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Abstract

For a time independent formulation, temporal schemes are traditionally employed for stable convergence to steady state.
However, the pseudo-transient solution process may become slow as it suffers heavily from oscillations at large timesteps. This
paper develops a theory, involving a scaling parameter embedded in the statically-condensed weak statement finite element time-
term (mass) matrix, leading to monotone convergence to steady state using significantly fewer timesteps. Verification tests for a
heat transfer and a compressible flow problem in 1-D and 2-D document the developed procedure. © 1998 Elsevier Science
S.A. All rights reserved.

1. Introduction

Consider the unsteady conservation law system

E(q)——-%qt—+V-(f—f")—s:O, on2xtCR! xR (1)
where q is the state variable, f = f(u,q) is the kinetic flux vector with convection velocity vector u,
f' = f,(eVyq) is the dissipative flux vector with diffusion coefficient e, and s is the source term. The
boundary of the d-dimensional problem domain {2 for (1) is the union of piecewise convex segments
d1); upon which appropriate Dirichlet-Neumann constraints are imposed.

Discrete approximate algorithms for this transient CFD problem class characteristically exhibit a phase
dispersion error that distorts the approximation solution evolution process. This is especially true using
the relatively ‘higher-order accurate’ FE-generated non-diagonal mass matrix coupling the state variable
time derivative. The spatial discretization-induced ‘2Ax wave’ zero phase velocity produces a short wave-
length dispersive error mode that cascades to smaller wave numbers as time advances, as illustrated in
Fig. 1 for an elementary transient heat conduction problem.

The traditional, and theoretically esthetic remedy is to increase the density of degrees of freedom,
e.g. mesh nodalization. The less-pleasing approach is to introduce an artificial diffusion mechanism,
either explicitly via an added dissipation term [1] or implicitly through flux vector upwinding [2]. Time-
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Fig. 1. Discrete approximate solution dispersive oscillation example, 1-D unsteady pure diffusion.

relaxation procedures like ADI [3], or subiteration procedures, e.g. NPARC [4], are available to induce
faster convergence to steady state in a time-independent formulation.

In this paper, we derive, implement and document performance of a theoretical innovation for im-
proving steady-state evolution stability via static condensation of an augmented time (mass) matrix of
a finite element discretized Galerkin weak statement (GWS). The performance of the monotone time
acceleration (MTA) method, easily incorporated with implicit time methodology, is theoretically charac-
terized via a Fourier modal analysis. Numerical solutions are presented for 1-D and 2-D test problems,
confirming theoretical expectations for algorithm performance for appropriate problems in heat transfer
and compressible inviscid flow.

2. Weak statement algorithm

Independent of the dimension d of {2, and for general variation of physical properties in the flux
vectors (1), the semi-discrete finite element (FE) implementation of a weak form with associated trial
and test space function sets, produces the so-called ‘weak statement WS"* for (1), which always yields
an ordinary differential equation (ODE) system of the form {5]

wsh = MI{Q(®)} + {R}={0} (2a)
where

[M] = Se[Mk]e (Zb)

{R} = Se (([Udle + DAL} — {b(0)}) (20)

and S, symbolizes the ‘assembly operation’ carrying local (element) matrix coefficients (subscript e)
into the global arrays. {Q(r)} is the time-dependent discrete approximation nodal degree-of-freedom
(DOF) coefficient set. {Q(t)}’ denotes d{Q}/dr utilized within any ODE algorithm, ¢.g. 6-implicit,
n-step Runge—Kutta, etc. to convert (2a) to a computable algebraic statement.

On each finite element domain {2,, where U2, = 0" is the discretization of 2, [M], is the mass
matrix associated with interpolation, [U]. carries the convective information from f, [D]. is the diffusion
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matrix resulting from genuine (f°) and/or artificial diffusion effects, and {b}. contains all given data.
The subscript & in (2b,c) denotes that each element-DOF rank matrix is dependent on the polynomial
degree k of the selected FE basis.

Element-level matrices are always easy to form, e.g. the linear (k = 1) basis one dimensional (d = 1)
GWS matrices for uniform fluid speed U and diffusion coefficient € are [5],

Mi]e= /ge{Nl}{Nl}de N % E ;] 22

dNAT Ul-1 1

[ul]ezu/!2?{N1} {d;} dx=5[_1 1](2,2) o
_ L AN e [ 1 -

[Dl]e—f/ne—al—fd;—dx—Z—&[—l 1}(2,2)

where ¢, is the element measure, equal to half the finite element span between vertex (end-point) nodes.
The subscripts in parenthesis denote matrix rank. Conversely, for the quadratic (k = 2) basis on d =1

(5},

, 4 2 -1
(M), = / N}V de =22t 2 16 2 @)
o) 1511 2 4

(3,3)

For d = 2 quadrilateral elements, using transformation coordinates n, 7, € (-1, 1), the companion GWS
Lagrange bilinear (k = 1) and biquadratic (k = 2) mass matrices are, respectively

4 2 1 2
det, {2 4 2 1
[Mlle: 3d 1 2 4 2 (5)
2 1 2 4],
and
16 -4 1 -4 § -2 =2 8 4]
-4 16 -4 1 8 8 -2 -2 4
1 -4 16 -4 -2 8 8 -2 4
der. |4 1 -4 16 -2 -2 8 8 4
Mye=—-| 8 8 -2 -2 64 4 —16 4 32 (6)
15912 8 8 -2 4 6 4 -16 3R
2 2 8 8 -16 4 64 4 32
8 -2 -2 8 4 -16 4 64 32
| 4 4 4 4 32 32 32 32 256

4099

where the ‘measure’ det, is the determinant of the transformation matrix to the local coordinate system
intrinsic to £, [5]. For 2, on d =3, n;, m, m € (—1,1), the GWS Lagrange tri-linear (k =1) tensor
product basis mass matrix [M,]. is

8§ 4 2 4 4 2 1 2]
4 8 4 2 2 4 2 1
2 4 8 412 4 2
det, |4 2 4 8 2 1 2 4
Mile==314 2 1 2 8 4 2 4 ™
204 2 1 4 8 4 2
1 2 42 2 4 8 4
2 1 2 4 4 2 4 8],
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The d = 3 quadratic (k = 2) tensor product basis mass matrix is of rank 27 and possesses a coefficient
distribution character analogous to (6).

