid flow, one must appreciate the equations which 

govern this flow. This section describes these governing equations as well as other equations 

involved in this study. 

3.1  Compressible Navier-Stokes Equations 

For a compressible Newtonian fluid, the multi-dimensional Navier-Stokes equations in 

normalized conservative form can be written as 
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Here   denotes the viscous stress tensor which is given by Eq.  (3-4). The term  in the viscous 

stresses is the dynamic viscosity of the fluid and Sutherland’s law is used to define it. The term k 

denotes the thermal conductivity of the fluid with T being its temperature. This term comes from 

the Fourier’s Law of heat conduction. The thermal conductivity is obtained using the dynamic 

viscosity , Prandtl number (Pr) and specific heat (c
p
) of the fluid given by Eq.  (3-5). The 
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velocity vector is denoted by v, which includes the three components, u, v and w in streamwise, 

wall-normal and spanwise directions respectively.   

3.2  Large Eddy Simulation 

Although the governing equations mentioned in Section 3.1 can describe the flow physics 

behind a large variety of scientific problems, simulating turbulent flow physics is still a big 

challenge and remains one of the most difficult problems posed in physics [123].  One way of 

tackling this problem is to solve the compressible Navier-Stokes equations on a highly-resolved 

grid which resolves both the large-scale structures  0 0 0, ,l u   and the small-scale structures

 , ,l u   . The Kolmogorov’s scales for length, velocity and time are given by Eq. (3-6) [124].  
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  (3-6) 

This method of resolving all the scales is commonly known as Direct Numerical 

Simulation (DNS) [125]. For a numerical scheme to capture these structures encountered in real-

world applications such as aircraft flow physics, atmospheric boundary layer, and astrophysics 

simulations need to be carried out over 1015 – 1018 grid points. However, due to limitations of 

computational resources and technological advancement, tackling such a huge problem is not 

practicable. This led to the introduction of Large – Eddy Simulation (LES) techniques.  

LES exactly resolves the large scales when compared to the Reynolds-averaged Navier-

Stokes methods and models the small-scale structures using a sub – grid scale (SGS) model. It is 

based on a low pass filtering operation which eliminates some of the small-scale structures with 

high frequencies and allows turbulent simulations to be practicable. It was first introduced by 

Smagorinsky [126] and designed to solve for large scale atmospheric and ocean flow problems. 
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The constant used in his modeling, also known as the Smagorinsky constant, had to be adjusted 

depending on the problem. It required trial and error and made the modeling unfavorable for 

some applications. The first successful implementation of this method for engineering 

applications was by Deardorff [127]. This model was further extended, to a Dynamic sub – grid 

scale (SGS) model by Germano et al. [128] and Moin et al. [129] which allowed the variation of 

Smagorinsky constant with space and time based on two filters. A dynamic global – coefficient 

SGS model was developed by You and Moin [130] to solve for flow involving complex 

geometries. For detailed information on different LES modeling techniques and trends, the 

author refers the reader to the book by Lesieur et al. [123]. Although extensive research has been 

done to model the small-scale structures, a universal SGS model is yet to be found. 

To implement these models the variables in compressible Navier-Stokes equations need 

to be modified. This is done by using filtered variables and density – weighted Favre-averaged 

variables [131]. The filtered form of a variable  is obtained using a spatial or temporal filtering 

function G as shown in Eq.  (3-7)[124]. 

    ( , ) , ,t t G t t dt d 
 

 
     x r x r r   (3-7) 

The density – weighted Favre – averaged variables are defined as Eq.  (3-8). 

 





   (3-8) 

This modifies compressible N – S equations to Eq.  (3-9) through Eq.  (3-11) [123]. 
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Here  ,  ,   and  are defined by Eq.  (3-12). The terms   and   are called the 

macro pressure and macro temperature [123]. 
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In Eq.  (3-12) t  and Pr
t
 are the eddy viscosity and turbulent Prandtl number and ij  is 

the SGS tensor. For DNS simulations, 0 , k  and p   with all the variables 

replaced back to their original unfiltered form. The next two sections will describe the 

Smagorinsky and the Dynamic SGS models to determine the eddy viscosity and turbulent 

Prandtl number.  

3.2.1  Smagorinsky Sub-Grid Scale Model 

 This model assumes that at small scales the turbulent kinetic energy produced is balanced 

by dissipation. It is a variation of Prandtl’s mixing layer theory for SGS modeling. This model 

takes the eddy viscosity to be proportional to the SGS characteristic length x  and to a SGS 

velocity. The final form of Smagorinsky eddy viscosity is given by Eq.  (3-13). 

  
2

St C x S    (3-13) 
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Where S  is given by Eq.  (3-14).  
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The expression for constant, SC  is determined if the filter cutoff wavenumber lies within the 

5 3k   Kolmogorov cascade. This gives a value of C
S
  0.18 for Kolmogorov constant C

K
  1.4. 

However, this value is modified to C
S
  0.1 for free shear and wall bounded flows [132] due to 

the highly dissipative nature of this model in the presence of a wall. 

3.2.2  Dynamic Smagorinsky Sub-Grid Scale Model  

This model uses a double filtering method to obtain a time and space varying 

Smagorinsky constant. This is achieved by using the regular low pass filter of width x  along 

with another test filter with larger width x (for instance 2x). This test filter is associated with 

test function  Ĝ given in equation Eq.  (3-15). 

    ˆ ˆ( , ) , ,t t G t t dt d 
 

 
     x r x r r   (3-15) 

 

The SGS tensor obtained using the double filter can be written as Eq.  (3-16). 

    1
T v v v v

ˆ i jij i j  


    (3-16) 

Using Germano’s Identity [128], Leonard’s stresses are found. 

 
1ˆ v v v v
ˆ i jij ij ij i jL T   


      (3-17) 

The eddy viscosity coefficients can be obtained by assuming  
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Using Eq.  (3-17) and Eq.  (3-18), the normal stress constant C
I
 is obtained after a spatial 

averaging   .  along directions in which flow may be homogeneous. This is done to avoid ill 

conditioned model coefficients. 
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For the energy flux, the turbulent Prandtl number is given by Eq.  (3-20) [133] 
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3.3  Implicit Large Eddy Simulation 

In the present work, the turbulent flow simulations have been carried out using implicit 

large eddy simulation (ILES) with a modal DG method. The ILES approach introduced by Boris 

[134], [135], does not require problem specific description of SGS model. The motivation came 

from flux corrected transport convection algorithm [136] which was developed to accurately 
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capture dynamic convection of strong gradients such as shocks and contact discontinuities. It has 

been often called the monotone integrated LES (MILES) approach. From here on this will also 

be referred as ILES. The use of shock capturing schemes for LES has been discussed by Garnier 

et al. [137]. The ILES approach relies on the numerical dissipation to dampen the under – 

resolved high frequency waves present in the flow. The numerics of ILES is based on modified 

equation analysis introduced by Hirt [138], where the numerical scheme satisfies a modified 

partial differential equation (PDE) rather than the original PDE and the truncated terms due to 

the order approximation become the SGS model. Extensive studies were conducted for free shear 

flows [139] and wall bounded and free boundary problems using ILES [140]. Examples of 

methods used for ILES are flux corrected transport, piecewise parabolic method [141] and multi-

dimensional positive definite advection transport algorithm [142], third order upwinding scheme 

[143], and a 6th order compact finite difference scheme with an 8th order filter [144]. Detailed 

analysis and formulation for ILES can be found in Grinstein et al. [145]. The ILES method can 

also use a flux limiter which maintains high order accuracy in smooth regions and reduces the 

scheme to a lower order accuracy when there are sharp gradients. For ILES, the truncation terms 

due to the numerical algorithm have similar properties as the SGS models [145]. The comparison 

of decaying isotropic turbulence problem using ILES, Smagorinsky Model and Dynamics 

Smagorinsky Model with the experimental work [146] is shown in Figure 3-1.  
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Figure 3-1.  Three-dimensional isotropic turbulence comparisons for one-dimensional energy 

spectrum using different LES methods for a 643 grid [140] 

 

However, the question here would be the convergence of this method. This was studied 

for a helically perturbed circular jet using FCT based ILES with three different grids and was 

found to converge to a solution for each case [135]. Similar studies were conducted for two and 

three-dimensional turbulence using Euler equations and comparisons with Navier-Stokes 

solutions for an evolution of compressible turbulent flow containing strong shocks [147], [141].  

The ILES approach was also applied to solve magnetohydrodynamic equations for the 2D 

Orszag tang vortex problem [148] using second order accurate DG method with different grids 

and the solution was found to converge with increasing mesh resolution [114]. Figure 3-2 depicts 
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this behavior. However, as the resolution is increased, ILES approaches DNS where all the 

structures are resolved.  

 
 

Figure 3-2.  Comparison of compressible Orszag Tang vortex at t = 0.5. Solution with (A) 642, 

(B) 1282, (C) 2562 elements and (D) solution obtained using a Princeton open source 

Athena code for 2562 elements.  

 

To simulate turbulent flow physics in DG MIG an implicit large eddy simulation (ILES) 

code is implemented. As explained earlier this method relies on capturing the physics of the flow 

by resolving the large eddies and filtering the higher frequencies based on the high order 

monotone numerical scheme. DG ILES was applied in two-dimensional flow channel flow [149], 

[150]. Study on flow over an airfoil was conducted using the ILES approach in DG framework 

[151]. They used third order and fourth order accurate schemes to resolve the turbulent structures 
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without applying any additional filter or limiter and showed good comparison with previously 

published work. To understand the effect of order P, on the dispersion and dissipation errors, an 

eigenvalue analysis is necessary. Figure 3-3 shows the numerical dispersion and dissipation for 

an upwind scheme DG method for one-dimensional advection equation using different spatial 

order polynomials. The results shown in Figure 3-3 follow the procedure given by Hu et al. 

[152]. They performed both one-dimensional and two-dimensional wavenumber analyses for an 

advection equation and a wave equation respectively. Based on their cutoff criteria the advection 

equation can be best captured by using a 6th order accurate scheme.  

 
 

Figure 3-3.  Wavenumber analysis for an upwind discontinuous Galerkin framework of an 

advection problem for different spatial orders of approximation. Numerical (A) 

dispersion and (B) dissipation. 
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CHAPTER 4 

BACKGROUND OF RELEVANT FLOW PHYSICS 

4.1  Relevant Flow Physics 

 Fluid flow can be classified into many categories, such as viscous or inviscid, internal or 

external, compressible or incompressible, laminar or turbulent, steady or unsteady, etc. Here we 

shall consider the laminar and turbulent category. A flow is considered laminar when the fluid is 

moving in a smooth, orderly and predictable fashion. However, turbulent flow is unpredictable 

and chaotic. To understand when a flow is laminar or turbulent one must study the 

nondimensional parameter also known as the Reynolds number (Re). The concept was briefly 

introduced in Chapter 1. This parameter denotes the ratio of inertial and viscous effects in a flow. 

The Reynolds number can be represented by Eq.  (4-1). 

 ReL

U L


    (4-1) 

It should be noted that ReL  is generally evaluated using the characteristic length scales L, 

freestream velocity U, freestream density  and kinematic viscosity . The length scale is a 

very important parameter in determining Re
L  and is problem specific. For example, the length 

scale for flow over a cylinder is the cylinder diameter, whereas the length scale for flow over a 

flat plate is the streamwise location on the plate or a boundary layer parameter. To study 

boundary layers, some of the relevant length scales are the boundary layer thickness   , 

displacement thickness  *  and momentum thickness   . Their definitions are provided in Eq.  

(4-2). For a flat plate, the location on the plate is also a relevant length scale. Figure 4-1 shows 

how the flow changes from laminar to turbulent as we move along the plate toward downstream 

direction.  
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  (4-2) 

 
 

Figure 4-1.  Schematic of a boundary layer for a flow over a flat plate with zero pressure 

gradient. 

 

For any kind of flow involving boundary layers, there is an associated force on the object 

as the fluid flows past it. This force can have both detrimental effects such as drag on vehicle or 

aircraft and beneficial effects such as lift in aircrafts.  

 
 

Figure 4-2.  Different drag forces associated with a semi-trailer truck [153]. 

 

Drag on an object can occur due to pressure drag because of flow separation, friction drag 

due to boundary layers and roughness, and interference drag due to aerodynamic effects between 
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surfaces. Figure 4-2 shows some of the drag forces associated with a semi-trailer truck. The 

focus of this study is on the skin friction drag. This along with pressure drag contributes to 

almost 50 % in a semi-trailer truck [153] at highway speeds. Drag can be associated with skin 

friction using Eq.  (4-3). 

 21

2
D fF c A U   (4-3) 

Here A denotes the effective surface area over which the drag is being calculated and fc  is the 

skin friction coefficient. Most flow control methods are designed to reduce this drag by 

manipulating the laminar or turbulent boundary layer. The focus of this study is on controlling 

the drag contributions resulting from skin friction and flow separation. 

4.1.1  Laminar Boundary Layer 

For a flow over a flat plate with zero pressure gradient, there are different length scales 

such as boundary layer thickness, momentum thickness, displacement thickness, plate length, 

etc.  Since the boundary layer thickness is a difficult parameter to determine based on 

measurement, the integral length scales are more reliable. These length scales can be determined 

through similarity solutions for a zero pressure gradient laminar boundary layer (Blasius 

solution). Eq.  (4-4) gives the relationship between different thicknesses obtained from the 

similarity solution. 

 1 25Re  ;  0.35 ;  0.14x
x

  

 


     (4-4) 

Another parameter relevant in boundary layer flows is given by the skin friction coefficient  fc

mentioned before. This parameter quantifies the increase in momentum deficit due to wall shear 

stress  w . This is given by Eq.  (4-5). 
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4.1.2  Turbulent Boundary Layer 

 A turbulent boundary layer can be divided into four regions: a viscous sublayer, buffer 

layer, log layer and a wake region. The mean turbulent velocity profile for a typical flat plate 

boundary layer at different Reynolds numbers based on displacement thickness is shown in 

Figure 4-3 [154]. The appropriate velocity, length and time scales for a turbulent boundary layer 

are defined in Eq.  (4-6).  

  ;   ;   ;  =  ; Rew uy u
u y u

u u


 

 

 


 

       (4-6) 

where u  is called the friction velocity and Re  is the friction Reynolds number. Close to the 

wall, viscosity  and wall shear w  become important parameters and are more relevant for 

scaling than freestream parameters. The friction Reynolds number provides the ratio of the 

turbulent boundary layer thickness to the viscous length scale  .  

 To understand whether a flow will become turbulent or stay laminar, linearized Navier – 

Stokes equations need to be solved to determine the unstable eigenmodes. The linearized 

equations reduce to Orr-Sommerfeld and Squire equations. However, in some cases (Poiseuille 

Flow, pipe flow and Couette flow) the prediction using eigenvalue analysis for instability did not 

match with the experimental results. This was attributed to the nonlinear effects involved [156]. 

Different methods [156], [157], [158] were developed to tackle this problem. But the predictions 

using these methods were not consistent because the transition to turbulence is dependent on the 

path taken [154].  
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Figure 4-3.  Turbulent Boundary layer profile for flow over a flat plate showing different regions 

in the turbulent boundary [154], [155] 

 

This variability in the transition process can be defined by the term "receptivity" [159].  

The receptivity determines the response of the flow to an added perturbation (such as from a 

plasma actuator). One of the most widely studied flow transition path in boundary layer flows is 

the TS (Tollmien-Schlichting) mode. It allows small perturbations to grow or decay 

exponentially along the length of boundary layer flow [160]. Figure 4-4 shows the streamwise 

and normal velocity components of a boundary layer TS wave and how they can extend way 

beyond the boundary layer with a rapid decay in magnitude away from the wall. 

The growth of TS waves was found to depend on the shape factor (ratio of displacement 

thickness to the momentum thickness) which gives a critical Reynolds number. This was called 

the “universal correlation” [161]. It was also found through temporal [162] and spatial stability 

analysis [163] that there is a threshold magnitude of exponential growth required for the 

transition process to occur. This threshold is often called as the N-factor. 
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Figure 4-4.  TS wave fluctuating velocity components. (A) Streamwise component and (B) wall-

normal component [154] 
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The ratio 0A A  denotes the ratio of amplitude at a transition location  transx to the initial 

amplitude where the instability begins  critx . The terms inside the integral are the temporal and 

spatial amplification rates. However, this analysis did not describe the conditions at the end of 

the transition process. There are secondary instabilities that form in TS mode after the 

frequencies reach a certain critical magnitude [164]. These lead to the formation of  (lambda) 

vortices which can form an H-type or K-type pattern as shown in Figure 4-5. The H-type pattern 

is found to be more stable than the K-type for the same perturbation amplitude [165]. These  

vortices coalesce and the flow becomes fully turbulent containing hairpin shaped vortices as 

shown in Figure 4-6. These hairpin (named after their  shape) vortices have been studied 



 

65 

extensively both numerically and experimentally [166], [167], [168], [169]. The structure is 

shown in Figure 4-7. It was determined that the regeneration of hairpin vortices occurs behind 

the hairpin head (spanwise) and the two legs (streamwise) with the vortex forming due to 

unsteady separation and roll up based on Kelvin – Helmholtz instability.  

