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Abstract

Achieving improved order of accuracy for any numerical method is a continuing quest. The discrete approximate solution error,
in general, can be expressed as a truncation of a Taylor series expansion. Herein, we present a weak statement perturbation
always yielding simple tridiagonal forms that can reduce, or annihilate in special cases, the Taylor series truncation error to high
order. The procedure is analyzed via a von Neumann frequency analysis, and verification CFD solutions are reported in one and
two dimensions. Finally, using the element specific (local) Courant number, a continuum (total) time integration procedure is
derived that can directly produce a final time solution independent of mesh measure.

1. Introduction

Consider the unsteady hyperbolic conservation law form
g =—+--—-5=0, on2xXrCR"xR" (1)

In (1), g is the state variable, f= ug, is the kinetic flux vector with convection velocity vector u and s is
the source term. The boundary of the d-dimensional (1 <d <3) problem domain {2 is the union of
segments a2, i.e. 942 = 9L, U a2, U aL2,.

Approximate (CFD) algorithms to this non-diffusive transient problem class are characterized by a
phase lag dispersion error that can highly distort the approximation solution, cf. Fig. 1(a). Specifically,
the 2 Ax wave’ zero phase velocity induces a short wave-length error that cascades to smaller wave
numbers. The theoretically esthetic remedies are to increase the density of degrees of freedom, e.g.
number of mesh nodes, or algorithm order-of-accuracy. Conversely, the ‘practical’ remedy is use of an
artificial dissipation method, usually involving an added elliptic perturbation with a (linear or non-
linear) numerical viscosity coefficient. A variation involves flux correction operators to remove induced
excessive dissipation via an antidiffusive contribution. The goal is to induce a damping mechanism for
control of non-monotonicity, but solutions tend to suffer from excess diffusion, Fig. 1(b), even with a
very dense mesh. Detailed comparisons of this phenomenon for the 1-D and 2-D linear convection
verification problems are available (cf. [1, Ch. 4.13], [7, Ch. 17.3 and Ch. 21.3]).

The Fourier representation of the analytical solution to (1) is
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Fig. 1. Traveling square wave solution on 101 node mesh, [7, p. 566]. (a) Standard; (b) artificial dissipation with ‘Superbee’
limiter.

g = D A e )
{=—=

where o, =2m/A, = wavenumber of {th wave, A, =wavelength of (th wave, i=V-1 and A, =
expansion coefficient. The linearity of (1) allows one to focus on the generic {th mode only and
consequently for (2), &, = uw,. Hence, the exact solution g(x, t) generic mode ¢,(x, ) for any finite
Fourier mode is

qux, 1) =e (3)

Assuming a semi-discrete solution ¢”(j Ax, r) behaves in the same manner,
N )
q"(jAx, 1) =€V where u”" = ul} + iu" 4)

In (4) and hereafter, the superscript & denotes the spatial semi-discretization and the subscripts R and
3 denote real and imaginary solution components, respectively. Substituting ¢,(j Ax, 1) =’ > ) in
(4) yields
. . wt(eh +i(u—ul 3
q"(j dx, 1) = q,(j Ax, 1) e 7D ()
The corresponding semi-discretization error, e", is
= q, - qh =1-— ew:(u{{ﬂ(u-u{{,)) (6)
Thus, the phase dispersion error of the approximation solution is related to i( —uy) and the
dissipation error is related to u-.
For the fully discrete solution, after elapsed time n At, the fully discrete spatial Fourier component
becomes,
ny . — iw(j Ax—af(t+n A1)
Q/(jAx,t+nAn=e

__~iwun At eim(j Ax—ufr)

= G"q"(j Ax,1) (7)

The solution for algorithm amplification factor G determines how the fully discrete solution grows or
decays in time, and

—iw(ul+iuk £ -
Gn:e iw(uly+iutin Arsz+lG3 (8)

By definition, G" obeys the following identity
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Gn eiwu"n Ar =1 (9)
Comparing to the analytical solution (3), one may determine that in one dimension
iw(jdx—U(t+n 3t))

n_ q(jdx,t+nd) _ € _—iwU(n 1)
G,= q(jox.1) | el =¢ (10)

where U is the magnitude of u in one dimension. For n =1 and a virtual time increment 8¢

Ga — e*in &1 — e*i(m Bx (U &t)/(dx) — e—im('

S . (mCy* . (mC)* (mC)'  (mC) (mC)° . (mC)
:E}a,m’:l—lmc— > +1i 30 + i T e +i 7 4o (11)

where m = dx is the virtual non-dimensional wavenumber with C = U &/8x the corresponding
Courant number. In the last line of (11), G is expanded in a Laurent series on m with a, the
coefficients.