The assembled (global) form of (2a) provides the time derivatives necessary to evaluate temporal
terms in an ODE algorithm Taylor series. Selecting the 6-implicit one-step Euler family as the example,
where subscript n denotes time level, then

{0} = {Q}a = (@ + A[8{O,1 + (1~ 0){Q}] + O(a/)

= {0} — At[M] 7 (0{R}s1 + (1 — 0){R},) + .. ®)

upon substitution of (2a). Clearing [M]~! and collecting terms into a homogeneous form yields the
WS”" + 9 Taylor series algorithm terminal matrix algebra statement as

{FQ} = IM{Qn1 — Qn} + At(0{R} 1 + (1 — 0){R},) = {0} 9)

The Newton algorithm for solution of (9) is

1{AQ} i1 = —At{R},, linear (10a)
V{8Q}*' = —{FQ}’,,, nonlinear (10b)
where for iteration index p
P
{01 = (O, + {30} = {Q}a+ Y_{3Q}" (1)
i=0

For the linear problem statement (1), (10a) converges in a single step, hence {Q},.1 = {Q}. + {AQ} 41
The Newton-Jacobian definition is

/] = aB{fQQ}} = [M]+ 0At (%) (12)

3. Static condensation

A basic ingredient of the MTA procedure, for implementation and for efficiency, is static condensation,
[5,6]. As the mesh is refined, and with Lagrange FE basis functions {N,},k > 1, the global system DOF
increases rapidly in (9), especially for 4 > 1. This rank escallation transcends directly to significantly
increased computer resource requirements for solving (9)—(12).

Static condensation is a FE methodology that can contain escalation of matrix rank via element-
level matrix rank reduction prior to assembly. The global matrix equation (10a), is always formed as
the assembly of the corresponding element contributions. Rearrange as necessary the representative
element-level Jacobian matrix [J]. of rank m into the partitioned form

Ve tmm) = [[A](a’a) [B] ()

[Cligay [Dligp L (mm) (13)

Letting {x} denote appropriate entries in {AQ}. or {8Q},, the corresponding element-level form of
(10a) or (10b) is

b (4] [Bl(a X(a)
Ne tma {X}em = —{ (“)} = [ (ex.e) #) , (14)
Ve mm Ude om by Joomy LIClsay [Pl ] Lxe S, m
For the lower partition [D](g g, in (14) assumed invertible, the DOF contained in the partition {x(g)}.

B = m — « can be eliminated from explicit appearance via static condensation. This operation produces
the reduced-rank (superscript R), element-level statement for (14) as

VIR oy X@} = —{b}° (15)
with definitions
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[J ?(a,a) = [A](a,a) - [B](a,ﬁ)[D](_ﬁl,B)[C](B,a) (168)
{b}&) = {b(a)} - [B}(a,ﬁ)[D]([;75){b(B)} (16b)

Thereby, 8 DOF for the FE domain {2, have been locally ‘eliminated’, and assembly of (15) to the global
form (10a,b) will reflect this DOF reduction.

The MTA algorithm focusses on the time (mass) matrix contribution contained in (10a), hence (16a).
For the k = 2 Lagrange mass matrix (4) on d = 1, static condensation of the non-vertex node DOF
yields

6 3 -1 det. [ 3 —1
MR = L [ } _ dete [ ] )
21 3], 127 -1 34, (

Correspondingly, the (9,9) rank matrix [M,)], for d = 2, recall (6), with all (five) non-vertex node DOF
statically condensed, produces the linear basis rank (4,4) reduced mass matrix

9 -3 1 -3
det, | -3 9 -3 1
7 ) 1 -3 9 -3

-3 1 -3 9

[My]5 = (18)

44

Finally, on d = 3, the rank 27 Lagrange k = 2 basis mass matrix [M;]., with all (nineteen) non-vertex
nodal DOF condensed, yields the linear basis rank mass matrix [M,]}

27 -9 3 -9 -1 3 -9 3
9 27 -9 3 3 -1 3 -9
3 -9 27 -9 -9 3 -1 3
det, | -9 3 -9 27 3 -9 3 -1
4 |-1 3 -9 3 27 -9 3 -9
3 .1 3 -9 -9 27 -9 3
9 3 -1 3 3 -9 27 -9
3 -9 3 -1 -9 3 -9 27

(M)F = (19)

(8.8)

4. Monotone time acceleration (MTA) algorithm

The relatively higher-order accuracy of the (non-diagonal) FE mass matrix [M]. in (8) (cf [5]) adversely
affects monotonicity of a transient solution process. The goal of the MTA algorithm is to capitalize on
the non-diagonal character to accelerate convergence to steady-state.

The process for accomplishing this involves replacing [M,]. with [M,]R for all d, [7). Note that the
condensed mass matrices (17), (18) and (19) are not normalized, i.e. Zf:u:l m;; does not equal 24,
which is an attribute of all [M;], matrices for all d. Therefore, introduce the scalar ¢ > 0 such that the
MTA -adjusted matrix [M;]R for d = 1,2 is the form

9 -3 1 -3

det, -3 9 -3 1
(12¢)¢ 1 -3 9 =3/’

-3 1 -3 9

~ £, [ 3 -1

Ay IR 0)

where ¢ is a time relaxation parameter. The analogous form for (19) is
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(27 -9 3 -9 -1 3 -9 3]
-9 27 -9 3 3 -1 3 -9
3 -9 27 -9 -9 3 -1 3
(MR = dete. -9 3 -9 27 3 -9 3 -1

¢ (12 t-1 3 -9 3 27 -9 3 -9
3 -1 3 -9 -9 27 -9 3
-9 3 -1 3 3 -9 27 -9
3 -9 3 -1 -9 3 -9 27]

21)

838)

and ¢ = 1/6 normalizes all matrices [M,]R for 1 < d < 3. Note that ¢ > 1 /6 over-relaxes the solution
evolution while ¢ < 1/6 imposes an under-relaxation process.