 

Figure 4-5.  Instantaneous streamwise velocity contours showing  vortices formed during the 

transition process. (A) H – type and (B) K – type transition [165]. 

 

An illustration of near-wall turbulence region is given in Figure 4-8 (A) which shows the 

lifted streaks Figure 4-8 (B) and streamwise vortices. These lifted streaks cause a non-linear 

growth of instabilities. However, there is a threshold lift angle denoted by  
20

 (angle at y+ = 20) 

for these streaks to become unstable. This was found to be 56 as shown in Figure 4-8 (B) [85]. 

There is also a possibility that the lifted streaks crossing the threshold might not create instability 

if they are not present outside the viscous sublayer and are not elongated enough in streamwise 

direction to permit growth.  
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Figure 4-6.  Instantaneous iso-surfaces of the second invariant of velocity gradient tensor 

showing the formation of hairpin vortices from  vortices. (A) H – type and (B) K – 

type transition [165]   

 

 
 

Figure 4-7.  Schematic of a hairpin vortex structure showing head, neck, and legs [169]. Fonts 

have been edited for a clearer depiction. 
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Figure 4-8.  Turbulent streaks and stability curve based on lift angle [85]. (A) Top view of the 

lifted streaks (black regions) and streamwise vortices (grey region), (B) depiction of 

the streak lift angle and (C) stable and unstable regions. 

 

Another type of transition mechanism known as the oblique wave transition was first 

investigated numerically using direct numerical simulation (DNS) by Schmid and Henningson 

[170]. They found that transition via oblique waves can be significantly faster compared to the 

standard secondary instability mechanism with similar disturbance amplitude. It involves a non-

modal growth of disturbances and utilizes transient growth mechanism. Reddy et al. [171] 

conducted DNS studies for various transition mechanisms and found that transition initiated by 

streamwise vortices and oblique waves in a Poiseuille flow can occur at subcritical Reynolds 

numbers with threshold energy at least two orders of magnitude lower when compared to 

transition via TS waves. DNS of oblique transition was also conducted by Joslin et al. [172] and 
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Berlin et al. [173] for zero pressure gradient boundary layer flow. Berlin et al. speculated that the 

oblique transition occurs through three universal steps involving nonlinear streamwise vortex 

generation, non-modal transient streak growth, and finally streak breakdown. The oblique 

transition is generated using the superposition of a pair of oblique waves with equal magnitude 

and opposite sign wave angles. These have been experimentally tested using speakers and 

ribbons [174], [175] and with periodic suction and blowing [176]. Experiments for Blasius 

boundary layer as well as Poiseuille flow were conducted by Elofsson and Alfredsson [174], 

[175]. A depiction of transition via oblique wave transition is shown in Figure 4-9 [177]. The 

oblique transition has been widely studied for low Mach number supersonic flows since the most 

unstable mode in this flow regime is the oblique waves. Numerical studies have been conducted 

at different Mach numbers [178], [179] to show that oblique transition requires lower initial 

disturbance when compared to two-dimensional TS wave transition scenario. 

The streamwise vortex generation involves nonlinear interaction between different wave 

number eddies which results in a distribution of the disturbance energy. Since the low 

wavenumber eddies contain higher energy in the energy spectrum, they are affected by the 

energy distribution. The transient growth of the streamwise oriented structures occurs due to this 

and when the disturbance reaches an amplitude higher than the threshold, the streaks may 

become unstable and the flow may break down. Since this transition scenario utilizes the 

transient growth mechanism, it is governed by an inviscid algebraic instability [180]. Therefore, 

the transition mainly arises from inviscid growth and viscous damping. The lift up mechanism 

due to the inviscid algebraic instability causes the streaks to become unstable and finally break 

down.  
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Figure 4-9.  Flow visualization of oblique transition for a streamwise – spanwise plane with 

forcing frequency of 51 Hz. (A) Freestream velocity of 8.4 m/s and (B) freestream 

velocity of 7.0 m/s. [177]. 
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CHAPTER 5 

CODE VALIDATION AND BENCHMARKING 

 

 The three-dimensional parallel DG code is validated and benchmarked using three 

turbulent flow cases. The cases studied are the Taylor Green Vortex isotropic turbulence 

problem, turbulent channel flow, and zero pressure gradient turbulent boundary layer flow over a 

flat plate. The next three sections will describe these cases and provide comparative results. 

5.1  Taylor Green Vortex 

5.1.1  Background 

 This is one of the canonical problems studied for hydrodynamic turbulence. This has 

been extensively studied in literature to derive empirical and analytical relations in turbulent 

flow physics. Early in depth numerical investigation of this problem was done by Orszag [181] 

and Brachet et al. [182], [183]. This problem was also studied by Comte-Bellot and Corrsin 

[146] experimentally as a grid turbulence problem. These studies became the benchmark for 

turbulent code validation. Since then, different numerical methods [140], [184], [185], [186] 

have been used to improve or validate these studies. Results for different Reynolds number, 

mesh and spatial order of accuracy are compared and investigated. The domain size

 2 2 2      with periodic boundaries on all faces. The initial conditions for this problem 

are 

 

           

       

0 0 0

0 0

sin cos cos ,  sin cos cos , 0,

1
100 cos 2 cos 2 cos 2 2 ,  1

16

u x y z v y x z w

p x y z 

  

    
  (5-1) 

This problem is solved using the RKDG method, which involves RK2 time marching and 

LDG scheme for viscous flux. Two types of inviscid fluxes are tested, namely Godunov flux and 

LLF flux. The mesh is uniform in all directions and the DOFs for an N 
3
 mesh corresponds to
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 
33 1N P  . Although the cases can be run at different time step t, the solutions are obtained 

using t = 2.5×104, to have similar time diffusion. The time step is kept low since the Godunov 

flux requires more restrictive time stepping than the LLF flux. The simulations are run till t = 10. 

Three main parameters are used to study this case. These include the integrated kinetic energy

kE , kinetic energy dissipation rate   and integrated enstrophy . These parameters are given in 

Eq.  (5-2). For incompressible flows,  and  can be related using the relation given in Eq.  (5-3). 

It should be noted that evaluation of     requires additional degrees of freedom to reach the 

correct   levels when compared to  kE .  
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5.1.2  Effect of Reynolds Number 

 To study the effect of Reynolds number, the inviscid flux is kept as Godunov flux and a 

603 (1803 degrees of freedom) mesh size is used. The third order accurate  2P   spatial 

accuracy is chosen. The Reynolds numbers tested are 100, 200, 400, 800 and 1600. The 

normalized root mean square (RMS) error in  kE  in comparison with DNS data is given in 

Table 5-1. The norm error is evaluated using Eq.  (5-4). Except Re = 1600, all the other Reynolds 

number have results are comparative to DNS results [183]. The profile of kinetic energy 

dissipation rate  kE  is shown in Figure 5-1.  The dissipation rate is captured accurately by 
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MIG DG ILES. However, in Section 5.1.3 it will be seen that using LLF inviscid flux has 

slightly more error than the Godunov flux due to its higher dissipation.  

Table 5-1.  Norm RMS Error in dissipation rate at different Reynolds number 

Re Norm RMS Error 

100 62.25 10  

200 62.85 10  

400 62.62 10  

800 53.14 10  

1600 43.43 10  
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Figure 5-1.  Energy dissipation rate at different Reynolds numbers using third order accurate DG 

solution on a 603 mesh compared with DNS results [183], [184].  

 

5.1.3  Effect of Inviscid Numerical Flux 

 To study the effect of numerical fluxes, the Godunov flux and LLF flux are tested for a 

603 with P = 2 (1803 DOF), 453 with P = 3 (1803 DOF) and 363 with P = 3 (1803 DOF) mesh 

sizes. It should be noted that the total DOF is calculated by  
33 1N P  . The Reynolds number 
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for the cases here is kept at Re = 1600. The normalized root mean square (RMS) error in  kE  

in comparison with DNS data [184] is given in Table 5-2. The dissipation rate has higher errors 

when LLF flux is used. The greater diffusive nature of LLF flux was also observed by Beck et al. 

[187] when comparing with Roe flux. However, the differences are very low as the errors are 

two orders of magnitude lower than the variable value. It should be noted that although Godunov 

flux is more accurate due to its least dissipative nature, it creates larger oscillations which can 

result in backscatter and also requires lower time step. Therefore, although LLF has a higher 

diffusion it is preferable to be used with slightly higher degrees of freedom. For this problem, 

using around 1.4 times the DOF in each direction matches the solutions for both the fluxes at     

P = 2. For higher orders, the differences dissipation rate due to fluxes become negligible. This 

can be observed in Figure 5-2 which depicts the similarity in solutions for the two fluxes at 

different degrees of freedom for a P = 2 and P = 4 case. 

Table 5-2.  Norm RMS Error in dissipation rate for Godunov and LLF fluxes 

Order 
Godunov 

Flux 

Local Lax – 

Friedrichs flux 

2 43.43 10   47.35 10  

3 59.38 10  43.36 10  

4 47.83 10  41.93 10  

 

5.1.4  Effect of Spatial Order of Accuracy 

 To study the effect of spatial order of accuracy LLF flux is chosen as the inviscid 

numerical flux. The problem is studied using orders P = 2, P = 3 and P = 4. The Reynolds 

number for the cases here is kept at Re = 1600. All the parameters mentioned in Eq.  (5-2) and 

Eq.  (5-3) are depicted in Figure 5-3. Both     and  kE  are compared to highlight the 

differences between ILES results and DNS results [184], as well as to show that capturing 
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gradients in ILES requires more degrees of freedom. The DNS results are obtained using 13-

point DRP scheme with 5123 grid [184]. The solutions obtained using P = 2 have the largest 

error for the same DOF. This is a known property which is utilized in turbulent flow simulations 

using higher order methods. However, the differences between the fluxes are negligible. 

 
 

Figure 5-2.  Comparison of energy dissipation rate for different inviscid numerical fluxes at 

different degrees of freedom and polynomial order. Dissipation rate for (A) P = 2 and 

(B) P = 4. 

 
 

Figure 5-3.  Comparison of MIG DG solution with published DNS results [184]. (A)Turbulent 

kinetic energy, (B) energy dissipation rate based on integral kinetic energy and (C) 

energy dissipation rate based on enstrophy. 

 

To see if the solution converges, higher DOFs were compared to the DNS solution. This 

is depicted in Figure 5-4. Although  kE  has converged to the DNS solution,     has not 
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converged yet. This behavior was also observed by DeBonis [184] who performed a comparison 

between 4th, 8th and 12th order central finite difference schemes with a 13-point DRP scheme 

(DNS). Similar behavior has been found for DNS [188] solutions using DG method.  

 
 

Figure 5-4.  Comparison of turbulent kinetic energy dissipation rate for different orders of spatial 

accuracy at approximately 3203 DOF. (A)  Dissipation rate based on integral kinetic 

energy and (B) enstrophy. 

 
 

Figure 5-5.  Kinetic energy spectrum for Taylor Green vortex problem at t = 10. (A) Effect of 

polynomial order and (B) effect of inviscid flux on energy spectrum. 
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5.1.5  Energy Spectrum 

 The kinetic energy spectrum for all the cases is plotted at t = 10 in Figure 5-5. All the 

curves follow the standard turbulent spectrum of 5/3 slope. The differences between the 

spectrums for different order polynomials depicted in Figure 5-5 (A) is negligible. Also, the 

effect of flux is not significant on the energy spectrum.  

5.1.6  Flow Structures 

 The instantaneous iso-surface of Q – criterion (positive second scalar invariant of u) 

colored with velocity magnitude is depicted in Figure 5-6. The equation defining Q – criterion is 

provided in Eq.  (5-5). The data corresponds to the simulation with P = 3 (DOF = 3203). The 

coherent structures keep breaking down into smaller structures as the time progresses and finally 

around t = 9 the flow becomes fully turbulent.  

    
2 21 1 1

; ;
2 2 2

T T
Q               

    
S v v S v v    (5-5) 

 
 

Figure 5-6.  Instantaneous Q – criterion colored with instantaneous velocity magnitude showing 

breakdown of coherent structures with time for a Taylor Green vortex problem. 
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5.2  Zero Pressure Gradient Turbulent Boundary Layer 

5.2.1  Background 

A spatially developing zero pressure gradient turbulent boundary layer (ZPGTBL) flow 

over a flat plate is studied using numerical simulation. Turbulent flow over a flat plate has been 

extensively studied both experimentally and numerically to understand the fluid-fluid and fluid-

structure interactions in various applications. The main objective has been to obtain better 

scaling laws and models for predicting quantities of practical relevance. Extensive experimental 

studies of the turbulent boundary layer were conducted by Klebanoff and Diehl [189], Coles 

[190], Kline et al. [191], Murlis et al. [192], Österlund [193], Degraaff and Eaton [194], Schlatter 

et al. [195] and Hutchins et al. [196]. Degraaff and Eaton provided data for a wide range of 

Reynolds numbers and different scaling parameters for predicting boundary layer characteristics 

at near wall and wake region. Hutchins et al. [196] conducted studies on large-scale coherent 

structures for atmospheric turbulence and compared them with the laboratory turbulent boundary 

layers. They found that the two-point correlations of velocity fluctuations are similar for both 

cases.  

In practical applications, the friction Reynolds numbers  Re u   based on friction 

velocity u , boundary layer thickness   and kinematic viscosity , can go up to O (106). This is 

challenging to obtain in laboratory experiments or simulation settings due to large length scales 

and prohibitive computational resource requirement. Therefore, better scaling laws and models 

are required to predict turbulent flow field at high Reynolds numbers. Due to the recent advances 

in computational technology, direct numerical simulation (DNS) has become feasible for 

simulating ZPGTBL at moderate Reynolds numbers. DNS for spatially developing ZPGTBL was 

conducted by Spalart [197] for Reynolds number based on momentum boundary layer thickness, 
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Re U   up to 1410 and by Schlatter [195] for Re  up to 2500, which gave extensive 

benchmark data for this problem. Although DNS is a useful tool to accurately capture all the 

relevant scales in a flow of moderate Reynolds number, computational resource demands remain 

restrictive. As a remedy, large-eddy simulations (LES) have become increasingly popular as a 

simulation tool to understand turbulent flow physics.  

Schlatter and Orlu [198] compared various DNS data for ZPGTBL and found 

inconsistencies in the integral quantities as well as mean and fluctuation profiles. They suggest 

that the variation of these quantities for similar freestream flow conditions reported by different 

authors is mainly due to the differences in prescribing inflow conditions, settling length and 

domain size. Therefore, a detailed study of ZPGTBL is documented in this paper to establish the 

capability of DG ILES in capturing turbulent flow physics. The first representative set of works 

on LES using DG started only a decade ago and was conducted by Collis and Chang [199]. They 

studied flow over a cylinder and inside a channel. Sengupta et al. [150] and Wei and Pollard 

[200] simulated turbulent channel flow using DG method. More recently Uranga et al. [151], 

Bassi et al. [201] and Fernandez et al. [202] conducted a simulation of turbulent flow over an 

airfoil. DG method was also tested for different types of problems including isotropic turbulence 

and channel flow by Wiart et al. [203].  

 This study involves the transition to turbulence using bypass mechanism. For all the cases 

here, the Reynolds number based on plate length, Re
x
 ranges from 2.5×105 to 6.25×105 and Re  

ranges from 330 to 1250. This problem is studied using P = 2 order for spatial accuracy and RK2 

method for temporal accuracy. The LLF flux is chosen as the inviscid flux and LDG scheme is 

used for the viscous fluxes.  
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5.2.2  Mesh Details 

 The different mesh sizes used have been tabulated in Table 5-3. The streamwise (x-

direction), wall-normal (y-direction) and spanwise (z-direction) domain sizes,

 , and respectivelyx y zL L L    are based on the inlet wall unit ,i i iy y u    , where ,iu is the 

friction velocity at the inlet and  is the kinematic viscosity, which is held constant for all the 

mesh sizes. Although, the number of elements  yN  in the wall-normal direction is changed, 
iy

does not change since more elements are packed in the log layer and the mesh is wall-resolved. 

This was done since studies conducted by Nagib et al. [204] found large variations of mean data 

for the log layer. The number of grid points in the boundary layer ranges over the domain from 

40 at the inlet to 44 at the outlet for the coarse mesh, 50 to 60 for the medium mesh, 80 to 90 for 

the fine mesh of case I and 40 to 44 for case II.  The mesh is stretched [205] in the wall-normal 

direction using  

  
1

 ,  
1 1

y

y

C j
y j L

C N







 

  
  (5-6) 

In Eq.  (5-6), Ly is the height of the domain in wall-normal direction and j is the grid 

point. The choice of constant C gives 0.9iy  . The mesh is uniform in x and z directions. 