The discrete approximation solution amplification factor G is algorithm specific and may be computed
via a Fourier modal analysis of the discretized CFD recursion relation. The order of accuracy of the
numerical solution, hence algorithm stability, is characterized by G. Specifically, the ‘2 Ax’ zero phase
velocity induces a short wave-length error that cascades to smaller wave numbers. Ultilization of
artificial viscosity, via an additional spatial derivative term in (1) or ‘upwinding’, can diffuse this error
mode, but typically at the expense of an unacceptable amount of purely numerical dissipation, [8, 9].
An improved theory for selective dissipation is the Taylor Weak Statement (TWS), [3], where the
dependent variable is expanded in a Taylor series in both time and space, and higher-order accuracy is
attainable via detailed mathematical manipulations.

In this paper, we document an alternative approach of improving the algorithm accuracy by
perturbing the linear basis matrix statement of a finite element discretized Galerkin weak statement
(GWS). This Galerkin matrix perturbation (GMP) method is directly incorporated, and can be
theoretically compared with a wide class of algorithms on a term-by-term basis. Numerical solutions are
presented confirming theoretical expectations for algorithm performance for one- and two-dimensional
benchmarks.

2. Weak statement algorithm
Independent of the dimension d of {2, and for general variation of physical properties and the flux

vector, the semi-discrete finite element (FE) weak statement for (1) always yields an ODE system of
the form [2]

Ws" = [MI{Q()}’ + (R} = (0} (12a)
[M]=S.[M]. (12b)
R} =S.(([U]. + [DI.N{QO)}. — (1)}, (12¢)

where {Q(r)} is the time-dependent discrete approximation nodal coefficient set. {Q(s)}’ denotes
d{Q}/dt, which may be replaced by using a 6-implicit or n-step Runge—Kutta time integration
procedure. In (12a—c) and thereafter, subscript e denotes element rank matrices, and S, symbolizes the
‘assembly operator’ carrying local matrix coefficients into the global arrays. On each finite element,
[M]. is the ‘mass’ matrix associated with interpolation, the [U], matrix carries the convection
information, [D], is the diffusion matrix resulting from genuine or artificial viscosity effects, and {b},
contains all known data.

The GWS linear basis one-dimensional equivalents of the interpolation matrix [M]
convection matrix [U], for uniform fluid speed U are of the forms, [2],

and the

€

s 220 oYL
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A Galerkin Weak Statement (GWS) for (1) does not produce a diffusion matrix [D], in (12a—c), while
a TWS formulation does. The order of accuracy of a numerical algorithm may be determined from its
amplification factor G by matching coefficients of powers in wavenumber in the Laurent series
expansion with the analytical solutions G, in (11). Using a Taylor series expansion one may readily see
that the linear basis FE approximation to the spatial derivative about the point j is of the form

o 4|9 A o'q Ao | o
S5 [ax+ Tt G0 s | O (14)

which is obviously second-order accurate. Similarly, the 6-implicit temporal approximation, for 0 <6 <
1, may also be represented in a Taylor series as

d{g}""* d{Q}"
ds

(017 = (01" + ae(o T

The standard trapezoidal (6 = 1/2) GWS form (15) is second-order accurate for the linear basis FE
construction. Higher-order accuracy may be achieved by using a higher degree FE basis, or the TWS
can maintain the third-order accuracy of the linear FE basis form with added dissipation.

For uniform mesh, [10] has reduced the Taylor series truncation error of the FD approximation to the
first-order spatial derivative terms by including the j =3, j =2 terms in (14) as

dQ,_, dg,_, dg; dQ;., dg;.,
X"a YT T TP Tar X Tax

+(1-6) )+@(Az2,Az3) (15)

_ 9iv1 79 di+2 —4;—2 Qiv3 — 43
=a= 755t b A ¢ 6Ax (16)
where the following relation must hold
a+b+c=1+2¢+2y (17)

3. The Galerkin matrix perturbation (GMP) algorithm

A Fourier modal analysis can determine how the error-induced perturbations propagate through a
fully discrete approximation. The algorithm specific amplification factor G for an n =1 step method is

+
G = Q; > _ e—in" ar _ e—imc"
Q)

where the discrete Courant number C” depends on the specific solution algorithm.
Assuming that an arbitrary order of the Taylor series truncation error for the temporal and spatial

discretization (14)—(15) may be expressed in the form of FE perturbation matrices [APERT] and

[APERX], the temporal and convection one-dimensional finite element matrices of linear basis rank for

(12b)~(12¢) become

1
Axe

(18)

[M], = [A200L] — [APERT]

_1[2 1] 1A W] 1[2-4, 1-W o)
"5l 2leeT8L Y LTE1-0 2-v ., (
and

L [U]. =[A201L] - [APERX]