A criterion for an alternative definition for ¢ not equal to one-sixth (1/6) can be established from a
stability analysis. The assembly of (10a,b) for d = 1 at the generic vertex node x; = j¢, = j¢ of a uniform
mesh on R! is [§]

¢ e U 6¢ € ¢ e U
B (12¢0At T2t ?>e it (“uw—m * Z)e - (m YT 7)9’“ = @

For a nonuniform mesh, (22) is replaced as

143 e U
- (12¢L0At T2t 5) Qi1
3L € 3R €
¥ (12¢L0m T2 T 12groAr EZ;) < (23)

R € U
- (12¢R9 At 20 "2‘) Qi1 = b

where ¢r and /. are the measures respectively right and left of finite element domains sharing node x;,
and similarly for ¢ and ¢g.

The Fourier modal analysis on (22)-(23) predicts algorithm phase accuracy, hence characterization of
error-induced perturbation propagation throughout evolution of the fully discrete approximation. The
amplification factor G for a single step of an ODE method [8] is defined as

Q{+At G o
G=% " _ Cum _ 5, 4)
Q]' Gden =0

where A; is the coefficient set corresponding to /th power of m in the Laurent series expansion on m
for the rational function G.

For the analytical solution to (1) in one dimension (d = 1), the corresponding amplification factor G,
is

Qt+At . A
G. ==l _ o—0At(iU+we) _ ,—imC(1 - mC¢§)
a Q;

=1-imC+ 5 30

2 . 3 . o0
(nCPQiE=1) _ nCP6iE=D) Sy 25)
=0
where i = v/—1, w = 2m/A is frequency with A, the wavelength, m, = wf,, £ = €/(U? At) and the Courant
number is C, = U At/Z,. In the last line of (25), the rational function G, is expanded in a Laurent series
on m up to and including the third order term.

The amplification factor G quantizes growth or decay of a solution perturbation. For |G| <1 (ie.
|Grum| < |Gdenl), @ solution perturbation decays, hence the algorithm is stable. For |G| = 1 (i.e. |Gpum| =
|Genl), the solution process is neutrally stable and solution perturbations are neither damped nor ampli-
fied as evolution proceeds. Finally, if |G| > 1 (i.e. |Gnum| > |Gden|), a solution perturbation will amplify,
hence eventually lead to divergence.
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For algorithm (22), the numerator in (24) is

Goum = 1—2‘% [6 - (e—"m + e"'")] —(1-0)£C? [2 _ (e“"" + e"'")] (- 9)% (—e-"'" + e"") (26)

while the denominator is

Gaen = ﬁ [6 - (e—"'" + e"'")] +0£C2 [2 - (e“"" + e"'")] + e% (—e—"m + e"'ﬂ) (27)
Using the identities

e~im + eim o _efim +eim
—-—2 y I Sinm = ————2 . (28)

the uniform mesh form for (24) is

cosm =

6i [3—cosm] —(1—6)6C?[2—2cosm] —i(1 — 0)Csinm
G = ¢ : (29)

7 [3 —cosm]+ 0£C?[2—2cosm] +i6Csinm

Case [ (d=1,6 =0):
For the explicit Euler procedure, (29) becomes

L [3 - cosm] — £C* 2 — 2cosm] — iC sinm
L

(30)
1 [3 — cosm|

6

Using a symbolic manipulation program, e.g. Macsyma [9], via rational simplification, one may determine
that

G| = 144C4(1 — cos m)2p2£2 — 24C2%(1 — cosm)(3 — cosm)d & + 36C2sin” mp? + (3 — cos m)?
N (3 — cosm)? (31)

Hence, for (30), the condition for stability, |Ggen| 2 |Gnum|, leads to

2(3 —cosm)(1 —cosm)|é] =3¢ [sinzm +4C? (1 — cos m)z] (32)

hence 1/¢ >3 [sin2 m+4C2E(1 — cos m)z] /2(3 — cosm)(1 — cos m)|£| for stability. For the non-diffusive
(¢ = 0) form of (1)

(3 — cosm)? + (6¢ C sinm)?
G = \r

3 —cosm

>1 VYm,¢,C (33)
and the algorithm is unconditionally unstable for any ¢.

Case Il (d =1,6 =0.5):
The trapezoidal implicit algorithm amplification factor is

6L[3—cosm}—§Cz [l—cosm]—igsinm

G =90 - (34)
— — 2 _ ._ 1
7 [3—cosm]+€&C" 2 —2cosm] +i > sinm

Using Macsyma, the rational form of |G| is
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Gl = 36C4(1 — cosm)22£2 — 12C2(1 — cosm)(3 — cosm)d £ +36C2sin* mp? + (3 — cosm)?
36C4(1 — cosm)2p2¢2 +12C%(1 — cosm)(3 — cosm)p & + 36C? sin® m¢? + (3 — cosm)?