However, near the streamwise and wall-normal outflow boundaries, the mesh is geometrically 

expanded and the outlet velocities are relaminarized to Blasius profile using a sink term, like a 

sponge region [206], [207], to avoid any reflections.  It should be noted that the mesh parameters 

chosen here correspond to the grid requirements for wall resolved LES provided by Choi and 

Moin [208].  
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Table 5-3.  Computational mesh details 

Case xN  yN  
zN  

ix  iy  iz  xL  yL  
zL  

coarse 700 48 32 26.5 0.9 24 18 600 4200 750 

z_fine 700 48 64 26.5 0.9 12 18 600 4200 750 

medium 700 64 64 26.5 0.9 12 18 600 4200 750 

fine 950 96 64 13 0.9 12 18 600 4200 750 

 

5.2.3  Flow Field Parameters 

 The Mach number for all the cases studied here is set to 0.5, which is weakly 

compressible. The inlet freestream conditions are applied with static pressure  P  of 10132.5 Pa 

and static temperature  T  
of 273 K. The freestream velocity 165.61m/sU   and the 

viscosity    based on Sutherland’s law for T  is 1.716×105 Ns/m2.  A Blasius profile 

corresponding to Re
x
 = 2.5×105 is used for the streamwise and wall-normal velocity at the inlet. 

Based on this, the incoming Re  is 330. The inlet boundary layer thickness i based on 0.99U  

is 36.2 10  and inlet displacement thickness * 46.7 10i
  . The wall is kept at no slip adiabatic 

conditions. Both top and outlet boundary conditions are obtained by linear extrapolation with the 

pressure kept at P . The flow is tripped using the forcing function given by Schlatter and Orlu 

[209] for their baseline case. The tripping method uses a weak random volume forcing in the 

wall-normal direction. It includes three main parameters, amplitude A
t 
, spanwise length scale z

s
 

and temporal scale t
s
. The forcing function is given by 
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   In Eq.  (5-7) 
0x  is the streamwise location of the forcing which is set to *10 i , andx yl l  

are the spatial extent of the forcing and are set to *4 i  and *

i  respectively. The function  ih z is 

a combination of random unit amplitude harmonic signals with wavenumber modes only below 

2 sz and the random amplitude obtained by using i as the seeding value to pseudo-random 

generator. For the present study, six modes are taken in the spanwise direction. The temporal 

scale *4s it U  and the spanwise length scale *1.7s iz  . The author recommends the reader 

to refer to the paper by Schlatter and Orlu [209] for a detailed explanation.  

For all the cases, the non-dimensional time step is 2

, 0.0048it u t

    . The flow was 

allowed to convect two times over the entire streamwise length at a convective speed of around 

0.75 ,U  before the mean flow calculations were started. This corresponds to about 23100 u  

and the mean flow calculations were carried out over a period of 21200 u . 

5.2.4  Mesh Convergence 

 The mesh sizes tested showed that the mean velocity scaled by viscous units, U U u
  , 

where U  is the time and spanwise averaged solution, has minor variations due to mesh size as 

depicted in Figure 5-7. Only the coarse mesh overpredicts the log layer region. The skin friction, 

fc  shows good agreement with published DNS data [209]. In Figure 5-8, the normalized root 

mean square (RMS) streamwise fluctuating velocity 2 2

rms uu u
  , wall-normal fluctuating 

velocity 2 2

rms uv u
  , spanwise fluctuating velocity 2 2

rmsw u u
  , and mean Reynolds stress 

u v


  , where , andu v w    are the instantaneous fluctuating components, are plotted. Coarse mesh 

is not suitable to resolve the perturbations. Doubling the mesh density in the spanwise direction 

solves this issue. Therefore, the mesh sizes equal or more than the z_fine case are adequate to 
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resolve the fluctuations. The medium mesh case is used for rest of the visualizations and 

comparisons of case I. However, it should be noted that for the present study higher than second 

order moments were not compared, as suggested by Spalart [197]. For the current study, medium 

mesh case was considered adequate. From next section, all the results presented will be for the 

medium mesh case. 

To test whether the spanwise domain is adequate, two-point correlations are plotted for 

different y – planes in Figure 5-9. The wall-normal and spanwise correlations are plotted against 

normalized half span length. The structures quickly decorrelate within 2 0.4zz L  . Therefore, 

the spanwise domain size is enough to capture all the flow structures. It should be noted that the 

planes farther from the wall take longer to decorrelate than the ones closer. This is because the 

flow structures close to the wall, which is within the viscous sublayer and the buffer layer, are lot 

smaller than those in the outer region. 

5.2.5  Instantaneous Flow Field 

 To look at the flow structures, Q – criterion iso-surfaces are shown in Figure 5-10. The 

flow turbulizes rapidly through bypass transition mechanism. For better visualization, the plate is 

divided into three parts based on the Re  values with the plate starting at Re = 330 and the 

domain is duplicated three times in the spanwise direction. Near the tripping location, there are 

some quasi-streamwise vortices  x  along with few lambda vortices which become hairpin 

vortices. The hairpin vortices create turbulent spots and finally generate a fully developed 

turbulent flow.  As the Re  increases, the coherent hairpin structures become less prominent and 

turn into either cane vortices or just have tubular structures. This has been observed in various 

DNS studies [210], [209].  



 

83 

 
 

Figure 5-7.  Mesh convergence study at Re = 900 compared to DNS data [210]. Variation of (A) 

mean velocity profile with inner wall coordinates and (B) skin friction with Re .   

 
 

Figure 5-8.  Mesh convergence study at Re = 900 for Reynolds stresses compared with DNS 

data [210]. Variation of (A) streamwise, (B) wall-normal, (C) spanwise RMS 

fluctuations and (D) Reynolds shear stress. 
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Figure 5-9.  Variation of two-point correlation at different y+ locations along the spanwise 

direction. (A) Wall-normal velocity correlations and (B) spanwise velocity 

correlations at Re = 900. 

 

Instantaneous details of density, streamwise velocity and pressure contours at the mid 

spanwise plane are shown in Figure 5-11. The density contours in Figure 5-11 show the distinct 

flow features such as large-scale bulges and valleys, the streamwise velocity contours show how 

the turbulent boundary grows and the pressure contours show the alternate low and high-pressure 

regions arising due to turbulent eddies.  

The streaklines for 5iy   plane with the domain duplicated three times is shown in Figure 

5-12. It clearly shows the initial localized turbulent spots, which finally spread over the entire span 

of the plate. On an average, there are about seven to nine streaks in the spanwise direction which 

means that for a spanwise domain of 750zL  , the streaklines are separated by 80 to 110z   

which is common for a turbulent boundary layer.  
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Figure 5-10.  Instantaneous iso-surfaces of normalized Q – criterion (Q = 2) colored with 

normalized streamwise velocity at different Re . 

 

Instantaneous details of streamwise, wall-normal and spanwise velocity fluctuations at the 

mid spanwise plane are shown in Figure 5-13.  The streamwise fluctuations u show large positive 

and negative regions which denote sweeping and bursting events. The wall-normal velocity 

fluctuations v and spanwise fluctuations w show alternate positive and negative regions which 
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are a representation of the turbulent eddies exchanging momentum inside the turbulent boundary 

layer. 

 
 

Figure 5-11.  Instantaneous contours normalized with freestream conditions at middle span 

plane. (A) Density, (B) streamwise velocity and (C) pressure contours. 

 

 
 

Figure 5-12.  Normalized streamwise velocity streaklines over the 5iy   plane. 

 

5.2.6  Turbulent Statistics 

 All the mean flow data including the integral quantities are obtained using a spanwise and 

time-averaged solution. In Figure 5-14, the variation of the wall-scaled mean streamwise velocity 

with viscous wall units and velocity defect profile   /U U u   with the outer coordinates are 
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plotted. The defect profile corresponds to Re = 900. The results slightly overpredict the solution 

in the buffer layer. However, the viscous sublayer and the log layer are accurately captured for 

all the Reynolds numbers. The slope of log layer is found to be 0.4 and the constant as 5.25, as 

shown in Figure 5-7 (A).  

 
 

Figure 5-13.  Instantaneous perturbation velocities at middle z plane.  

 

The second order statistics involving Reynolds stress profiles compare well with the DNS 

results as shown in Figure 5-15. Data is plotted against wall distance scaled with wall parameters 

as well as boundary layer thickness. The peak value for rmsu   is 2.82 and it occurs at y+ = 14          

 0.04y    for Re = 900. The wall-normal and spanwise fluctuations have peak values of 

1.09 and 1.33 respectively. These values are closer to Spalart’s [197] data at Re = 670 than Wu 

and Moin’s data. Large variations in fluctuating components have not only been seen 

experimentally but also numerically at similar Reynolds numbers. Factors such as the spatial 

resolution of probes, measuring apparatus, tripping mechanism, etc. can affect the experimental 

data while grid resolution, inflow length, tripping method, domain size, etc. can impact the 

fluctuating components.  
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Figure 5-14.  Comparison of mean flow velocity with experimental and numerical results. 

Variation of (A) mean velocity profile with inner wall coordinates and (B) mean 

velocity defect profile with outer coordinates. 

 

 
 

Figure 5-15.  Variation of Reynolds stress at Re = 900 and comparison with DNS data [210]. 

Variation of Reynolds stresses (A) with outer wall coordinates and (B) with inner 

wall coordinates. 
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In Figure 5-16, the total shear stress  U y u v


     is plotted against outer 

coordinates at Re = 1030. Similar to Wu and Moin [210], the data shows that the maximum 

shear stress  + = 1.025 does not occur at the wall, but at around y/ = 0.03 or y+ = 12 (see inlay). 

This is the same location where
rmsu  is maximum. This behavior is observed throughout the 

turbulent boundary layer ranging from Re = 670 to 1030. This has not been seen by other 

authors [197], [209] and for channel flow cases where the stress is linear. 

 
 

Figure 5-16.  Variation of total shear stress (solid line) and Reynolds shear stress (dashed line), 

with outer coordinates at Re = 1030. 

 

The integral quantities shown in Figure 5-17, depict the variation of displacement 

thickness   and the shape factor H with Re 
. Both displacement thickness and shape factor show 

the deviation from the Blasius laminar solution to the turbulent solution. The shape factor shown 

in Figure 5-17 (B) is in good agreement with the DNS results of Sayadi, Hamman, and Moin 

[165] for a K-type transition. Present data shows a similar slope of shape factor in the transitional 

region when compared to results obtained by Sayadi et al. [165]. 

The Reynolds stress budget terms are plotted at Re = 900 near the wall in Figure 5-18. 

The equations to determine these parameters are given below [211] 
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  (5-8) 

 

 
 

Figure 5-17.  Variation of integral quantities with Re 
. Variation of (A) displacement thickness 

and (B) shape factor profile showing the transition from laminar to turbulent flow. 

 

The subscripts i, j and k to u   in Eq.  (5-8) correspond to the streamwise, wall-normal and 

spanwise fluctuating velocity. All the terms are scaled using wall parameters. The budget terms 

show that the Reynolds stresses are predominant in the 2u and u v   components. The terms also 

balance out showing that the mean flow quantities have reached steady state. These results show 

similar behavior and trends when compared to the data by Spalart [197]. 
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Figure 5-18.  Variation of wall-scaled Reynolds stress budget terms with inner wall coordinates 

at Re = 900. (A) 2u , (B) 2v  , (C) 2w  and (D) u v  .  

 

The probability density function (PDF) of velocity fluctuation gives an idea of whether 

the turbulent structures follow the normal distribution. The pdfs of channel flow and ZPGTBL 

are very similar. Unlike homogeneous shear flows, which follow the Gaussian distribution, 

ZPGTBL has some skewness at the tail ends as depicted in the PDF of fluctuating velocity 

components in Figure 5-19. It was found by Dinavahi, Breuer, and Sirovich [212] that for 

channel flows the pdf is independent of the wall-normal location and Re  when outside the 

buffer layer. Therefore, the pdf for the region 30 < y+ < 50 is plotted instead of different y 

locations. It should be noted that the pdf is generated using 40 bins, and the bin for mean value is 

not plotted. The mean for all pdfs is zero and the standard deviation of the fluctuating velocity is 

used to construct the Gaussian curve. The w   pdf follows the Gaussian distribution more closely 

than u   and v   pdfs.  
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Figure 5-19.  Probability density function for the fluctuating components of velocity over a 

region of 30 < y+ < 50 using 40 bins. Symbols represent present results and solid line 

represents the normal distribution.   

 
 

Figure 5-20.  The energy spectrum of fluctuating components in the spanwise direction at y =  *. 
(A) Spectrum at Re = 900 and comparison of spectrum at Re = 700 and 900 for (B) 

streamwise, (C) wall-normal and (D) spanwise fluctuations. 
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The energy spectrum is plotted in Figure 5-20 for the instantaneous fluctuating velocity 

components. The energy levels in the inertial region for all the perturbations are similar, which 

indicates the flow is isotropic in nature. There is a minor decrease in energy as the Re  increases 

from 700 to 900. It can also be seen that as the Reynolds number is increased, the wavenumbers 

grow higher due to the reduction in eddy size. The 5/3 slope line is also shown for reference in 

all the Figures 5-20 (A) through Figures 5-20 (D). 
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CHAPTER 6 

INFLUENCING TRANSITION USING SERPENTINE PLASMA ACTUATORS 

6.1  Surface Dielectric Barrier Discharge (SDBD) Plasma Actuators 

The current work studies plasma actuators as a flow control device by conducting 

implicit large eddy simulation of transition to turbulence due to three-dimensional actuation on a 

zero-pressure gradient laminar boundary layer flow over a flat plate. The three-dimensional 

actuation resembles the effect from a surface dielectric barrier discharge (SDBD) actuator. 

Depending on the input signal and the configuration of the actuator electrodes, different types of 

plasma actuators can be designed. Some of the designs include SDBD actuators [34], plasma 

synthetic jet actuators [59], arc discharge actuators [44], and corona discharge actuators [41]. 

The focus of this research is on investigating a special case of SDBD actuators called the square 

serpentine plasma actuator [57], [84]. Numerical and experimental studies have shown plasma 

actuators can be used to either suppress [213], [214], [215] or raise [216], [217] the growth of 

Tollmien-Schlichting (TS) waves and thereby delaying or advancing the transition to turbulence. 

The transition can be manipulated by applying actuators at different locations and voltages [213]. 

To conduct this fundamental study, the influence of plasma actuators on a zero-pressure gradient 

laminar boundary layer for a flat plate is chosen due to its simple and frequently encountered 

geometry. Both experimental [57] and numerical [84] work has shown the benefits of serpentine 

actuators over the standard linear SDBD actuators for flow control applications due to their 

three-dimensional flow structures. Therefore, investigating these types of actuators can provide 

useful insight on efficient flow control applications. The impact of plasma actuators on laminar 

to turbulent transition depends on different factors such as the ratio of the plasma jet velocity to 

freestream velocity, the frequency of perturbation and the geometry of the actuator [84], [218].   
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To understand the functioning of a plasma actuator, a brief description of their design and 

operation is discussed here. To obtain a better understanding of these actuators the author 

recommends the reader to refer to published literature by Moreau [219], Corke et al. [33] and 

Enloe et al. [220]. The standard SDBD plasma actuators are constructed using two 

asymmetrically placed electrodes separated using a dielectric material. A high voltage (~ kV) 

alternating current is applied to the electrodes across the dielectric material. Radio frequencies 

are generally used for the applied voltage. One of the electrodes is exposed to the surrounding air 

while the other is encapsulated. A simple depiction of the actuator is shown in Figure 6-1. The 

plasma forms at the edge of the exposed electrode as shown in the Figure 6-1 (B) [33].  

 
 

Figure 6-1.  Schematic of the operation of SDBD actuator and plasma formation. (A) Parts of 

SDBD actuator and wall jet created by the plasma and (B) plasma formation at 

different frequencies [33]. 
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 Schematic of one of the methods of powering the actuator is shown in Figure 6-2. The 

encapsulated electrode is grounded and the exposed electrode is powered using high voltage 

Trek (model 30/20A) power amplifier. The power amplifier usually contains a high voltage 

transformer which can step up the wall supply voltage to  30 kV. A controlled input signal is 

provided using a function generator. Current and voltage probes are connected to an oscilloscope 

to collect and visualize the electrical characteristics.  

 
 

Figure 6-2.  Schematic of SDBD power supply and voltage and current measurement. 