(35)

For (34), the condition for stability, |Gaen| > |Gnum|, is

C2p¢(3 —cosm)(1 —cosm) >0 (36)
which accrues for all ¢. For the non-diffusive (¢ = 0) form of (1)

|G|=1 Ym, ¢,At (37)
hence, the algorithm is unconditionally neutrally stable.
Case Il (d=1,68 =1.0):

For the backwards Euler time integration, (29) is
1
—— [3 — cosm]
G = 6¢ (38)

s [3 — cosm] + £C?[2 —2cosm] +iCsinm

Here again, using Macsyma, the rational form of |G| is

G| = (3 — cosm)?
144C4(1 — cosm)2 2 ¢2 +24C%(1 — cosm)(3 — cosm)p £ + 36C? sin’> me? + (3 — cosm)?

(39)
The condition for stability is
2(3 - cosm)(1 — cosm)£ + 36 [sin2 m+4C2E(1 - cosm)2] >0 (40)
which accrues for all ¢ > 0. For the non-diffusive form of (1)
G| = 3 — cosm <1 VYm,é,Ar (41)

\ﬂ3 — cosm)? + (¢ C sinm)?

and the algorithm is unconditionally stable for all ¢.

An eigenvalue analysis of the system matrix stencil may determine monotonicity of a computational
algorithm. For the algorithm algebraic system [A]{Q} = {b}, the solution vector {Q} is non-oscillatory
if and only if the eigenvalues of [A] are devoid of an imaginary component. Furthermore, if the real part
of these eigenvalues is non-negative, then the solution is also stable.

The (h+1) x (h+1) system matrix associated with (22) for a uniform # finite element discretization
yields a tridiagonal matrix structure for which the eigenvalues are solvable in closed form as [7,10]

M=l £ > 1, U 1 _,e U cos(jmt)
T12660A1 " 12 1260Ar 202 2¢) \12¢6At ' 202 2¢ 7D,
where 1 <j<h (42)

Hence, A/ can be represented as a Pick function of the form @({) = a({) +iB({), and the ODE system
solution will be monotone provided A/ does not have an imaginary component. This can be assured by
the particular choice for the renormalization parameter ¢ > 0 such that

1 € U 1 € U
S S Y (I S . X 43
(12¢0At+2£2+2£> (12¢9At+2£2 2e> (43)
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Table 1
Coefficients A; of m! in (25) for different algorithms
Coefficients of m! 1=0 I=1 1=2 [=3
Analytical G, 1 —ic € 2ig - 1) Co¢+i)
GWS G* 1 —iC —C3(£+0) iC36(2¢+ 6)
FV G 1 —ic —CX¢+0) iC39(2¢+6)+ %
MTA G" 1 —6iCo —6C2p(£+6¢8) iC¢ (72C2¢§0 +216C2¢202 + g)
ie.
1 € U
2goa T 2|7 |2 (44)

The condition for ¢ to guarantee (44) is

¢ < £ or, ~> 66(C — £C?) 45)

T 68A1(UL — €) e T (

where 6 is the ODE implicitness factor. Note that for a pure diffusion equation, U = 0, hence in (42)
A/ is alwavs real and the algorithm solution is monotone for all ¢ 8£C? > 0.

The order-of-accuracy of MTA algorithm may be predicted by comparing the discrete and analytical
amplification factor Laurent series. The corresponding Macsyma output for the GWS, diagonalized
mass matrix (finite volume, FV) and MTA algorithms is documented in Appendices A and B. Table
1 summarizes the coefficients of m in the Laurent series expansion (25) for the GWS, FV and MTA
algorithm solutions. For / = 1, it is confirmed the MTA algorithm is not time accurate for ¢ # 1/6 as
expected for a time acceleration procedure. For ¢ = 1/6, the MTA algorithm is 2nd order accurate for
# = 0.5 and for pure convective flow (¢ = 0), as are the FV and GWS algorithms, since G* matches
identically with G, up to the m? terms in Laurent series expansion of m.

5. Discussion and results
5.1. 1-D unsteady heat conduction

Unsteady conduction in an axisymmetric cylinder is described by the solution to

_9q 10 oq\
ﬁ(q “b—t ;E(I‘EE)—O n<r<n (463)
eVg-ft—ag, =0 r=rn (46b)
q(r2) = qp r=n (46¢)

The analytical solution to (46a,c) is

~Al+ (‘ei\/ €2 ~4re)\/2e)

qg(r,t) = Ae (47)

where A and A are constants dependent on the data in (46a), i.e. €, a,qn,r1,r2,t. While (47) is smooth
for all ¢ > ty, dependent on the time integration process, approximate solution monotonicity depends on
the initial condition and the data.

For the example problem, the initial condition is g(r,0) = qo(r) =0, 1 < r <2 in (46a) and the flux
(Robin) and Dirichlet boundary conditions are « = 1, g, = 1 and ¢, = 0 in (46b,c). Summaries of early-
time solution non-monotonicity are presented in Fig. 2. For the initial timestep of 0.0001, the temporal
(6 = 0.5) solution evolution for both & =1 and & = 2 Lagrange GWS (no ¢) method is distinctly non-
monotone on this meshing, (Fig. 2a and b), although nodal accuracy for surface temperature (at r =
ri = 1) is acceptable for engineering purposes. In comparison, for the initial timestep of 0.0001, the FV
(also no ¢) solution on the same meshing is truly monotone and acceptably time-accurate, (Fig. 2c).
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Table 2
Effect of ¢ on a uniform 9-node mesh
Algorithm k @ tstep Cumin % 10? Qmax % 102 Evolution CPU time (s)
GWS 1 1820 0.0 58.0 (steady) Non-monotone 200
GWS 2 1820 0.0 58.1 (steady) Non-monotone 215
Fv 1 1845 0.0 58.1 (steady) Monotone 210
FV 1 453 0.0 58.1 (steady) Non-monotone 52
1
MTA 1 3 990 0.0 58.1 (steady) Monotone 110
MTA 1 5 82 0.0 58.1 (steady) Monotone 10

The companion ¢ =1/6 MTA solution procedure, (Fig. 2¢), generates a monotone and second-order
time-accurate solution on this meshing and initial timestep.

For efficiency, over-relaxing the temporal (6 = 0.5) solution process via selecting ¢ > 1/6 can facili-
tate evolutionary monotone attainment of the steady state using a much smaller number of integration
timesteps, Fig. 3. As presented in Table 2, for GWS k = 1, the trapezoidal (6 = 0.5 in (8)) rule time inte-
gration scheme solution becomes steady, i.e. insensitive to time up to 4th decimal, after 1820 timesteps,
with the initial timestep of 0.0001, yielding the data graphed in Fig. 2a and b. In distinction, for the
MTA procedure, (Fig. 2f), with the same initial Az and 8, only 82 timesteps are required with ¢ =5
to monotonely reach a time station with solution independent of timestep. For a large initial timestep
(> 0.01), the FV algorithm solution evolution is oscillatory and, for an initial timestep of 0.05, solution
approaches steady state after 453 timesteps, (Fig. 2d). Both GWS and FV algorithms take progressively
increasing numbers of steps as the initial timestep increases. For example, for an initial timestep of 0.1,
the GWS algorithm takes 2472 timesteps to reach steady state. The CPU time documented in Table
2 are for Sun Sparc station 20 with Solaris 2 operating system. Note in Fig. 3 that as the time relax-
ation parameter increases the CPU time requirement and the total number iterations for steady state
decreases sharply. However, after reaching an optimum value (¢ = 8) the CPU time and total iteration
count slowly increase with ¢.

5.2. Quasi-1D compressible shocked-flow verification

The quasi-one dimensional inviscid (Euler) form of (1) is

ﬁ(Q)ZEWLE—S:O (48a)
m
p m?
g={m)|. f=| F*P (48b)
E (E+p)m
p
4 1n£(x)
s— | _m dnA®) (48¢)
p dx
(E +p)m dInA(x)
S =
m2
p=(r-1) [E - -2;} (48d)

where p is density, m is momentum, E is volume specific total energy, p is pressure, 7y is the ratio of
specific heats and A(x) is the nozzle cross-sectional area distribution. For a perfect gas, (48a—c) is closed
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by the polytropic equation of state (48d) and for velocity definition u = m/p, the volume specific total
energy E is

__Pp 1,
E—7_1+2pu (49)
The de Laval nozzle geometry, Fig. 4, and test problem specification of [11] is used for the verification
test where

Al { 1.75 - 0.75cos2(x — 0.5)w], 0.0<x <05

<
(50)
1.25-025cos[2(x —0.5)w], 05<x<1.0

The non-dimensional initial condition for g is derived from the sonic, shock-free isentropic solution for
(50). The boundary conditions are p(0,7) = 1.0 = pin, £(0,1) = 1.0 = Ejy, and p(1,t) = pou = 0.909. The
corresponding isentropic inlet Mach number is Ma;, = 0.2395.

The verification steady state condition corresponds to an impulsive change from isentropic flow by
decreasing the exit pressure po, from 0.909 to 0.84. The resultant expansion wave propagates upstream
to the throat, hence triggers formation of a (normal) shock which moves downstream to x = 0.65 with
the analytical shock Mach number, Ma; = 1.40.

The nozzle domain is uniformly discretized into 100 elements. The linear Lagrange basis (k = 1) finite
element form of the Taylor weak statement (TWS) algorithm, cf. [1], is employed, with 8 = 0.2{1,1,1}
the dissipation level for all tests. Table 3 documents the TWS, FV and MTA steady state solution
performance, where CPU time is for a Sun Sparc station 10. The TWS solution took 68 constant timesteps
of At = 0.02 to converge to (10~*) at the first iteration, which is accepted as steady state. The FV solution
similarly converged in 69 constant timesteps (At = 0.02). Both solutions capture a shock, smeared over
three computational cells centered at x = 0.65, with upstream (shock) Mach number Ma, = 1.377. A
larger initial timestep may be used to achieve faster convergence in TWS and FV algorithms. For At =
0.1, TWS and FV algorithms take 30 steps (66 iterations) to reach steady state. However, convergence
becomes increasingly difficult for Ar > 0.1, and for Ar > 0.5 both the TWS and FV Newton solution
processes diverge.

In comparison, the MTA algorithm with ¢ = 6 produces a steady state solution nominally identical to
the TWS and FV solutions in 10 steps (25 iterations). The MTA solution evolution remains essentially
non-oscillatory (ENO), and Fig. 5 plots the associated initial condition and steady state solution Mach
number, density and pressure distributions along the de Laval nozzle axis.

5.3. 2D compressible flow through a converging duct

The two-dimensional inviscid (Euler) form of (48a)-(49) is

%) of; .
cy=2. o 1<j<2 (512)
]

Table 3

Effect of ¢ on a uniform 101-node mesh compressible flow solution

Algorithm k ¢ Iterations Shock location x Evolution CPU time (s)
TWS 1 162 0.65 Monotone 78

TWS 1 65 0.65 Non-monotone 32

FV 1 164 0.65 Monotone 79

FV 1 66 0.65 Non-monotone 32

MTA 1 % 160 0.65 Monotone 76

MTA 1 6 25 0.65 Monotone 12
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Fig. 5. Steady state solution for compressible flow through de Laval nozzle.
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Table 4
Effect of ¢ on a 2-D compressible flow solution
Algorithm k ] Iterations Normalized CPU time
TWS 1 638 100
MTA 1 - 620 98.7
MTA 1 1 284 49.9
3v2
MTA 1 % 189 332
MTA 1 % 172 304
MTA 1 g 181 317
Level MACH
1ok A 0.60
9 0.56
05 8 0.51
7 0.47
0.0 | 6 042
5 0.38
051 4 0.33
3 0.29
-1.0 ¢ 2 024
-1 1 0.20
Fig. 6. Steady state solution Mach number isolines for flow through a converging duct.
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Fig. 7. CPU time and iteration count for steady state vs. ¢ in 2-D.