 

 When the high voltage is applied across the electrodes, the gas surrounding the exposed 

electrode ionizes and creates electrons, positive ions, and negative ions. Due to the 

asymmetrically placed electrodes, the electric field directs the ions in its direction which in turn 

impacts the neutral gas molecules and creates a flow. There is still some ambiguity on the exact 

mechanism of the flow generation, however, the details of different conjectures are considered 

outside the scope of this work. Here the focus is on the numerical approach of simulating 

actuators.  
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6.2  Numerical Approach 

6.2.1  Mesh Details 

Three different mesh sizes were tested and have been tabulated in Table 6-1. The mesh is 

created using similar procedure mentioned in Chapter 5 for the turbulent flat plate boundary 

layer.  The boundary conditions and flow field parameters are also similar to the flat plate case in 

Chapter 5.  This study involves a transition to turbulence using square serpentine actuator. For all 

the cases hereon, the Reynolds number based on plate length, Re
x
 ranges from 3.75105 to 8105 

and the minimum to maximum Re  ranges from 400 to 1250. The same numerical approach is 

taken here as in flat plate validation case in Chapter 5. The medium mesh was found to be 

adequate to resolve the flow based on the convergence shown in Figure 6-3. The actuator forcing 

details are provided in Section 6.2.2. It should be noted that the DNS results are for Re = 900 

whereas the MIG DG data corresponds to Re = 1000 due to which there are some differences in 

the maximum amplitude of the fluctuating components.  

 

Table 6-1.  Computational mesh details 

Case xN  yN  
zN  

ix  iy  iz  xL  yL  
zL  

coarse 750 48 32 26.5 0.9 24 18 600 4200 750 

medium 750 48 64 26.5 0.9 12 18 600 4200 750 

fine 750 64 64 26.5 0.9 12 18 600 4200 750 

 

6.2.2  Actuator Forcing Mechanism 

The approach here is to use a body force model formulated by Singh and Roy [74] to 

simulate the effect of plasma actuators. The body force distribution for the actuators used in the 

current study is obtained using Eq.  (6-1). 
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Figure 6-3.  Mesh comparison of turbulent mean statistics at Re = 1000 with DNS results [210] 

at Re = 900 (A) Mean velocity profile, (B) streamwise, (C) wall-normal, (D) 

spanwise RMS fluctuations. 
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In Eq.  (6-1) 
0 0

5 62.6, 2.0, 1.44 10 , 1.8 10 and 0.001665y y bF F y         . The last 

three parameters provide the extent of the exponential function. The location of the actuation is 

given by 0 0and y  which correspond to the points along the line of actuation which varies 

depending on the actuator being studied. This is depicted in Figure 6-4 along with the force 

distribution from Eq.  (6-1) for a center z – plane.   The body force terms are applied such that 

yF  is always directed in the negative wall-normal direction. The forcing terms are modulated 

with a sinusoidal frequency 0 , and an amplitude, A given by  
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Both bF


and 
ybF are implemented as body force terms in the momentum and energy equations of 

Navier-Stokes equations. The amplitude A was determined by conducting simulations of the 

actuator in quiescent conditions for different values of A, to obtain the maximum velocity 

generated, pu   and consequently the velocity ratio pu U  . The relationship between A and  

is depicted in Figure 6-5. To avoid symmetry in the spanwise direction, an additional normally 

distributed random perturbation of amplitude 0.1A was added to the amplitude A. It should be 

noted that since an absolute value of the sine wave is used, the forcing occurs at a frequency 02

. All the simulation details provided in this chapter have   = 0.1 and 0St 2 0.584i U    . The 

effect of   and 0  is discussed in Chapter 7. The RMS fluctuation due to this forcing is around 

5% of the free stream velocity. 

 
 

Figure 6-4.  Plasma body force contours and square serpentine plasma actuator schematic. (A) 

Body force distribution for a linear SDBD actuator and (B) schematic of the square 

serpentine actuator with different parameters and force directions. 
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Figure 6-5.  Effect on velocity ratio based on different forcing amplitudes for a linear actuator. 

 

 The three-dimensional forcing due to the actuator creates two kinds of regions, namely 

the pinching region (center z – plane), where the forces are directed towards each other and the 

spreading region (spanwise boundary planes) where the forces are directed away from each other 

as shown in Figure 6-4. For reference, Figure 6-6 gives a depiction of the pinch plane and the 

spread plane of the actuator. It should be noted that only one wavelength of the actuator is 

simulated and for better depiction the domain is duplicated three times for Figures 6-6 to 6-13. 

 
 

Figure 6-6.  Schematic of the actuation pinch plane and spread plane. 
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6.2.3  Instantaneous Flow Field 

To visualize the turbulent structures, Q – criterion iso-surface is shown in Figure 6-7. The 

flow turbulizes faster downstream of the pinch region compared to the spread region. The 

serpentine actuator creates ‘X’ like structures which have been found in the experimental and 

numerical study of oblique wave transition [174], [177], [179], [221]. The pinching region 

turbulizes before the spreading region due to its lifted streak nature. This can be clearly seen in 

the spanwise planes of pinching and spreading region shown in Figure 6-8. Different slices are 

plotted in Figure 6-8 to show contours of normalized velocity magnitude, streamwise vorticity, 

and density. The density variations are less than 4%, due to which the flow is assumed 

incompressible. All the parameters are nondimensionalized using freestream and inlet 

parameters. The serpentine actuator shows strong streamwise oriented vortices at the wall. Two 

streamwise oriented counter-rotating vortices shown by the black and white regions are created 

immediately downstream of the actuator.  Their combined effect pushes the flow in between 

them upwards, as can be seen in the x – planes. The density variations shown in the pinch and 

spread planes are minimal but give a good representation of the flow turbulizing.  

 
 

Figure 6-7.  Instantaneous Q – criterion colored with velocity magnitude showing breakdown of 

coherent structures for the square serpentine actuator. 
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Figure 6-8.  Instantaneous contours of velocity magnitude, vorticity and density variation for 

different planes.  

 

The contour of streamwise velocity on a wall-normal plane inside the buffer layer,          

y+ = 10 is shown in Figure 6-9. The low-speed streaklines for the serpentine actuators occur at 

the pinching regions where the flow gets lifted up. The pair of opposite angle oblique waves is 

indicated using dashed white lines. The wavy streak pattern observed in Figure 6-9 are similar to 

subharmonic sinuous streaks [85]. This type of pattern was also observed by Elofsson and 

Alfredsson [174] in their experimental study of oblique wave transition. 

 
 

Figure 6-9.  Instantaneous velocity streaklines at y+ = 10 with the oblique waves shown using 

dashed white lines.  
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To investigate the growth of vortical structures generated by the actuation, Q – criterion 

iso-surfaces (Q = 0.1) are plotted in Figure 6-10 for the square serpentine actuator. It shows the 

time evolution of the quasi-streamwise oriented vortices generated by the actuator into three-

dimensional structures. The lambda shaped vortices interact with the structures downstream as 

well as upstream to create a staggered set of harmonic and subharmonic lambda vortices similar 

to an oblique wave transition. These have been experimentally and numerically tested using 

speakers and ribbons [174], [175] and with a pair of oblique waves [176], [222]. Although the 

frequency of actuation is kept at St = 0.584, the transition occurs through the subharmonic mode 

which involves a fundamental mode and a subharmonic mode with a frequency half of the 

fundamental mode. The lambda structures are lifted from the plate due to which their tail end 

moves slower compared to the front, and consequently, they grow in time. The growth is shown 

by the increase in spacing between the dashed white lines. Since a periodic sine wave forcing is 

used, similar structures are generated every t+  = 241.12 which is also equal to 2

02u   (here 0  

is the forcing frequency of the actuation in hertz). 

As the structures grow in time, they form staggered patterns of positive and negative 

fluctuations. In Figure 6-11, two time periods based on the time period 1 2T   of the actuator 

are plotted for the spanwise fluctuations at different y+ locations for Re = 500. The spanwise 

domain is duplicated three times. The flow is from top to bottom since the y-axis is time. The 

dashed lines are negative fluctuations and solid lines are positive fluctuations. As the structures 

grow in time they form staggered patterns of positive and negative spanwise fluctuations. As the 

y+ value increases the staggered patterns have different behavior in time. From careful 

inspection, it can be seen that the positive and negative fluctuations switch places as the distance 
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from the wall increases. This is due to the oblique and lifted shear layer in the flow as well as the 

presence of two modes.  

 
 

Figure 6-10.  Instantaneous normalized Q – criterion iso-surfaces (Q = 0.1) shown at different 

instances in time depicting the growth of turbulent structures.  

 

This behavior is unlike most of the controlled forcing functions which require the input of 

a fundamental and a subharmonic frequency [165], [223] or an oblique wave [174], [170]. For 

supersonic flat plate boundary layer, the most unstable mode is oblique so suction and blowing 

[179] can create this type of transition. Also, to confirm whether the combined effect of pinching 

and spreading created this type of transition, horseshoe geometry was simulated (results not 

shown here) and similar type of transition was obtained. Therefore, the serpentine geometry 

forcing does not need to operate on different frequencies to achieve the oblique transition and the 
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pinching effect is the major contributor of this type of transition. Also, the oblique transition is 

known to transition faster compared to the standard secondary instability mechanism with similar 

disturbance amplitude [170]. Therefore, we conclude that serpentine shaped surface compliant 

plasma actuation can induce a faster transition to turbulence. 

 
 

Figure 6-11.  Variations of instantaneous spanwise fluctuations over time depicting staggered 

pattern of oblique wave transition at Re = 500. Variations at (A) y+ = 10, (B) y+ = 30, 

(C) y+ = 50 and (D) y+ = 100 plane. 

 

To study the structures in more detail two instances in time are picked from Figure 6-10, 

that is at t+ = t
0
 and t+ = t

0
 + 415.75. Figure 6-12 (A) shows approximate depiction of the initial 

structure at t+ = t
0
 while Figure 6-12 (B) shows the structures at t+ = t

0
 + 415.75. The lift angle on 

the x – y plane of the structure is denoted as  and the polar angle on the x – z plane is . The 

length of the structure is given by L and the spacing between the front ends is B. It should be 
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noted that the structures in black have anticlockwise rotation while the structures in grey have 

clockwise rotation. When Figures 6-12 (A) and (B) are compared, it was found that   and  

barely change while L grows to 2L and B reduces to B/2. The development of these vortices is 

dependent mainly on the proximity of the front end of the lambda structures and the distance 

from the upstream lambda vortices of the fundamental harmonic mode. Unlike the fundamental 

harmonic lambda vortices, the subharmonic vortices generated are not inclined and their growth 

is attributed to the growth in strength of their interaction with the upstream fundamental mode. 

The lambda structures start breaking down once the pair of purely spanwise oriented vortices 

starts to develop at the two front ends. The pair of spanwise oriented vortices coalesce together 

and turn into hairpin vortices, to generate fully turbulent flow. 

 
 

Figure 6-12.  Approximate representation of vortical structures at different instances in time. (A) 

t+ = t
0
 and (B) t+ = t

0
 + 415.75. The shaded grey structures have clockwise rotation 

and the shaded black structures have anticlockwise rotation. 
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Figure 6-13 shows the structures at an instant t+ = t
0
 + 166.3, where the shaded regions 

depict lifting of the flow structures due to pinching effect of the counter-rotating vortices. The 

streamwise velocity perturbations have been represented by dashed arrows in the Figure. The 

arrows are an approximate representation of the streamwise perturbations. The regions between a 

pair of lambda vortices for both the fundamental harmonic and subharmonic modes have the 

perturbation vectors pointing in the streamwise direction which is similar to a Q4 (sweeping) 

event. The region between the legs of individual lambda vortices has the perturbation vectors 

pointing opposite to the streamwise direction which is like a Q2 (bursting) event.  

 
 

Figure 6-13.  Schematic of the vortical structures generated by the actuation depicting the 

direction of streamwise perturbation vector at t+ = t
0
 + 166.3.  

 

 Since the actuator creates different modes, a proper orthogonal decomposition (POD) on 

the velocity flow field is conducted to look at the most energetic modes and the coherent 

structures in the spanwise direction. The POD method was first proposed by Lumley [224] to 



 

108 

study turbulent structures and an in-depth analysis and procedure can be found in Berkooz et al. 

[225]. The snapshot method proposed by Sirovich [226] is used here. Four planes are recorded in 

the transition region corresponding to Re = 450, 500, 550 and 600. A total of N = 132 equally 

spaced snapshots were chosen over a time period of 3 2T  . For details on the POD analysis 

please refer to Appendix A. Figure 6-14 shows the relative energy content for first 13 modes at 

different locations in the transitional region. At Re  550, most of the energy is in the first three 

modes. There is some energy in the fourth and fifth mode at Re = 500 which is not present at 

Re = 550. In the y+ planes, the energy content in the dominant mode is below 20% and the 

second and third dominant modes also have similar as well as significant energy in comparison. 

This can also be seen in the pinch and spread planes. The pinch plane has about 4% more energy 

content than the spread plane.  

 
 

Figure 6-14.  Relative energy content for different modes. Relative energy at different (A) Re 

locations, (B) y+ planes and (C) pinch and spread planes.  

 

 The coherent structures are further investigated by looking at the different modes 

obtained using POD analysis. Figure 6-15 shows the first four modal structures at Re = 450, 

500, 550 and 600. The contours are colored with POD modes for spanwise velocity fluctuations 

and the overlaid vectors are based on the wall-normal and spanwise velocity fluctuation POD 
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modes. The first four modes at Re = 450 show two structures in the spanwise direction and 

wall-normal direction. However, at Re = 500 the second mode shows an additional structure in 

the wall-normal direction. This is due to the formation of the subharmonic lambda vortices 

which begin appearing after Re  480. The influence of subharmonic mode (mode 2) at Re = 

500 appears on the dominant mode at Re = 550. Figure 6-16 shows the streamwise POD modes 

for two y – planes. The subharmonic mode (mode 2) appears closer to the wall. Away from the 

wall, the mode is two-dimensional in nature. This behavior is seen for higher modes also. In 

Figure 6-17, the staggered pattern of the oblique mode in the spanwise fluctuations is clearly 

visible. The positive (solid lines) and negative (dashed lines) fluctuations have a spanwise 

wavenumber same as the actuation and are shifted by a phase angle of 45 degrees.  Unlike the 

streamwise mode, the spanwise modes are not two-dimensional away from the wall at y+ = 100. 

They one order of magnitude lower than the fluctuation modes near the wall. The nonlinear 

effects near the wall from mode 4, increase the wavenumber in the spanwise direction in mode 1. 

6.2.4  Turbulent Statistics 

The mean flow characteristics are plotted for different Re  values to depict the transition 

process from laminar to fully turbulent region in Figure 6-18. At the later stages of transition, the 

log layer region has a lower velocity compared to the fully turbulent region. The Reynolds 

stresses depicted in Figure 6-19 show that the peak streamwise fluctuations, first increases and 

then starts decaying till it reaches fully turbulent region.  
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Figure 6-15.  Relative energy content for different POD modes at different Re  locations. 

 
 

Figure 6-16.  Relative energy content for different streamwise modes along two y - planes.   
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Figure 6-17.  Relative energy content for different spanwise modes along two y - planes.   

 

Like the bypass transition case in Section 5.2, the peak value of total shear stress shown 

in Figure 6-20 does not occur at the wall, but at around 0.03y    or y+ = 12 (see inlay). The 

transition occurs over the region Re = 420 – 780 after which the flow becomes fully turbulent. 

This can be clearly seen in Figure 6-21 (A) for the skin friction. Since the forcing is of large 

magnitude  = 0.1, the flow quickly transitions to turbulence. The shape factor shown in Figure 

6-21 (B) has a value of around 1.38 in the fully turbulent region. The displacement thickness 

plateaus in the later stages of transition while the momentum thickness increases at a higher rate 

as depicted in Figure 6-21 (C). 
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Figure 6-18.  Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re . 

 

 
 

Figure 6-19.  Wall-scaled variation of Reynolds stresses at different Re values. (A) Streamwise, 

(B) wall-normal, (C) spanwise RMS fluctuations and (D) Reynolds shear stress 

variation with inner wall coordinates. 
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Figure 6-20.  Variation of wall-scaled total shear stress and Reynolds shear stress with outer 

coordinates at Re = 1100.  

 
 

Figure 6-21.  Variation of skin friction and integral quantities. Variation of (A) skin friction and 

(B) shape factor with Re and (C) displacement and momentum thickness with Re
x
. 

 

To investigate the growth of fluctuations a growth parameter  is defined as 

    
0

, , , zA x z x y dy 


    (6-3) 

In Eq.  (6-3),  is the variable for which the growth parameter is being evaluated, for example, 

wall-scaled root mean square streamwise velocity fluctuations rmsu  . The growth parameters can 

also be averaged in the homogeneous spanwise direction, but for Figure 6-22 only temporal 

averaging is done to show the differences in the growth parameter for pinch and spread plane.  