374 S. Roy, A.J. Baker/Comput. Methods Appl. Mech. Engrg. 160 (1998) 359-382

m;
q= (mi . fi=| p TP% (51b)
E (E + p)m;
P

with s = 0, velocity definition u; = m;/p, and pressure (48d). The non-dimensional initial conditions
for g is homogeneous zero, except for inflow, whereat the boundary conditions are p(0,¢) = 1.0 = gy,
E(0,t) = 1.0 = Ej,, and at outflow where p(1,t) = pou = 0.84. The corresponding isentropic flow inlet
Mach number is Ma;, = 0.2395.

Table 4 compares the TWS, with 8, = 0.1{1,1,1}, and MTA steady state Euler solutions for flow in
a converging duct. The TWS solution took 400 variable timesteps requiring 638 iterations to converge
to 1073 at the first iteration (defined as steady state). The CPU time comparisons are normalized by the
solution time taken for this TWS execution. In comparison, the MTA algorithm, with ¢ > 1/6, produces
a steady state solution in a lesser number of iterations and the solution evolution process is ENO. Fig.
6 graphs the Mach number isolines for the TWS and MTA solutions, which are essentially identical at
steady state. The trend of iterations and normalized CPU times for Sun Sparc station 10 are plotted in
Fig. 7, and an optimum ¢ = 2/3 exists.

6. Conclusions

A weak statement monotone time acceleration technique based on local static condensation of a
Lagrange k > 1 mass matrix has been developed for generating faster convergence to steady state for
CFD algorithm constructions employing an unsteady formulation. The presented MTA theory analysis is
complete for d = 1, has been verified extensible to d = 2 and is very easy to incorporate in any dimension.
In 1-D, the suitable choice of the time acceleration parameter, ¢ rapidly accelerates the Newton unsteady
solution process to steady state in less than 5% (for heat conduction) to 15% (for compressible flow) time
to that of the standard Galerkin (and Taylor) WS. However, in higher dimensions, the MTA solution
process becomes sensitive to large ¢, hence an optimal value is computationally verified to exist. The
associated theoretical analysis should be developed.
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Appendix A. Amplification factors for the MTA algorithm

Nomenclatures for the Macsyma output:
theta = 0,c = C=UAt/l,xi = £ =€/U?At and g = G. 10 = |G| for 6 = 0. t05 = |G| for 8 = 0.5.
t10 = |G| for 6 = 1.

Condition for G < 1 iff cond > 0.

(c3) theta:0$
(c4) n1:(3-cos(m))/(6*phi)$
{c5) n2:2*xi*c~2*(1-cos(m))$
(c6) n3:c*sin(m)$
(c7) di:ni$
(c8) gr:(n1-n2)/d1$
(c9) gi:n3/d1$
(c10) g:gr-%i*gi$
(c11) absg:abs(g)$
(c12) tO0:ratsimp(absg)$
(c13) t0sq:t0*t0$
(c14) tOnum:num(t0sq)$
(c15) tOdenom:denom(t0sq)$
(c16) cond:tOdenom-tOnum$
(c17) tOcond:ratsimp(cond)$
(c18) theta:0.5$
(c19) n1:(3-cos(m))/(6*phi)$
(c20) n2:xi*c~2%(1-cos(m))$
(c21) n3:c*sin(m)$
(c22) di:n1$
(c23) d2:n2%
(c24) d3:n3%
(c25) g:(n1-n2-Y%i*n3)/(d1+d2+%i*d3)$
(c26) absg:abs(g)$
(c27) to5:ratsimp(absg)$
(c28) t058q:t05%t05%
(c29) tO5num:num(t05sq)$
(c30) tO5denom:denom(t05sq)$
(c31) cond:t05denom-t05num$
(c32) tO05cond:ratsimp(cond)$
(c33) theta:1.0%$
(c34) n1:(3-cos(m))/(6%phi)$
(c35) di:ni$
(c36) d2:2*xixc"2*(1-cos(m))$
(c37) d3:c*sin(m)$
(c38) g:ni/(d1+d2+%i*d3)$
(c39) absg:abs(g)$
(c40) t10:ratsimp(absg)$
(c41) t10sq:t10%t10$
(c42) ti10num:num(t10sq)$
(c43) t10denom:denom(t10sq)$
(c44) cond:ti0denom-t10num$
(c45) t10cond:ratsimp(cond)$
(c46) t0;

4 2 4 4 2 2
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(d46) sqrt((144 ¢ cos (m) - 288 ¢ cos(m) + 144 ¢ ) phi xi
2 2 2 2 2 2 2
+ (- 24 c cos (m) + 96 ¢ cos(m) - 72 c ) phi xi + 36 ¢ sin (m) phi
2 2
+ cos (m) - 6 cos(m) + 9)/sqrt(cos (m) - 6 cos(m) + 9)
(c47) t05;
4 2 4 4 2 2
(d47) sqrt(((36 ¢ cos (m) - 72 ¢ cos(m) + 36 ¢ ) phi xi
2 2 2 2 2 2 2
+(-12c¢c cos (m) + 48 ¢ cos(m) - 36 ¢ ) phi xi + 36 ¢ sin (m) phi
2 4 2 4 4 2 2
+ cos (m) - 6 cos(m) + 9)/((36 ¢ cos (m) - 72 ¢ cos(m) + 36 ¢ ) phi «xi
2 2 2 2 2 2 2 2
+ (12 ¢ cos (m) - 48 ¢ cos(m) + 36 ¢ ) phi xi + 36 ¢ sin (m) phi + cos (m)
- 6 cos(m) + 9))

(c48) t10;
2 4 2 4
(d48) sqrt(cos (m) - 6 cos(m) + 9)/sqrt((144 ¢ cos (m) - 288 ¢ cos(m)
4 2 2 2 2 2 2
+144 ¢ ) phi xi + (24 c cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi xi
2 2 2 2

+ 36 ¢ sin (m) phi + cos (m) - 6 cos(m) + 9)
(c49) tOcond;
4 2 4 4 2 2
(d49) (- 144 ¢ cos (m) + 288 ¢ cos(m) - 144 c ) phi «xi
2 2 2 2 2 2 2
+ (24 ¢ cos (m) - 96 ¢ cos(m) + 72 c ) phi xi - 36 ¢ sin (m) phi
(c50) t05cond;

2 2 2 2
(dso0) (24 ¢ cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi xi
(¢c51) t10cond;
4 2 4 4 2 2
(d51) (144 ¢ cos (m) - 288 ¢ cos(m) + 144 ¢ ) phi xi
2 2 2 2 2 2 2

+ (24 c cos (m) - 96 c cos(m) + 72 c ) phi xi + 36 ¢ sin (m) phi
(c52) xi:0$
(c53) tOm:ev(t0,eval);
2 2 2 2

8qrt(36 ¢ sin (m) phi + cos (m) - 6 cos(m) + 9)

(d53) e e
2
sqrt(cos (m) - 6 cos(m) + 9)

(c54) cond:ev(tOcond,eval);

2 2 2
(d54) - 36 ¢ sin (m) phi
(c55) t05m:ev(t05,eval);
(dss) 1
(c56) cond:ev(t05cond,eval);
(dsse) 0

(c57) ti0m:ev(t10,eval);
2
sqrt(cos (m) - 6 cos(m) + 9)
(d57) = e
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2 2 2 2
8qrt(36 ¢ sin (m) phi + cos (m) - 6 cos(m) + 9)
(c58) cond:ev(ti0cond,eval);

2 2 2
(as8) 36 ¢ sin (m) phi
(c59) xi:1$
(c60) tOm:ev(t0,eval);
2 2 2 4 2 4 4 2
(d60) sqrt(36 ¢ sin (m) phi + (144 ¢ cos (m) - 288 ¢ cos(m) + 144 c ) phi
2 2 2 2 2
+ (-24c cos (m) + 96 ¢ cos(m) -~ 72 ¢ ) phi + cos (m) - 6 cos(m) + 9)
2

/sqrt(cos (m) - 6 cos(m) + 9)
(¢c61) cond:ev(tOcond,eval);
2 2 2 4 2 4 4 2
(d61) - 36 ¢ sin (m) phi + (- 144 ¢ cos (m) + 288 ¢ cos(m) - 144 ¢ ) phi
2 2 2 2
+ (24 ¢ cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi
(c62) tO5m:ev(t05,eval);
2 2 2 4 2 4 4 2
(d62) sqrt((36 ¢ sin (m) phi + (36 ¢ cos (m) - 72 ¢ cos(m) + 36 ¢ ) phi
2 2 2 2 2
+ (- 12 c cos (m) + 48 ¢ cos(m) - 36 ¢ ) phi + cos (m) - 6 cos(m) + 9)
2 2 2 4 2 4 4 2
/(36 ¢ sin (m) phi + (36 ¢ cos (m) - 72 ¢ cos(m) + 36 ¢ ) phi
2 2 2 2 2
+ (12 ¢ cos (m) - 48 ¢ cos(m) + 36 ¢ ) phi + cos (m) - 6 cos(m) + 9))
(c63) cond:ev(t05cond,eval);
2 2 2 2
(a63) (24 ¢ cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi
(c64) t10m:ev(ti10,eval);
2 2 2 2
(d64) sqrt(cos (m) - 6 cos(m) + 9)/sqrt(36 ¢ sin (m) phi
4 2 4 4 2
+ (144 ¢ cos (m) - 288 ¢ cos(m) + 144 c ) phi
2 2 2 2 2
+ (24 ¢ cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi + cos (m) - 6 cos(m) + 9)
(c65) cond:ev(ti0Ocond,eval);
2 2 2 4 2 4 4 2
(d65) 36 ¢ sin (m) phi + (144 ¢ cos (m) - 288 ¢ cos(m) + 144 ¢ ) phi
2 2 2 2
+ (24 ¢ cos (m) - 96 ¢ cos(m) + 72 ¢ ) phi
(c66) quit();

Appendix B. Time accuracy for GWS, FV and MTA algorithms

Algorithm time accuracy is estimated by comparing the m! coefficient terms (A; in (24)) with the
analytical solution amplification factor (25). The mass matrices used for GWS, FV and MTA algorithms

are
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L (2 1
GWS (M, = & [ }
311 2 22)

{2 0

£ 3 -1
R_ fe_
MIAMbk__u¢[_1 3]@m

(c2) n1:(4+2*cos(m))/6$
{c3) n2:2%xi*c"2%(1-t)*(1-cos(m))$
(c4) n3:(1-t)*c*sin(m)$
(c5) di:n1$
(c6) d2:2*xi*c~2*t*(1-cos(m))$
(c7) d3:t*c*sin(m)$
(c8) gwsg:(n1-n2-%i*n3)/(d1+d2+%i*d3)$
(c9) gwst:taylor(gwsg,m,0,6)%
(c10) n1:(3-cos(m))/(12%phi)$
(c11) n2:2*xi*c~2*(1-t)*(1-cos(m))$
(c12) n3:(1-t)*c*sin(m)$
(c13) di:n1$
(c14) d2:2*xi*c"2*t*(1-cos(m))$
(c15) d3:t*c*sin(m)$
(c16) mtag:(n1-n2-%i*n3)/(d1+d2+%i*d3)$
(c17) mtat:taylor(mtag,m,0,6)$
(c18) anlg:Ye - (%i*m*c*(1-mkc*xi))$
(c19) angt:taylor(anlg,m,0,6)$
(c20) termig:coeff(gwst,m,1);
(d20)/x/ - Y% ¢
(c21) termim:coeff(mtat,m,1);
(a21)/x/ - 6-%i c phi
(c22) termia:coeff(angt,m,1);
(d22)/x/ -%ic
(c23) solve([termim-termial, [phil);
1
(d23) [phi = -]
6
(c24) term2g:coeff(gwst,m,2);
2 2
(d24)/x/ - ¢ xi-c¢c t
(c25) term2m:coeff(mtat,m,2);
2 2 2
(d25)/x/ - 6c phixi-36c phi t
{c26) term2a:coeff(angt,m,2);
2 2
2% ¢ xi-c¢