A


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The spread plane shows the transition to be at Re
x
  6.5105 based on the streamwise and wall-

normal fluctuation growth as well as Reynolds shear stress growth parameter. However, the 

spanwise fluctuations do not transition up to Re
x
  7105. The spanwise perturbations on the 

spread plane occur when hairpin vortices start forming and interacting with each other in the 

later stages of transition. From close inspection, this can be observed in the u v    growth 

parameter of the spread plane in Figure 6-22 (D) which shows a slope change at Re
x
  7105 

indicative of the flow crossing the transitional region and reaching fully developed turbulence.  

 
 

Figure 6-22.  Variation of growth parameter for pinch and spread planes with Re
x 
. Wall-scaled 

(A) streamwise, (B) wall-normal, (C) spanwise RMS fluctuating component and (D) 

Reynolds shear stress growth parameters. 

 

The skewness, S and kurtosis, K shown in Figure 6-23 are given by  
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Both S and K are plotted at Re = 1100 and compared to experimental data for a flat plate boundary 

layer by Barlow and Johnston [227] and numerical data for channel flow by Kim et al. [228]. The 

data from experimental results correspond to Re = 1100. The results show good agreement with 

the published data. For reference, the normal distribution values for skewness (S = 0) and kurtosis 

(K = 3) are also shown in solid line. The large positive flatness of v  shows the highly intermittent 

nature of fluctuations occurring near the wall.  

 
 

Figure 6-23.  Variation of higher moments of velocity fluctuations with inner wall coordinates at 

Re = 1100. (A) Skewness and (B) Kurtosis compared with published results [227], 

[228] 
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In Figure 6-24, the variation of skewness and kurtosis (flatness) is shown at different 

regions of transition. Closer to the actuation the skewness is negligible near the wall for u  , but 

v   has similar skewness to that of the fully turbulent region. In Figure 6-24 (A), a larger 

skewness near the wall is seen for u   at the later stages of transition where the breakdown of 

lambda vortices occurs (Re  550 to 780) whereas v   has a larger value near the early 

transitional region (Re  450 to 550). The large intermittency shown in the kurtosis plots takes 

place at the later stages of transition which drops down to almost half the value in the fully 

turbulent region. 

 
 

Figure 6-24.  Variation of higher moments of velocity fluctuations with inner wall coordinates at 

different Re  values. Skewness and Kurtosis of (A) and (B) streamwise and (C) and 

(D) wall-normal velocity fluctuations. 

 

 The energy spectrum at different Re values for the y =  * plane is shown in Figure 6-25. 

Please note that the plots are shifted by a factor of 1000 between consecutive Re values and         



 

117 

Re = 500 is at the right scale. The 5/3 slope is also shown with a solid line. The different velocity 

fluctuations in the inertial zone have large differences in energy for the transitional region. For  

Re = 1100  this disappears due to isotropy. The streamwise fluctuations have the highest energy 

compared to the wall-normal and spanwise fluctuations but as Reynolds number increases the 

difference decreases until the inertial region becomes isotropic. 

 
 

Figure 6-25.  The energy spectrum of fluctuating components in the spanwise direction at y =  *.  

 

6.2.5  Modal Analysis   

In Figure 6-26, Figure 6-27 and Figure 6-28 comparison of energy content in different excited 

Fourier components of the normalized streamwise, wall-normal and spanwise fluctuations are 

depicted respectively.  The plots are constructed using twenty one x-planes in the transitional 

region. Discrete Fourier transform of the fluctuations in an x-plane, provides the maximum 

energy component for a specific spanwise mode  . The variation in time of this particular   

mode provides the frequency  . The combination ,   is normalized with the actuator 
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frequency 
0  and wavenumber 

0 2    respectively. The oblique mode corresponds to the 

(1, 1)-mode. The (0, 1)-mode has higher amplitude than the (0, 2)-mode for 5Re 5.25 10x   , 

after which the nonlinear effects add energy to the higher wavenumber modes and causes the 

amplitude of (0, 2), (0, 4), (1, 4), (2, 2), (2, 4) and (3,4)-modes to be higher than 1   modes as 

seen in Figure 6-26. For the wall-normal and spanwise fluctuations shown in Figure 6-27 and 

Figure 6-28 most of the modes have an initial peak at the actuator location after which they start 

decreasing in amplitude. The wall-normal and spanwise fluctuation modes with higher 

wavenumbers  1   start growing after 5Re 4.5 10x   . The amplitudes of the streamwise 

fluctuations modes are an order of magnitude higher than the wall-normal and spanwise 

fluctuation modes for the same  ,  -mode.  

 
 

Figure 6-26.  Comparison of normalized streamwise fluctuation amplitude for different  ,  -

modes.  
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Figure 6-27.  Comparison of normalized wall-normal fluctuation amplitude for different  ,  - 

modes.   

 
 

Figure 6-28.  Comparison of normalized spanwise fluctuation amplitude for different  ,  -

modes.   
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CHAPTER 7 

EFFECT OF ACTUATOR PARAMETERS ON TRANSITION 

7.1  Background 

 Various actuator parameters are investigated here. The parameters include the geometry 

of the actuator, frequency of actuation, the amplitude of actuator perturbation and thermal effects 

of the actuator. All the simulations in this chapter are conducted using the medium or fine mesh 

mentioned in Chapter 6 with all other flow field parameters kept identical. 

7.2  Effect of Geometry 

Three types of geometry for the actuator were tested. These include the standard linear 

SDBD actuator, circular serpentine actuator and the square serpentine actuator [57]. For the 

numerical study, the plasma body force mentioned in Chapter 6 is applied along the line of 

actuation provided in Figure 7-1. For this study   = 0.1 and 0  = 1 kHz. Three-dimensional flow 

field data is depicted with the domain duplicated three times in spanwise direction. The 

simulations here are conducted using the fine mesh. 

 
 

Figure 7-1.  Schematic of the line of actuation for different actuator geometries with force 

vectors.  (A) Linear, (B) circular serpentine and (C) square serpentine actuator. 
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7.2.1  Instantaneous Flow Field 

The flow does not transition to fully developed turbulence for the linear and circular 

serpentine actuator case in the domain size chosen. However, the square serpentine actuator case 

reaches fully turbulent flow. This can be observed in the normalized instantaneous wall-normal 

velocity contours at the middle spanwise plane shown in Figure 7-2. The linear actuator creates 

TS waves which grow with Reynolds number, but they remain coherent and tubular. However, 

for the same forcing amplitude, the square serpentine actuator transitions earlier compared to the 

other actuators. For both the serpentine actuators, the initial contours look similar (elongated 

contour) but due to the difference in strength of the structures generated, the square serpentine 

transitions faster than the circular serpentine actuator geometry.  

 
 

Figure 7-2.  Instantaneous wall-normal velocity contours for different actuators at middle 

spanwise plane showing transition. (A) Linear, (B) circular serpentine and (C) square 

serpentine SDBD actuator. 

 

The y-plane shown in Figure 7-3 depicts the instantaneous positive spanwise vortices for the 

different actuator geometries at y+ = 10 plane. The two-dimensional nature of the vortical 
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structures for the linear actuator can be clearly seen. Although the contours of both the serpentine 

actuators look similar, downstream of the pinch regions is darker (weaker vorticity) for the 

circular serpentine actuator. The oblique waves created by both the serpentine actuators, shown 

in Figure 7-3 with dashed-dotted lines, have similar angles. Therefore, the structures generated 

by serpentine actuators have similar behavior and shape but different magnitudes. 

 
 

Figure 7-3.  Instantaneous spanwise vorticity contours for different actuators at y+ = 10 plane. 

(A) Linear, (B) circular serpentine and (C) square serpentine SDBD actuator. The 

dashed-dotted lines depict the directions of oblique waves. 

 

 

 To visualize the vortical structures, Q – criterion is plotted in Figure 7-4 for the different 

actuator geometries. The linear actuator does not show any streamwise oriented vortices but 

creates one-dimensional spanwise oriented vortices. The serpentine actuators create similar 

vortical structures, however, their strengths are different. Similar ‘X’ like structures have been 

found in the experimental and numerical study of oblique wave transition [174], [179], [221]. 

The lifted nature of the structures is evident by the change in velocity magnitude from the tail to 

the head of the lambda structures. 



 

123 

 
 

Figure 7-4.  Instantaneous Q – criterion (Q = 0.04) iso-surface colored with velocity magnitude 

for different geometries. (A) Linear, (B) circular serpentine and (C) square serpentine 

SDBD actuator. 

 

7.2.2  Turbulent Statistics 

The mean flow velocities for the different geometries are shown in Figure 7-5. The wall-

scaled velocities are plotted at different Rex  values to show the effect of transition. For the linear 

actuator, the velocity profile remains laminar throughout due to which the maximum U   keeps 

increasing due to the decrease in friction velocity. However, after Re
x
 = 7.75105 (Re = 583) 

there is a decrease in maximum U  
+
. This difference is insignificant and the flow is still in early 

stages of transition as can be seen in the momentum thickness shown in Figure 7-6 (A).  The 

circular serpentine stays in the early stages of transition for Re
x
 < 5.87105 (Re = 550) and then 

starts deviating from the laminar behavior. This is also observable in Figure 7-6 (A). The square 

serpentine in comparison to the other actuators quickly reaches fully turbulent flow. 
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Figure 7-5.  Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x
. (A) Linear, (B) circular serpentine and 

(C) square serpentine SDBD actuator. 

 

 The shape factor H, shown in Figure 7-6 (A) stays at a laminar value of 2.65 for the linear 

actuator throughout the domain. There is an initial increase in shape factor at the actuator 

location for the linear actuator, whereas the serpentine actuators show a decrease in shape factor 

at the same location. This is due to the pinching effect of the serpentine actuator which pushes 

the fluid away from the wall and thus increasing the momentum thickness as depicted in Figure 

7-6 (B). The displacement thickness does not show a difference between the actuators at the 

actuation location. At the later stages of transition, both the serpentine actuators have a similar 

slope in shape factor and momentum thickness. However, in the skin friction plots the flow 

transitions at different rates for the serpentine actuators. The serpentine actuators deviate from 

the laminar profile at Re
x
  4.12105 (actuator location) and the later stages of transition start at 

Re
x
  7.75105 for the circular serpentine actuator and Re

x
  6105 for the square serpentine 

actuator.  
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Figure 7-6.  Variation of integral quantities with Re
x
  for linear, circular serpentine and square 

serpentine SDBD actuator. (A) Shape factor, (B) momentum thickness and (C) 

displacement thickness. The solid line represents a laminar solution. 

 
 

Figure 7-7.  Variation of skin friction for linear, circular serpentine and square serpentine SDBD 

actuator. Variation of skin friction with (A) Re and (B) Re
x
. Turbulent skin friction is 

compared with DNS results [209]. 
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 The variation of wall-scaled RMS fluctuations is depicted in Figure 7-8. The linear 

actuator shows a different transition mechanism compared to the serpentine actuators. The 

streamwise fluctuations behave like a fundamental transition mechanism [223], [165] for the 

linear actuator while it behaves similarly to subharmonic transition mechanism [223], [165] for 

the serpentine actuators. The spanwise fluctuations are negligible for the linear actuator case 

since the flow is still in the two-dimensional TS wave region with no spanwise variation. For the 

square serpentine case, the maximum streamwise fluctuations in the transitional region are 

always higher than in the fully turbulent region  2.85rmsu   . This is not the case when the 

transition goes through the linear instability region [223], [165] or weakly nonlinear region 

where the wall-scaled streamwise fluctuations are higher. This can also be observed in the linear 

actuator case where the maximum amplitudes are below 1.5. Although the circular serpentine 

actuator has not reached the fully turbulent region the RMS fluctuations are above 2.85. This is 

mainly attributed to the geometry of the square serpentine actuators which creates strong 

streamwise perturbation and avoids the entire linear instability region. Therefore, this allows the 

serpentine actuators to transition faster compared to the linear actuators with the same amount of 

input perturbations. 

 To investigate the growth of fluctuations, the growth parameter given by Eq.  (6-3) is 

plotted for the Reynolds stresses in Figure 7-9. There is an initial jump at the actuator location 

and a second jump for the serpentine actuation cases indicating highly nonlinear stages of 

transition to turbulence. For the linear actuation case, the streamwise and wall-normal 

fluctuations grow steadily but the domain is not long enough for it to reach fully developed 

turbulence. For the wall-normal and spanwise fluctuation growth, the serpentine actuation cases 

show an abrupt increase in the growth parameter at later stages of transition where it diverges 
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from the linear actuation case. Both the serpentine actuators have similar growth rates (shown by 

dotted lines in wall-normal and spanwise fluctuation growth rate) for wall-normal and spanwise 

fluctuations in this region. The streamwise fluctuation growth parameter for the serpentine 

actuators have similar amplitude and slope in the transitional region as shown in Figure 7-10. 

Interestingly the wall-normal fluctuations for the linear actuation have a higher growth parameter 

than the circular serpentine for the same momentum Reynolds number, in the transitional region. 

Also, right after Re  500 the square serpentine actuator dips in amplitude for the wall-normal 

fluctuation growth parameter compared to the linear actuator and goes back up to similar 

amplitude in the later stages of transition.  

 
 

Figure 7-8.  Variation of wall-scaled RMS velocity fluctuations variation with inner coordinates 

at different Re
x
 values. 
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Figure 7-9.  Variation of growth parameter with Re
x
 for wall-scaled Reynolds stresses. Growth 

parameter of (A) streamwise, (B) wall-normal and (C) spanwise RMS fluctuations 

and (D) Reynolds shear stress. 

 

 
 

Figure 7-10.  Variation of growth parameter with Re in the transitional region for wall-scaled 

Reynolds stresses. Growth parameter of (A) streamwise, (B) wall-normal and (C) 

spanwise RMS fluctuations and (D) Reynolds shear stress. 
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7.3  Effect of Frequency 

To study the impact of frequency of actuation three different frequencies were chosen. 

The frequency 0  in Eq.  (6-2) is set to 500 Hz, 1000 Hz and 2000 Hz which gives a Strouhal 

number of 0.292, 0.584 and 1.168 respectively. These frequencies are chosen because they are 

typical for an SDBD actuator. A case with a continuous signal is also studied. The   value for all 

the cases is set to 0.1. The simulations are performed for the square serpentine actuator using the 

medium mesh given in Table 6-1. All other flow field parameters are kept identical. 

7.3.1  Instantaneous Flow Field 

The continuous signal and the 500 Hz cases do not turbulize in the chosen domain. This 

can be observed in Figure 7-11 and Figure 7-12. The transition occurs earlier for higher 

frequencies since they have lower critical Reynolds number based on the neutral stability curve 

[229]. The oblique structures in the later stages of transition in Figure 7-11 (C) are regions of 

high shear which break down via Kelvin Helmholtz free shear layer instability mechanism. 

These oblique structures are also a characteristic of oblique wave transition and have been 

observed in numerical studies [173]. When comparing streamwise velocities for two different y 

planes in Figure 7-12, it is found that except the continuous signal case all the other cases have a 

similar wavy pattern, created by the fundamental and subharmonic lambda vortices in the 

transitional region. It can also be seen that for both 1 kHz and 2 kHz cases, the lambda vortices 

break down after about three wavelengths. For the 500 Hz, the lambda structures are more 

elongated and have a smaller angle compared to the 1 kHz and 2 kHz cases, which makes them 

weaker and in the far downstream region, it becomes like the continuous signal case. The 

vortical structures are depicted using Q – criterion iso-surface shown in Figure 7-13. The lambda 



 

130 

structures quickly decay for the continuous signal and the spacing between them reduces as the 

frequencies increase. 

 
 

Figure 7-11.  Variation of normalized streamwise velocity for spread and pinch plane. (A) 

Continuous, (B) 500 Hz, (C) 1 kHz, (D) 2 kHz actuation signal. 

 

 
 

Figure 7-12.  Variation of normalized streamwise velocity at different y – planes. (A) 

Continuous, (B) 500 Hz, (C) 1 kHz, (D) 2 kHz actuation signal. 
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Figure 7-13.  Top view of Q – criterion iso-surface at different frequencies. (A) Continuous, (B) 

500 Hz, (C) 1 kHz, (D) 2 kHz actuation signal. The domain is duplicated three times. 

 

7.3.2  Turbulent Statistics 

The turbulent statistics of the 500 Hz, 1 kHz, and 2 kHz are presented in this section for 

comparison. The mean velocity profiles are shown in Figure 7-14. At the lowest Rex  shown in 

the Figure 7-14, the 2 kHz case already shows deviations from the laminar behavior due to which 

the transitional region is extremely short. The shape factor shown in Figure 7-15 (A) shows the 

transitional region for the 1 kHz case ends around Re
x
 = 6.75105 while for the 2 kHz case it 

ends around Re
x
 = 5.5105. In the turbulent region, the shape factor converges to a value to 1.38 

for both the 1 kHz and 2 kHz cases. There is a slight reduction from the laminar shape factor for 

the 500 Hz case due to boundary layer thickening in the pinch region. The momentum and 

displacement thickness also show similar behavior. Both 1 kHz and 2 kHz cases have a similar 

slope in shape factor and momentum thickness in the later stages of transition as well as in the 

turbulent region. 
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Figure 7-14.  Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x
. (A) 500 Hz, (B) 1 kHz and (C) 2 kHz 

signal. 

 
 

Figure 7-15.  Variation of integral quantities with Re
x
 at different frequencies for the square 

serpentine SDBD actuator. (A) Shape factor, (B) momentum thickness and (C) 

displacement thickness. The solid line represents the laminar solution. 
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 The skin friction plots shown in Figure 7-16 show the difference in location of transition 

to turbulence when the frequency of perturbation is varied. The overshoot in skin friction before 

the flow becomes fully turbulent is lower for the 2 kHz case when plotted against Rex
 but it 

becomes comparable for similar Re 
. Both the 1 kHz and 2 kHz cases converge to the published 

turbulent skin friction data [209]. The wall-scaled RMS fluctuations are shown in Figure 7-17. 

For the 2 kHz case, the fluctuations show fully developed turbulent profile for   Re
x
  5.87105.   

 
 

Figure 7-16.  Variation of skin friction for different frequencies of actuation of the square 

serpentine actuator. Variation of skin friction with (A) Re and (B) Re
x
. Turbulent 

skin friction is compared with DNS results [209]. 
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Figure 7-17.  Variation of wall-scaled RMS velocity fluctuations with inner coordinates at 

different Re
x
 values. Please refer to Figure 7-14 for the legend. 

 

The growth parameters for the fluctuating components are plotted in Figure 7-18 and 

Figure 7-19. The growth parameters for streamwise fluctuations have similar amplitude for all 

the three cases however they have different slopes when plotted against Re 
. The 500 Hz case 

has growth only in the streamwise fluctuations which inhibits the transition to turbulence. Both 

the 1 kHz and 2 kHz cases show similar growth rate in the later stages of transition. 



 

135 

 
 

Figure 7-18.  Variation of growth parameter with Re
x 
 for wall-scaled Reynolds stresses. Growth 

parameter of (A) streamwise, (B) wall-normal and (C) spanwise RMS fluctuations 

and (D) Reynolds shear stress. 

 
 

Figure 7-19.  Variation of growth parameter with Re 
 in the transitional region for wall-scaled 

Reynolds stresses. Growth parameter of (A) streamwise, (B) wall-normal and (C) 

spanwise RMS fluctuations and (D) Reynolds shear stress. 
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7.4  Effect of Amplitude 

 The effect of forcing amplitude is investigated for three velocity ratios namely,   = 0.05, 

0.10 and 0.14. The perturbation frequency was kept constant at 1 kHz. It should be noted that the 

velocity ratio also relates to the amplitude of perturbation through Figure 6-5. From an 

experimental point of view, this is related to the fourth power of potential difference [74] across 

the electrodes. This test is only performed for the square serpentine actuator. The medium mesh 

given in Table 6-1 is used for this study.  

7.4.1  Instantaneous Flow Field 

The vortical structures created using different velocity ratios are depicted using 

instantaneous Q – criterion iso-surface in Figure 7-20.The initial effect of the serpentine actuator 

is similar for all the velocity ratios where it creates streamwise oriented vortices. However, for  

= 0.05 these structures dissipate quickly. The cases with  = 0.10 and 0.14 have similar behavior 

in the later stages of transition. The structures are weaker at lower velocity ratios. Interestingly, 

new vortical structures appear downstream of the  = 0.05 case. These vortices have spanwise 

orientation and also vary in strength in the spanwise direction. This variation has the same 

wavenumber as the initial upstream region. The elongated structures upstream get compressed 

into globular shapes which reduces their streamwise extent and increases the spanwise width. 

 
 

Figure 7-20.  Iso-surface of instantaneous normalized Q - criterion (Q = 0.01) at different 

velocity ratios. Velocity ratio of (A) 0.05, (B) 0.10 and (C) 0.14. 
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The streaklines depicted in Figure 7-21 show that the  = 0.05 case loses its wavy nature 

and the low-speed streaklines keep getting thinner downstream. The two-dimensional nature of 

these structures can be seen in the wall pressure contours shown in Figure 7-22. The wall 

pressure grows in strength in streamwise direction but decreases spanwise variation. 

 
 

Figure 7-21.  Instantaneous velocity streaklines at different velocity ratios. Velocity ratio of (A) 

0.05, (B) 0.10 and (C) 0.14. 

 
 

Figure 7-22.  Instantaneous wall pressure at different velocity ratios. Velocity ratio of (A) 0.05, 

(B) 0.10 and (C) 0.14. 
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7.4.2  Turbulent Statistics 

The mean velocity profiles at different Re
x 
locations are plotted in Figure 7-23. The 

gradual decrease in friction velocity keeps increasing the maximum U 
+
 for the  = 0.05 case and 

the flow remains laminar for the entire domain. The short transition region for the  = 0.14 case 

shows that the flow shows a fully developed turbulent profile at Re 
= 6.95105. 

 
 

Figure 7-23.  Time and span averaged mean velocity profile variation with inner coordinates 

scaled with wall parameters at different Re
x 
. Velocity ratio of (A) 0.05, (B) 0.10 and 

(C) 0.14. 

 

 To determine the location where the transition ends skin friction variation is plotted in 

Figure 7-24. Due to similar behavior between the  = 0.10 and 0.14 cases, the skin friction 

collapses to similar values when plotted against Re
x 
. The   = 0.05 shows a laminar profile 

throughout the domain without any deviation. Although the skin friction shows an overshoot for 

the   = 0.10 and 0.14 cases it finally matches with the fully developed turbulent profile. The 

integral quantities shown in Figure 7-25 also provide similar observations. 
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Figure 7-24.  Variation of skin friction at different velocity ratios. Variation of skin friction with 

(A) Re
x 
and (B) Re 

. Turbulent skin friction is compared to published data [209]. 

 
 

Figure 7-25.  Variation of integral quantities with Reynolds number for different velocity ratios. 

(A) Shape factor, (B) momentum thickness and (C) displacement thickness. The solid 

line represents the laminar solution. 
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 The velocity fluctuations shown in Figure 7-26 are relatively similar in behavior for the 

higher velocity ratio cases. The spanwise fluctuations for the  = 0.05 case show two peaks. 

Also, while the streamwise and wall-normal fluctuations steadily grow in magnitude, the 

spanwise fluctuations first drop abruptly and then start gradually increasing. This behavior of 

dual peaks has been reported to be an optimal initial perturbation in spanwise direction for the 

wavenumber at maximum amplification [230]. Therefore, due to the gradual increase in 

perturbation in the downstream region along with the optimal perturbation behavior, it can be 

concluded that the flow will turbulize at a further downstream location. 

 
 

Figure 7-26.  Variation of wall-scaled RMS velocity fluctuations with inner coordinates at 

different Re
x
 values. Please refer to Figure 7-23 for line legend.  

 



 

141 

 The growth parameter is depicted in Figure 7-27. The variation of growth parameter for 

the streamwise oscillations shows that the growth rates gradually increase as velocity ratio 

increases. After the initial increase in spanwise fluctuation growth parameter for  = 0.05 at the 

actuator location, the growth parameter reaches a maximum around Re 
  470 and then starts 

dropping until Re 
  540. Finally, the growth parameter shows a gradual increase.  This behavior 

was not found in the transitional region for any of the other cases wherein, the spanwise growth 

parameter either monotonically increased or decreased after the actuator location. The second 

jump seen in the growth parameter for  = 0.10 corresponds to the final transitional stage where 

the skin friction abruptly rises. 

 
 

Figure 7-27.  Variation of growth parameter for fluctuations and Reynolds stress with Re 
. 

Growth parameter of (A) streamwise, (B) wall-normal and (C) spanwise RMS 

fluctuations and (D) Reynolds shear stress. 
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7.5  Thermal Effects 

 Although SDBD actuators operate in the cold plasma regime, the surface of the dielectric 

material gets heated up [94], [231], [232]. Temperatures have been shown to reach up to 200 C 

for some dielectrics [232]. A lot of factors impact the surface temperature including operating 

voltage, frequency, and dielectric material. IR measurements on comb serpentine actuators 

showed temperatures of around 50 C at locations with high plasma concentration [94]. 

Therefore, the impact of actuator temperature on the transitional flow was investigated using an 

approximate heating element applied as a thermal boundary condition. This analysis was done 

using the fine mesh given in Table 6-1. Three temperatures were tested with the actuator 

temperature T
A
 shown in Figure 7-28 at 273 K, 323 K and 373 K. The heating element is applied 

as a boundary condition only in the pinch location since it has the maximum concentration of 

plasma. The temperature is uniform across the square heating element and it spans a wall-scaled 

distance of 252 units in streamwise and spanwise direction with the center coinciding with the 

pinch region center. 

 
 

Figure 7-28.  Schematic of the heating element applied at the pinch location of the actuator. 
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7.5.1  Instantaneous Flow Field 

The heating element does not show a significant impact on the flow field for the current 

Mach number. This can be observed in the Q – criterion plotted in Figure 7-29. Only local 

effects can be seen at the actuator location. However, at the later stages of transition, the 

structures have different behavior as shown in Figure 7-30. Adding heat lifts the hairpin 

structures formed at the later stages of transition further away from the wall. The vortical 

structures are almost indistinguishable up to Re
x 
  5.9105 and then the differences start 

appearing. Since the hairpin structures are more lifted at higher temperatures, they tend to break 

down faster as observed in the velocity streaklines shown in Figure 7-31. It should be noted that 

since the flow regime is weakly compressible, the temperature effects might not be affecting the 

flow in the transitional region where the temperature effects have not amplified enough to be 

observed. Wall heating is known to significantly impact the streamwise vortical structures as 

well as flow instability [233], [234]. However, these studies involve uniform or non-uniform 

heating of the entire plate. The effect of localized heating is observed in supersonic flows [235] 

where it can create localized shocks which interact and manipulate the boundary layer. 

 
 

Figure 7-29.  Instantaneous normalized Q – criterion for different heating element temperatures. 

The temperature of the heating element at (A) 273 K, (B) 323 K and (C) 373 K. 
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 The impact of temperature on the velocity streaklines at y+ = 10 plane is shown in Figure 

7-31. Although no discernable difference is seen in the transitional region, large differences are 

observed for the turbulent region. At higher temperatures, the streaklines in the region             

Re
x
  7105 to 7.7105 appear to have broken down into smaller structures with higher spanwise 

wavenumbers. Therefore, even though the temperature has an insignificant impact on the 

transitional region, it does impact the flow structures in the turbulent region. The high 

temperatures of the heating element dissipate over the transitional region and reach similar 

magnitudes in the turbulent region for all the cases as shown in Figure 7-32. 

 
 

Figure 7-30.  Instantaneous normalized Q – criterion for different heating element temperatures 

at later stages of transition. The regions between the vertical red lines mark the region 

for each case. 
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Figure 7-31.  Instantaneous velocity streaklines for different heating element temperatures at y+ = 

10. The temperature of the heating element at (A) 273 K, (B) 323 K and (C) 373 K. 

 
 

Figure 7-32.  Instantaneous temperature contours for different heating element temperatures at y+ 

= 10. The temperature of the heating element at (A) 273 K, (B) 323 K and (C) 373 K. 

 

7.5.2  Turbulent Statistics 

To assess the impact of the heating element, mean flow properties, as well as fluctuation 

profiles, are investigated. Lee et al. [234] showed that uniform wall heating reduced skin friction 
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by almost 26%. This behavior was however not observed for localized wall heating as shown in 

Figure 7-33. The impact is mainly in the later stages of transition as observed in Figure 7-30. The 

mean velocity profiles are compared for the three temperature cases at the later transitional 

region in Figure 7-34. The heating element shows no impact on the mean velocity at Re 
 = 700 

as well as in the fully developed turbulent region (Re 
 = 1000). The variations due to heating are 

observed in the log layer due to differences in friction velocity at Re 
 = 775 and 850. Since this 

difference is over a very small region, the impact on the overall flow remains insignificant.  

 
 

Figure 7-33.  Variation of skin friction at different heating element temperatures. Variation of 

skin friction with (A) Re
x 
and (B) Re 

. Turbulent skin friction is compared to 

published data [209]. 

 

The temperature profiles are shown in Figure 7-35. Overall temperature variations (~ 3%) 

are negligible since the flow is weakly compressible. The effect of localized wall heating 

increases the wall temperature for the entire domain. Interestingly, wall temperature of the 323 K 
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case slowly deviates from the 273 K case and gets aligned with the 373 K case. The variations in 

the log layer dissipate due to mixing as Re 
 increases and the variations only remain in y+ < 10.  

 
 

Figure 7-34.  Variation of mean velocity profiles for different heating element temperatures and 

Reynolds numbers. Variation of (A) mean velocity with outer coordinates and (B) 

wall-scaled mean velocity (velocities are successively shifted by 5 units, with the 

green curves at the right scale) with inner coordinates.  

 
 

Figure 7-35.  Variation of mean temperature profiles at different heating element temperatures 

and Reynolds numbers. Variation of mean temperature (A) with outer coordinates and 

(B) inner coordinates. The temperatures are successively shifted by 0.01 units for 

better depiction, with the green curves at the right scale.  
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 The comparisons of the fluctuating components and Reynolds shear stress at the later 

stages of transition are depicted in Figure 7-36. The streamwise fluctuating components show 

almost insignificant impact due to localized heating. However, significant differences are 

observed for wall-normal and spanwise fluctuations. The maximum impact due to heating is on 

the Reynolds shear stress where the curves shift more towards the wall. This indicates better 

mixing and transfer of energy from the inner region to the outer region of the boundary layer. 

 
 

Figure 7-36.  Variation of wall-scaled RMS fluctuations and Reynolds shear stress at different 

heating element temperatures and Reynolds number. Variation of wall-scaled RMS 

fluctuations and Reynolds shear stress with (A) outer coordinates and (B) inner 

coordinates. Please refer to Figure 7-34 for line legend.  
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 The growth parameter in Figure 7-37 shows small variations in the wall-normal growth. 

These variations are absent in the streamwise, spanwise and Reynolds shear stress growth 

parameter. The impact on the difference in growth of Reynolds shear stress is not evident here 

since the Reynolds shear stress only shifts towards the wall. However, the changes seen in the 

growth of wall-normal fluctuations impact the Reynolds stress as seen in Figure 7-36. 

 
 

Figure 7-37.  Variation of wall-scaled RMS fluctuations and Reynolds shear stress growth 

parameter with Reynolds number for different heating element temperatures. Growth 

parameter of (A) streamwise, (B) wall-normal and (C) spanwise RMS fluctuations 

and (D) Reynolds shear stress.  
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CHAPTER 8 

COLLOCATION OF ACTUATORS 

8.1  Background 

 Most plasma flow control applications involve a single actuator or an array of actuators 

being placed along the spanwise direction [80], [236], [237]. Experimental study on the impact 

of actuators placed with streamwise separation has also shown a delay in transition [214], [238]. 

Grundmann and Tropea [214] used two sets of steady operating plasma actuators to damp TS 

waves created by a plasma actuator acting as a tripping mechanism. They showed a reduction in 

freestream disturbances by almost 50%. They further studied the impact of pulsed actuation on 

TS waves [238] and found similar reduction using only 12% of the power consumed compared 

to the steady operation. Barckmann et al. [239] used four sets of cascaded arrays of spanwise 

oriented actuators along the streamwise direction. They showed the capability of using these 

actuators to actively energize the streamwise streaks. The approach here involves, the use of a 

pair of square serpentine actuators to manipulate the laminar flow to delay or advance the 

transition to turbulence. Plasma actuators can be operated in both co-flow and counter-flow 

orientations, where the latter has been shown to always increase the TS wave amplitudes [240]. 

Therefore, effects of actuator orientations, as well as locations, are investigated. 

8.2  Tripping Actuator Configurations 

 In order to operate the actuators in co-flow and counter-flow arrangement with the pinch 

plane at the center of the plate, the square serpentine actuators are setup as shown in Figure 8-1. 

Both the actuators are run with the same conditions of 0  = 1 kHz and  = 0.10. All the flow 

field conditions are kept same as the conditions for the M = 0.5 square serpentine cases given in 

Chapter 6. The medium mesh case given in Table 6-1 is used to compare the co-flow and counter 

flow tripping configurations. These two configurations were tested to find whether they generate 
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different vortical structures or have similar behavior. Since counter-flow configurations are 

known to be more unstable than their co-flow counterpart [240], it is expected that the flow will 

turbulize faster in the counter-flow arrangement. 

 
 

Figure 8-1.  Schematic of actuators for co-flow and counter-flow orientations with arrows 

depicting force direction.  