(az26)/x/ mmmmmemmee—
(c28) term3g:coeff(gwst,m,3);

(da28)/x/ 2%ic txi+Y%ic t
(c29) term3m:coeff{mtat,m,3);
3 2 3 3 2
144 i ¢ phi t xi + 432 %i c phi t + 5 %i c phi
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(d29)/1/  —m—mmmmmmmmmmm e

{c30) term3a:coeff(angt,m,3);

(d30)/x/

(c31) xi: 0%

(c32) £:0.0%

(c33) gust:ev(gwsts,eval)$
(c34) mtat:ev(mtats,eval)$
(c35) termig:coeff(gwst,m,1);
(d3s)/r/

(c36) termim:coeff(mtat,m,1);
(d36)/r/

(c37) termia:coeff(angt,m,1);
(d37)/x/

- % c
-6 % c phi

- %1 c

(c38) solve([termim-termial, [phil);

(d38)

(c39) term2g:coeff(gwst,m,2);
(d439)/x/
(c40) term2m:coeff(mtat,m,2);
(d40)/x/
(c41) term2a:coeff(angt,m,2);

(aa1)/x/

(c42) term3g:coeff(gwst,m,3);
(d42)/x/
(c43) term3m:coeff(mtat,m,3);

(d43)/x/

(c44) term3a:coeff(angt,m,3);

(d44)/x/

(c45) t:0.5%

(c46) gwst:ev(gwsts,eval)$
(c47) mtat:ev(mtats,eval)$
(c48) termig:coeff(gwst,m,1);
(448)/x/

(c49) termim:coeff(mtat,m,1);
(a49)/x/

(c50) termia:coeff{angt,m,1);
(d50)/x/

1
[phi = -]
6

-%ic
- 6 %i c phi

- %ic

379
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(c51) solve([termim-termial,[phil);
(ds1) [phi = -]

(c52) term2g:coeff(gwst,m,2);

(ds52)/x/ - -
(c53) term2m:coeff(mtat,m,2);

(ds3)/x/ - 18 ¢ phi
(c54) term2a:coeff(angt,m,2);

(d54)/x/ - -

(c55) term3g:coeff(gwst,m,3);

(ass)/x/ ===
(c56) term3m:coeff(mtat,m,3);

(dse)/x/ (108 %i ¢ phi + 5 %i c phi)/2
(c57) term3a:coeff(angt,m,3);

(as?7)/2/  mm——

(c58) t:1.0%

(c59) gust:ev(gwsts,eval)$

(c60) mtat:ev(mtats,eval)$

(c60) termig:coeff(gwst,m,1);

(d60)/x/ - %ic
(c60) termim:coeff(mtat,m,1);

(d60)/r/ -6 %i c phi
(c61) termia:coeff(angt,m,1);

(a61)/r/ - % c
(c62) solve([termim-termial,[phil);

(d62) [phi = -]
(c63) term2g:coeff(gust,m,2);

(de3)/r/ -c
(c64) term2m:coeff(mtat,m,2);

(d64)/r/ - 36 ¢ phi
(c65) term2a:coeff(angt,m,2);

(a6s)/x/ - =
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2
(c66) term3g:coeff(gwst,m,3);
3
(dee)/r/ %ic
(c67) term3m:coeff(mtat,m,3);
3 3
(d67)/x/ (432 %i ¢ phi + 5 Y%i c phi)/2
(c68) term3a:coeff(angt,m,3);
3
% c
(a€8)/x/ ==
6
(c2) n1:1%

(c3) n2:2*xi*xc"2*(1-t)*(1-cos(m))$

(c4) n3:(1-t)*c*sin(m)$

(c5) d1:n1$

(c6) d2:2%xi*c~2*t*(1-cos(m))$

(c7) d3:t*c*sin(m)$

(c8) fvg:(n1-n2-%i*n3)/(d1+d2+%i*d3)$

(c9) fvts:taylor(fvg,m,0,6)$

(c10) termifv:coeff(fvts,m,1);

(d10)/x/ - % c
(c11) term2fv:coeff(fvts,m,2);

2 2
(a11)/x/ -¢c xi-c¢c ¢t
(c12) term3fv:coeff(fvts,m,3);
3 3 2
12% ¢ txi+6%ic t +%ic
(d12)/x/ 0 e
6
(c13) xi: 0%
(c14) t:0%$
(c15) termif:ev(termifv,eval);
(d15)/x/ - % c
(c16) term2f:ev(term2fv,eval);
(d16)/x/ 0
(c17) term3f:ev(term3fv,eval);
%i c
(a17)/x/ -——=
6
(c18) +:0.5%
(c19) termif:ev(termifv,eval);
(d19)/x/ - % c
(c20) term2f:ev(term2fv,eval);
2
c
(a20)/x/ - -
2
(c21) term3f:ev(term3fv,eval);
3

(a21)/x/
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(c22) t:1.0%

(c23) termif:ev(termifv,eval);

(d23)/x/ -%i ¢
(c24) term2f:ev(term2fv,eval);

(d24)/x/ -c
(c25) term3f:ev{(term3fv,eval);
3
6 %ic + Y% c

(d28)/r/ e

(c26) quit();
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