 

8.2.1  Impact on Instantaneous Flow Field 

Looking at the instantaneous vortical structures shown by Q – criterion iso-surface in 

Figure 8-2, it is clear that both the arrangements create similar quasi-streamwise vortical 

structures. However, there are differences in strength of the vortices in the early stages of 

transition as well as the shape of structures in the later stages of transition between the counter-

flow and co-flow arrangement. The structures formed in the early stages of transition have longer 

relative streamwise extent for the counter-flow arrangement since the vortices are stronger and 

do not dissipate as quickly as the co-flow case. Since the later stages of transition are highly 

nonlinear and dependent on the forcing mechanism, large differences in flow structures are 

observed in the Q – criterion iso-surface depicted in Figure 8-3. It shows that the hairpin 
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structures are formed early (Re
x
  5.35105) for the counter-flow case. The two configurations 

show similar behavior after Re
x
  6.1105.  

 
 

Figure 8-2.  Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity. Actuator in (A) counter-flow and (B) co-flow arrangement. 

 
 

Figure 8-3.  Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity at the later stage of transitional region. Actuator in (A) counter-

flow and (B) co-flow arrangement. 
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 The streaklines shown in Figure 8-4 clearly depict the difference in strength of the 

streamwise vortices. The difference in value between the low-speed and high-speed streaklines is 

amplified for the counter-flow arrangement.  

 
 

Figure 8-4.  Instantaneous normalized streamwise velocity streaklines at y+ = 10 plane. Actuator 

in (A) counter-flow and (B) co-flow arrangement. 

 

8.2.2  Impact on Mean Flow 

The skin friction comparison shown in Figure 8-5 shows minor differences between the 

two configurations. The counter-flow transitions at an earlier location but the difference is 

insignificant. Even the integral quantities shown in Figure 8-6 provide a similar picture of the 

transition location. The impact of configuration is negligible on the displacement thickness. 

However, compared to a laminar Blasius profile, the counter-flow arrangement increases the 

shape factor since it reduces the momentum in the boundary layer, while co-flow reduces shape 

factor due to increase in momentum. For the fully turbulent flow field, both arrangements reach a 

value of 1.38 for the shape factor. Looking at all the instantaneous structures and the integral 

quantities, it can be concluded that the counter-flow arrangement turbulizes the flow faster than 

the co-flow arrangement for the same input perturbation. However, both the arrangements have a 

similar footprint and exhibit transient growth, which is the property of oblique wave transition. 
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Figure 8-5.  Variation of skin friction for different tripping actuator configuration. Variation of 

skin friction with (A) Re
x
 and (B) Re 

. Turbulent skin friction is compared to 

published data [209]. 

 
 

Figure 8-6.  Variation of integral quantities with Reynolds number for different tripping actuator 

configuration. (A) Shape factor, (B) momentum thickness and (C) displacement 

thickness. The dotted line represents a laminar solution. 
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8.3  Actuator Collocation 

 Since counter-flow and co-flow arrangements of the tripping actuator do not 

fundamentally change the nature of the transition, from here on the co-flow arrangement will be 

used as the tripping actuator. A second actuator placed downstream of the tripping actuator is 

introduced and is called the control actuator. The control actuator is placed in different 

orientations and locations to investigate its impact on the transitional flow.  The different control 

actuator orientations are shown in Figure 8-7. For cases A and D, the tripping and control 

actuators have the pinch location aligned with each other while for cases B and C, the control 

actuator has the spreading region aligned with the pinch region of the tripping actuator. Also for 

cases A and B the control actuator has a co-flow arrangement while for cases C and D, it has a 

counter-flow arrangement. The distance in wall units between the tripping and control actuator is 

given by LA which has a value of 2500 for all the cases. For case B, three values of LA are 

studied, viz., 2500, 5000 and 7500.  

 
 

Figure 8-7.  Schematic of various control actuator configurations showing the distance between 

the tripping and control actuator. The shaded grey regions are the pinching region of 

the actuators and the arrows show the actuator force direction. 
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In a generalized transitional flow, the turbulent low-speed streak locations are random. 

Serpentine actuators such as spanwise array actuators [80] can bundle the streaklines in a 

predictable arrangement, allowing a control actuator to selectively manipulate them. Therefore, it 

is assumed that the tripping actuator shown in Figure 8-7 will bundle the incoming random 

streaklines, which can then be manipulated by the control actuator to control transition. 

 

8.3.1  Effect of Actuator Configuration   

Instantaneous structures: To compare the impact of actuator orientation on the vortical 

structures, Q – criterion iso-surface is plotted in Figure 8-8. The control actuators placed in 

counter-flow arrangement are colored red. The control actuator is placed at LA = 2500. For cases 

A and D, the pinch planes are aligned for the tripping and control actuator which causes the 

strengthening of vortical structures downstream of the control actuator. Since for case D, the 

control actuator is placed in a counter-flow arrangement, it has a higher impact on the structures 

than case A. However, as discussed earlier the difference in arrangement does not impact the 

solution significantly. Both case A and case D advance the transition to turbulence by adding 

energy to both the fundamental and subharmonic mode lambda vortices.  

The maximum impact on the flow is observed for case B. Although case C shows a 

significant impact, it delays the transition by a similar amount as the cases A and D advance the 

transition as observed in Figure 8-8. Both cases B and C have the pinch location of the control 

actuator aligned with the spread location of the tripping actuator and vice versa. Unlike cases A 

and D, cases B and C reduce the strength of the fundamental lambda vortices but increase the 

strength of subharmonic vortices. The transition still occurs through the similar process 

described in Chapter 6 where the front ends of the subharmonic lambda vortices interact with the 
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tail end of the lambda vortices to create the hairpin structures. However, irrespective of the 

control actuator orientation, the transitioning of the flow is still faster at the pinch plane versus 

the spread plane of the tripping actuator.  

 

 
 

Figure 8-8.  Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with the 

normalized streamwise velocity with the control actuator placed at LA = 2500. (A) 

Baseline, (B) case A, (C) case B, (D) case C and (E) case D. The counter-flow 

actuators are colored red and domain is duplicated three times. 

 

 The streamwise velocity contours for y+ = 25 plane depicted in Figure 8-9 show the 

impact of control actuator on the spanwise and streamwise variation of streaklines. The counter-

flow actuators are colored in white. For cases A and D, the region downstream of the pinch 

location of the tripping actuator remains at lower velocity (lower velocity streaklines) than the 

spread region (higher velocity streaklines) even after the application of the control actuator. 
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However, cases B and C show an additional low-speed streak which reduces the spanwise 

thickness of the low-velocity regions downstream of the pinch region for the tripping actuator. 

The wavy streak pattern representative of an oblique wave transition still governs the transition 

mechanism. At a higher y plane shown in Figure 8-10, the strengthened (darker gray) 

fundamental and subharmonic lambda vortices after the control actuator are clearly visible. For 

cases B and C, the lambda structures observed in the other case within the region Re
x
 = 5105 to 

5.5105, have increased in number but reduced in strength.  

 

 
 

Figure 8-9.  Instantaneous streamwise velocity with the control actuator placed at LA = 2500 

showing velocity streaklines at y+ = 25. (A) Baseline, (B) case A, (C) case B, (D) case 

C and (E) case D. The counter-flow actuators are colored white. 
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Figure 8-10.  Instantaneous streamwise velocity with the control actuator placed at LA = 2500 

showing velocity streaklines at y+ = 30. (A) Baseline, (B) case A, (C) case B, (D) case 

C and (E) case D. The counter-flow actuators are colored white. 

 

 The wall-normal and spanwise fluctuations depicted in Figure 8-11 and Figure 8-12 show 

that for case A and case D there is more turbulent mixing due to a significant increase in the 

spanwise fluctuations compared to the baseline case. For case B, the fluctuations are negligible 

in comparison and do not appear in the depicted range. For case A and D in Figure 8-11, the 

wall-normal fluctuations begin from Re
x
  5.4105 and in Figure 8-12, the spanwise fluctuations 

begin from Re
x
  6.2105. However, these two locations for baseline case are larger showing that 

the flow takes longer to become fully developed. 
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Figure 8-11.  Instantaneous wall-normal fluctuating velocity contours at mid z plane with the 

control actuator placed at LA = 2500. (A) Baseline, (B) case A, (C) case B, (D) case C 

and (E) case D. 

 
 

Figure 8-12.  Instantaneous spanwise fluctuating velocity contours at mid z plane with the 

control actuator placed at LA = 2500. (A) Baseline, (B) case A, (C) case B, (D) case C 

and (E) case D.  

 

 Turbulent statistics: The effect on transition location due to the actuator configuration is 

shown by the skin friction plots depicted in Figure 8-13. The transition location is highly 

dependent on the control actuator configuration. For cases A, C and D the difference in transition 

location compared to the baseline are similar when plotted against Re
x 
. Case B does not 

transition to fully developed turbulence. From Figure 8-13 (B), case A and D have similar skin 

friction as the baseline case for the same Re  values.  Interestingly, all the cases show lower skin 
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friction than the baseline case in the fully developed turbulence region after the skin friction 

overshoot.  

 
 

Figure 8-13.  Variation of skin friction for different control actuator configuration. Variation of 

skin friction with (A) Re
x
 and (B) Re . Turbulent skin friction is compared to 

published data [209]. 

 

 The comparison of mean velocity profiles at different locations in the transitional region 

of the plate is depicted in Figure 8-14. The control actuator for case D impacts the boundary 

layer at Re = 450 since it has the highest growth in boundary layer thickness. This allows it to 

have a similar momentum thickness at an earlier location compared to the baseline case. Similar 

behavior is seen for case A. For case B and C which have relatively low friction velocity show 

large U+ values. From Figure 8-14 (B), for case B and C, the control actuator pushes the higher 

velocity structures away from the wall while cases A and D pull them closer to the wall. 
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Figure 8-14.  Variation of mean velocity profiles for different actuator configuration and 

Reynolds number. Variation of (A) wall-scaled mean velocity with inner coordinates 

and (B) mean velocity with outer coordinates. U 
+
 is successively shifted by 5 units 

and U U  by 0.5 units with the black curves at the right scale.  

 

 The integral quantities shown in Figure 8-15 provide the impact of actuator configuration 

on the transition to turbulence. For both case A and case D the integral quantities almost overlap 

with each other, confirming that cases A and D do not have a significant difference in impact on 

the transition. However, for cases B and C, the counter-flow arranged control actuator (case C) in 

comparison to the co-flow arranged control actuator (case B) has a significant difference in 

impact on the transition. In the momentum thickness plots shown in Figure 8-15, the point after 

which the thickness abruptly deviates from the laminar profile indicates the onset of nonlinearity 

before the flow becomes fully turbulent. For cases A and D this location is around Re
x
  5.5105 

and for case C it is Re
x
  7105. For the case B, this location is difficult to determine, since the 

flow does not transition to fully developed turbulence in the chosen domain. 
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Figure 8-15.  Variation of integral quantities with Reynolds number for different control actuator 

configuration. (A) Shape factor, (B) momentum thickness and (C) displacement 

thickness. The solid line represents a laminar solution. 

 

 The growth parameter given in Eq.  (6-3) is plotted for the fluctuations and Reynolds 

shear stress for different cases in Figure 8-16 and Figure 8-17. Cases A and D have higher 

growth rates than the baseline case and the growth rates are lower than the baseline for case B 

and C. In Figure 8-16, the Reynolds shear stress is decreased by almost two orders of magnitude 

for case B. The growth rate bifurcates at the control actuator location, which is clearly seen in the 

streamwise fluctuation growth in Figure 8-17. Although the wall-normal growth shows a change 

in the rate at Re
x
  7105, the spanwise fluctuations change the rate at Re

x
  7.6105. This 

behavior was also observed in the growth rates of pinch and spread plane for the baseline case in 

Figure 6-22.  
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Figure 8-16.  Variation of growth parameter with Re for wall-scaled fluctuations and Reynolds 

shear stress. Growth parameter of (A) streamwise, (B) wall-normal and (C) spanwise 

RMS fluctuations and (D) Reynolds shear stress. 

 
 

Figure 8-17.  Variation of growth parameter with Re
x
 in transitional region for wall-scaled 

fluctuations and Reynolds shear stress. Growth parameter of (A) streamwise, (B) 

wall-normal and (C) spanwise RMS fluctuations and (D) Reynolds shear stress. For 

the line legend refer to Figure 8-16. 
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 The Reynolds stress budget terms given by Eq.  (5-8) are shown in Figure 8-18,       

Figure 8-19, Figure 8-20 and Figure 8-21. It should be noted that the terms are scaled using 

freestream conditions to have a better relative magnitude comparison. The production rate 

plotted in Figure 8-18 shows that the turbulent production is higher for case D than case A for 

the entire transitional region and is lower after the skin friction overshoot where the flow 

becomes fully developed. The baseline case has a higher production rate than case A and case D 

in the fully developed turbulent region. Cases B and C show a gradual increase in production 

rate. In the fully developed turbulent region for cases A and case D, the production rate peaks at             

y  0.2 * and the maximum production is observed around Re
x
  6.41105. Similar behavior is 

seen for production rate when compared at same Re values in Figure 8-19.  

 
 

Figure 8-18.  Variation of 2u  production rate at various Re
x
 locations in the transitional region 

for different control actuator configuration. 
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Figure 8-19.  Variation of 2u  production rate at various Re  locations in the transitional region 

for different control actuator configuration. For line legend, refer to Figure 8-18. 

 

 The turbulent dissipation rate, as well as viscous diffusion rate, are shown in Figure 8-19 

and Figure 8-20 respectively. Similar trends are observed in comparison to the production rate. 

However, peak dissipation and diffusion for case A and case D does not occur around              

Re
x
 = 6.41105 and rather occurs around Re

x
 = 5.87105. This is at a slightly earlier location to 

the peak skin friction location. The production rate peaks at the maximum skin friction location. 

After the dissipation and diffusion rates reach their maximum values, they start dropping. This 

behavior is also observed for the baseline case where the peak production rate occurs at the 

maximum skin friction location and the peak dissipation and diffusion occurs at a  slightly 

earlier location to the peak skin friction location. 
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Figure 8-20.  Variation of 2u  dissipation rate at various Re
x
 locations in the transitional region 

for different control actuator configuration. For the line legend, refer to Figure 8-18. 

 
 

Figure 8-21.  Variation of 2u  diffusion rate at various Re
x
 locations in the transitional region for 

different control actuator configuration. For the line legend, refer to Figure 8-18. 
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  Therefore, the control actuator placed in an arrangement where its pinch planes align with 

the tripping actuator pinch planes, will enhance turbulent mixing as well as advance the 

transition to turbulence. When the control actuator is placed in an arrangement where its pinch 

planes align with the tripping actuator pinch planes, it will suppress turbulent mixing and delay 

transition.  

 

8.3.2  Effect of Control Actuator Location 

From the control actuator configuration study, case B has the maximum impact on the 

boundary layer. Therefore, to investigate further, the location of control actuator specifically for 

case B is tested. As mentioned earlier three locations of the control actuator are studied, namely 

LA = 2500, 5000 and 7500. Based on the baseline flow, these locations correspond to  

Re
x
 = 4.65  105 (Re = 460), 5.17  105 (Re = 490) and 5.7  105 (Re = 545). 

 
 

Figure 8-22.  Instantaneous normalized Q – criterion (Q = 0.1) iso-surface colored with 

streamwise velocity for case B. (A) Baseline and the control actuator placed at (B) LA 

= 2500 (C) LA = 5000 and (D) LA = 7500. The domain is duplicated three times. 
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Instantaneous structures: The Q –criterion iso-surface depicted in Figure 8-22 shows 

that the transition control by the control actuator is very sensitive to its location. The impact of 

control actuator on the transition to turbulence becomes negligible when the actuators are placed 

beyond LA = 5000. Although the vortical structures are different at the later stages of transition 

for LA = 5000 case, the fully developed turbulence starts at the same location as the baseline case. 

From Figure 8-23 it is evident that the incoming lambda structures for the control actuator cannot 

be significantly altered after the strength of subharmonic vortical structures has reached a 

threshold amplitude.   

 
 

Figure 8-23.  Instantaneous streamwise velocity streaklines at y+ = 30 with the control actuator 

placed at different locations. (A) Baseline and the control actuator placed at (B) LA = 

2500 (C) LA = 5000 and (D) LA = 7500. 

 

 Looking at the wall-normal velocity fluctuations in Figure 8-24, both LA = 5000 and 7500 

do not have any significant impact compared to the baseline case. However, significant 
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differences in spanwise fluctuations can be observed in Figure 8-25. Placing the control actuator 

at LA = 5000 significantly increases the spanwise fluctuations indicating better mixing. When the 

control actuator is placed at LA = 7500, the spanwise fluctuations increase compared to the 

baseline case, but they decrease compared to the case where control actuator is placed at  

LA = 5000. For the location LA = 2500, spanwise fluctuations are negligible in comparison and do 

not appear in the depicted range.  

 
 

Figure 8-24.  Instantaneous wall-normal velocity fluctuations at mid z plane with the control 

actuator placed at different locations. (A) Baseline and the control actuator placed at 

(B) LA = 2500 (C) LA = 5000 and (D) LA = 7500. 

 
 

Figure 8-25.  Instantaneous spanwise velocity fluctuations at mid z plane with the control 

actuator placed at different locations. (A) Baseline and the control actuator placed at 

(B) LA = 2500 (C) LA = 5000 and (D) LA = 7500. 
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 Turbulent statistics: The skin friction plots in Figure 8-26 show that unlike LA = 2500, 

both LA = 5000 and 7500 have no significant difference compared to the baseline case for the 

entire transitional region. For LA = 5000, there is a reduction in skin friction in the fully 

developed turbulent region. This behavior indicates that although the transitional region is not 

affected, the impact of control actuator can extend to a further downstream region.   

 
 

Figure 8-26.  Variation of skin friction for different control actuator locations. Variation of skin 

friction with (A) Re
x
 and (B) Re . Turbulent skin friction is compared to published 

data [209]. 

 

 The mean velocity profiles are plotted in Figure 8-27 with inner and outer coordinates. 

The wall-scaled mean velocity shows large deviations from the baseline case at Re
x
 = 5.87105 

for all the control actuator locations. At Re = 550, control actuator at LA = 5000 shows a 

significant impact on the wall-scaled mean velocity profile. This behavior is not evident from 

Figure 8-27 (C) where the mean velocity is scaled with freestream velocity. This implies that 
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although skin friction plots in Figure 8-26 did not show significant changes in the transitional 

region for LA = 5000 and 7500, minor changes in friction velocity can alter the log layer and 

wake region wall-scaled mean velocity profiles. 

 
 

Figure 8-27.  Variation of mean velocity profiles for different control actuator locations. 

Variation of (A) wall-scaled mean velocity with inner coordinates at different Re
x
 , 

(B) wall-scaled mean velocity with inner coordinates at different Re and (C) mean 

velocity with outer coordinates (U U  is successively shifted by 0.5 units with the 

red curves at the right scale).  

 

 The RMS velocity fluctuations and Reynolds shear stress are plotted in Figure 8-28. 

When the control actuator is placed at LA = 7500, there is negligible impact on the fluctuations 

when compared to the baseline case. When LA = 5000, there are significant differences at Re = 

550 and Re = 600, although mean velocity profiles in Figure 8-27 (C) does not show any 

difference. Therefore, the control actuator location has far greater impact on the second order 

characteristics than the mean velocity profiles. The peak RMS fluctuations for LA = 5000 case 

are higher in comparison to the baseline case at Re = 550 and are lower at Re = 600. Due to the 
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higher fluctuation amplitude, the production rate at Re = 550 shown in Figure 8-29 is higher 

than the baseline and the other cases. This implies that if the current configuration control 

actuator is placed at a location around LA = 5000, it will enhance the turbulent mixing in the later 

transitional stages even though it is expected to reduce it like the LA = 2500 and 7500 cases. It 

should be noted that near the control actuator location, each of these cases reduces the turbulence 

production level. The growth parameters plotted in Figure 8-30 show that the turbulent kinetic 

energy falls below the baseline case at the control actuator location, but for LA = 5000, it is 

higher over a range of Re
x
 = 6105 to 7.3105. The application of control actuator has the 

maximum impact on the Reynolds shear stress and the impact varies by two orders of magnitude, 

depending on its location. 

 
 

Figure 8-28.  Variation of RMS velocity fluctuations and mean Reynolds shear stress with inner 

coordinates at various Re values for different locations of control actuator. Variation 

of (A) streamwise, (B) wall-normal, (C) spanwise RMS fluctuations and (D) 

Reynolds shear stress. For the line legend, refer to Figure 8-27 (B).  
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Figure 8-29.  Variation of 2u  production rate at various Re  locations in the transitional region 

for different control actuator location. 

 
 

Figure 8-30.  Variation of growth parameter for different control actuator locations. Variation of 

(A) wall-scaled turbulent kinetic energy growth parameter with Re
x
 and (B) Reynolds 

shear stress growth parameter with Re . 
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8.3.3  Modal Analysis   

In Figure 8-31, comparison of the excited Fourier components of the normalized 

streamwise fluctuations u U
 between baseline, case A, and case B are depicted.  The plots are 

constructed using the same method given in Section 6.2.5. Case A increases the amplitude for all 

the  ,  -modes after the control actuator location. Case B reduces the amplitude for (0, 1) and 

(1, 1)-mode but increases it for (0, 2) and (1, 2)-mode. For all the cases, the (0, 1)-mode has 

higher amplitude than the (0, 2)-mode for 5Re 5.25 10x   , after which the nonlinear effects add 

energy to the higher wavenumber mode and causes the amplitude of (0, 2)-mode to be higher 

than (0, 1)-mode. This location is advanced for cases A to 5Re 5.1 10x   and case B to 

5Re 4.75 10x   . Since case A increases the fluctuation amplitude for all the  ,  -modes, the 

transition location is advanced. However, case B reduces the amplitude for the most energetic 

mode (0, 1) as well as the oblique mode (1, 1) which results in transition delay. Case B increases 

the amplitude for (0, 2) and (1, 2)-modes, supporting the doubling of the spanwise streak 

wavenumber observed in Figure 8-23(C). For case B, the  ,  -modes for 2   have lower or 

similar amplitude in comparison to the baseline. Therefore, distributing energy between different 

modes results in transition delay for case B.  

The streamwise  u  and spanwise  w POD mode contours for a wall normal plane in 

the buffer layer is shown in Figure 8-32. It should be noted that POD modes are comprised of 

multiple  ,  -modes. The highest energy containing mode  1M   has the same spanwise 

wavenumber as the actuation but the streamwise wavenumber is zero indicating a steady mode. 

The strength of the w  1M   and u  1M   increases after the control actuator for case A and 

decreases for case B. The increase or reduction in energy of the POD modes relative to the 
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baseline case results in advance or delay in transition respectively. In case A, the lambda 

structures are stronger and the spacing between the legs of the structures decreases near the tip, 

while case B does the opposite. This phenomenon manipulates the spanwise oriented vortices 

near the tip of the lambda structures, where the streaks have maximum lift and are unstable, and 

contribute to advance or delay in transition. For case A, the sum of the relative energy for the all 

the modes greater than 5 is around 10% more than the baseline. This suggests that the collocation 

of actuators in case A amplifies the energy of the higher modes by reducing it for the lower 

modes. For M =1 in case B, strength of u  is increased since majority of the energy from higher 

modes  1M  are transferred into M = 1, reducing the nonlinear interaction between the modes. 

The staggered pattern of positive and negative w  observed in 2M  , corresponds to the oblique 

mode. For case A, the lambda vortices  2, uM   strengthen and grow in size. However, Case 

B creates weak lambda structures  2, uM  between the strong ones after 5Re 5.25 10x    

thereby doubling the spanwise wavenumber. These weak structures gradually become stronger 

relative to the upstream lambda vortices as the Reynolds number increases. This exchange of 

energy between the structures and increase in spanwise wavenumber, leads to transition delay for 

case B.  
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Figure 8-31.  Comparison of normalized streamwise fluctuation amplitude for different  ,  -

modes.  

 
 

Figure 8-32.  Relative energy content for different energetic modes based on POD analysis. The 

contours are plotted for * 1y   .   
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CHAPTER 9 

CONCLUSIONS AND EXPECTED IMPACT 

9.1  Parallel Discontinuous Galerkin Method 

 The benefits of applying modal DG method in simulating turbulent flows are its ease of 

parallelization and extension to higher order accuracy. A three-dimensional DG method has been 

implemented in an in-house code called the Multiscale Ionized Gas (MIG) flow code to simulate 

turbulent flow physics. The code incorporates both Euler implicit and two-step Runge Kutta time 

discretization scheme with spatial order of accuracy up to P = 4. The parallelization has been 

done using open MPI with a lexicographic domain decomposition. For inviscid numerical fluxes 

both Godunov and local Lax-Friedrichs flux have been investigated. For the viscous numerical 

fluxes, LDG method, BR1 scheme, and BR2 scheme have been implemented [113].  

To validate and benchmark the code, the Taylor-Green vortex problem has been studied 

using implicit large eddy simulation (ILES). Extensive analysis using different inviscid fluxes, 

spatial accuracy, and mesh sizes show that DG ILES can capture the relevant length scales and 

maintain the 5/3 slope in the inertial region. The findings from this study have been utilized to 

simulate a zero-pressure gradient turbulent boundary layer flow over a flat plate using both 

bypass and controlled transition mechanisms. One of the key findings of this study involved the 

overshoot of total shear stress near the wall, which is not observed in most published literature. 

Future studies can involve the use of high order approximation, with larger domain size and a 

wider range of Reynolds numbers to investigate whether the shear stress overshoot holds, over 

the entire range. All other parameters are found to match well with the published literature. 

9.2  Serpentine Plasma Actuator for Turbulent Transition 

 A controlled transition method utilizing serpentine plasma actuators as a tripping 

mechanism has been studied. The transition mechanism initiated by a serpentine plasma actuator 
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has been found to occur via a non-modal oblique wave transition mechanism. This involves a 

fundamental as well as subharmonic mode. A proper orthogonal decomposition study showed 

that the subharmonic mode has almost half the energy of the fundamental mode. The growth of 

disturbances showed that the pinch plane has a higher growth rate than the spread plane. At the 

final stages of transition, the legs of the subharmonic lambda vortices interact with the front end 

of the fundamental lambda vortices to create hairpin structures and finally turbulize the flow.  

 Different actuator parameters such as actuator geometry, frequency, amplitude, and 

temperature have also been investigated. For the actuator geometry, linear, circular serpentine 

and square serpentine actuators were tested. The linear actuator undergoes TS wave transition 

while both the serpentine geometry actuators show oblique wave transition. The square 

serpentine actuator has a faster transition than the circular serpentine actuator for the same 

amplitude of perturbation. Although the linear actuator has lower streamwise and wall-normal 

growth parameter amplitude than the serpentine actuators, it has a higher slope. This was mainly 

due to the absence of spanwise fluctuations for the linear actuator, which resulted in the 

distribution of energy only in the streamwise and wall-normal directions. The increase in 

frequency and amplitude of actuation advanced the transition process. However, for the low 

frequencies, the flow does not turbulize and the disturbances decay. The thermal effects have 

been investigated using a heating element placed in the center of the pinching region of the 

square serpentine actuator. The heating element lifted the flow structures at the later stages of 

transition and increased the shifted the Reynolds shear stress closer to the wall. Its maximum 

influence was on the wall-normal fluctuation growth parameter.   

9.3  Collocation of Serpentine Plasma Actuators 

 An investigation on the influence of collocation of square serpentine actuators has been 

conducted. It has been found that when the turbulent tripping actuator is placed in counter-flow 
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or co-flow arrangement, turbulent structures in the transitional region did not have a significant 

impact. Although the strength of the vortical structures increases in counter-flow arrangement, 

the flow structures have differences mainly in the highly nonlinear region of the later stages of 

transition. This behavior was further investigated by placing a control actuator downstream of 

the co-flow arranged tripping actuator.  

 The study of collocation of two square serpentine actuators involved the effect of the 

configuration of the control actuator as well as its location with respect to the tripping actuator. 

For the configuration study, the control actuator is placed in co-flow and counter-flow 

arrangements with respect to the tripping actuator as well as the spreading and pinching planes 

are shifted or aligned to the tripping actuator. To advance the transition to turbulence, the pinch 

planes or the spread planes of the tripping and control actuator should be aligned while to delay 

the transition, the pinch and spread planes should be aligned. Counter-flow arrangement of the 

control actuator destabilizes the flow more than the co-flow arrangement, which results in an 

earlier transition than its co-flow counterpart. The transition delay due to control actuator 

configuration occurs due to a large reduction in strength of incoming vortices which in turn 

reduces the local Reynolds shear stress at the control actuator. 

To investigate further different locations of the control actuator has been studied. Apart 

from the configuration, the location of the control actuator plays a very important role. This 

location depends on different parameters such as, the frequency at which the tripping actuator 

perturbs the flow, the convective velocity, and relevant length scale. These parameters can be 

collectively defined using a Strouhal number. Although, an optimization study has not been 

performed, it can be concluded that for transition delay, the control actuator cannot be placed 

very close to the tripping actuator since it would behave like a tripping actuator and it cannot be 
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placed too far since the perturbations would have grown to an amplitude which cannot be 

effectively manipulated.  Therefore, an optimal location will exist in the transitional region 

where the control actuator can have the maximum impact in transition delay. Future studies can 

investigate the optimal location of the control actuator for which the transition delay is 

maximum. 

9.4  Future Work 

Future studies in this area can be conducted using fully resolved direct numerical 

simulations. Extending the study to larger Reynolds number flows can provide extensive 

knowledge for practical applications. A major advancement in this area would be to improve the 

design of the plasma actuators (both in terms of power supply and actuator geometry) such that 

they consume lower power and provide higher control authority. Chapter 8 shows the benefit of 

collocated serpentine plasma actuators to predictably control the streak growth in a turbulent 

boundary layer. This can be further investigated for incoming random turbulent streaks to 

provide a broader application. Since it has been shown that collocation can control different 

instability modal growth, investigating it for controlling secondary crossflow instabilities, 

generally found in swept-wings, can provide additional know-how on delaying the transition. As 

the control parameters of the plasma actuator are crucial to obtain optimum flow control, 

receptivity studies can be conducted for adept positioning, operation, and design of these 

actuators. This can involve both numerical and analytical studies to show which flow field 

parameters are impacted by small changes in actuator forcing methodology. 

Since this study is based on a numerical investigation, an experimental analysis of all the 

cases will provide validation to the behavior observed numerically. Since experimentally the 

plasma actuators do not need any approximation, added information can be obtained on its 

impact on the background flow field. Extensive wind tunnel tests can show whether the 



 

182 

numerically predicted transition scenarios of serpentine shaped plasma actuators are accurate. 

Flow visualization studies can show the instantaneous structures generated by the serpentine 

actuator operating in a background flow field. Apart from qualitative analysis, quantitative 

studies, both intrusive and non-intrusive, can provide extensive data for validation. 

9.5  Expected Impact 

The scientific knowledge obtained from this research will create an understanding of 

accurately actuated turbulent flow control capability which in turn would provide better design 

solutions. The efficient control of the hairpin structures generated in wall-bounded turbulence 

will have a large impact on energy efficiency of an aircraft. Understanding these inherent flow 

structures will allow efficient control over drag which plays a crucial role in aircraft industry. For 

example, on a Concorde, a reduction of one count of drag (C
D
 = 0.0001) can allow it to carry 

two extra passengers [241]. Controlling drag can also have a huge environmental impact. 

Emissions can be reduced significantly with the efficient use of fuel. For every percentage 

reduction in drag, almost one million gallons of fuel can be saved throughout the lifetime of a 

military transport aircraft [242]. Since almost 50% of the drag on aircraft is due to skin friction 

drag, reducing it would have a huge impact in the aircraft industry. Even for road vehicles skin 

friction drag can contribute up to 25% of the total drag. In the U.S. for single unit trucks, 

approximately 54.1 billion liters of diesel fuel is consumed, producing 144 million metric tons of 

CO2 annually [243]. Future studies can be performed using the serpentine plasma actuators for 

high-speed flow (M > 1). At these flow regimes, fuel is approximately one-half of the gross 

weight and 1% reduction in drag can increase the payload by 5% to 10% [244]. Thus, use of 

serpentine plasma actuators can have a significant impact on both environmental issues and fuel 

economy.  
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APPENDIX 

PROPER ORTHOGONAL DECOMPOSITION 

 

 

Proper orthogonal decomposition (POD) is obtained using the following procedure [245].  

 

Step 1. Collect N number of snapshots instantaneous fluctuating velocity field  , ,j j j

i i iu v w    data 

over a specified period of time for the plane (M grid points) to be investigated. N should be large 

to check whether varying number of snapshots impacts the POD analysis. The subscript i is for 

the nodal value and superscript j is for the snapshot value. 

Step 2. Arrange the fluctuating velocities for the chosen N snapshots as specified by Eq.  (A-1). 
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Step 3. Calculate the correlation matrix using Eq.  (A-2). 

 TC  A A   (A-2) 

Step 4. Evaluate the Eigenvalues    and Eigenvectors    of C. The Eigen values are arranged 

in descending order with last Eigenvalue 0N   and the Eigenvectors associated with each 

Eigenvalue also gets sorted accordingly. The Eigenvalues will provide the energy content in each 

mode starting with the dominant mode. The relative energy associated with each mode is 

obtained using Eq.  (A-3). 
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Step 5. The POD modes for the different fluctuating velocity components  1

n n n
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found using Eq.  (A-4). 
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