U
_l[~1 1] 1[4, %] 1[-(+4) 1-% .
“2L-1 1l 2|0 Y. |he 2|-0+0) 1-Y 5 (20)
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In (19)-(20), [A200L] and [A201L] remain the GWS linear basis constructions, while

a 8
A1={12a,z_', lI’lthZa,z',
r=90 r=0
Y ]
I=t,2az", Y, =t, 2 az (21a)
r=0 r=0
o B
AZZtSEaZ_’, 1;l’2=t62arz',
r=0 r=0
Y &
L=t > az ", Y, =1, >az (21b)
r=0 r=0

where z =" is the complex modulus. The superscripts (a, 8, ¥, 8) =0 are integers, to be determined
for desired order of accuracy (Appendix A). To maintain time accuracy of the algorithm, one necessary
condition for (21a-b) is

A+¥+T+Y,=0; fori=1,2 (22)

For (19)-(20) the fully discrete weak statement algorithm (12a—c) assembly at mesh node j with
variable Q7 = Q(j Ax, ¢ + n Ar) yields the recursion relation

(A1) 1+ E)0) (A4 V) | (1))
A 2 /9 60 Ar 7 /.9
(Ax(l -¥) (- 1Ifz)U)
6A 2 i
= data from (» — 1) timestep (23)
The amplification factor (18) for (23) is
Q€+A1 G
G=—"t—=2" 24
oG (24)
where G, and G, can be resolved into spatial G(x) and temporal G(¢) components as
Gy=G@#)—(1-6)CG(x) and Gp,=G()+6CG(x) (25)

where, using relations (7) and (9), via (12a—c) and (23), yields
(1-I)e™+@-A-Y)+(1-¥)e"

G = g
_ : (26)
1-¥)e" - (A, +Y,))—(1+)e™ ™
R (k. el Al UR2Y
Hence, (25) becomes
1-T, 1+0N _,, 4-A-Y C
Gy= 5 +{(1-6)C 5 e +—6—+(1—6)7(A2+Y2)
1-v 1-v
+< ——(1-6)C— 2)e'"‘ (27)
1_F1 1+I—é —im 4—A1_Yl C 1-1[!1 1-—1]/2 im
b= 3 —6C— e +-—6———67(A2+Y2)+ 3 +60C 2 e

The GMP algorithm amplification factor (24):(27) may now be expanded in a Laurent series on m
(Appendix B). The procedure is very tedious; however, using ‘Macsyma’ (1985), and fora =g =y =
8 =2 and g, = 1 in (21a-b), one may obtain up to and including the second-order term of the series in
the form
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G =2 Am' =1+ (3iCt, + 6iCt, + 3iCt; — 2iC)m/2

=0
- ((9C*i; + (36C°t, + 18C°t, ~ 12C™)t, + 36C7t
+(36C%t; —24C7)t, +9C°12 — 12C°5 + 4C*)0
+(3Ct, + 6Ct, + 3Ct, + 3C)t, + (6Ct, + 12Ct, + 6Ct, + 12C)t,
+(3Ct, + 6Ct, + 3Ct, —9C)t, — 2Ct, — 4Ct, — 2Ct,)m* /4 + O(m”). . . (28)
The coefficients of the series (28) may be functionally expressed as

AI :f(C3 07 [], t27 t31 14, ts, t(,a t7’ tgs aa Bv ')” 6) (29)

where / corresponds to the power of m, in the Laurent expansion. Comparing the sets g, of (11) to A,
of (28), for a given degree of m a general correlation between C, 6 and the elements of [APERT] and
[APERX] may be derived (Appendix B) that can yield progressively higher-order accurate algorithms
without adding a diffusion term to the algorithm.

A simplified example is pertinent to illustrate the process. Selecting

1

92‘2—,

a=B=y=58=0, and t5=1,=0 (30)
than for the choice
t,=t,, t,=t;, and t,=—t, (31)

one may produce a fourth-order accurate GMP algorithm by satisfying the relationships

L +=0
t, +1t
[6:——t7: 23 1: :t5:t8
3C*+ (4 — CP),
t,=t,= =—t,=—t 32
1 4 C2+2 2 3 ( )
i.e.
CZ
l]=t4=7=-—t2=—t3

Hence, for C=10.8, (32) yields
ts=t,=t,=t,=0=A, =¥, =1, =Y,

c* 8
h=ty=—h=—ty=5=ae=A =Y, =¥, =~ (33)

and the corresponding [M], and [U], matrices become

[M], = Ax,([A200L]-[APERT])

ct
A |2 A Ax, [42 33]
~6 cc cr| 150033 42
727
Ulf-1 1
[U]. = U(|A201L]-[APERX]) = U([A201L]) =5 [_1 1] (34)

Using (32), the solution amplification factor (24) is
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G=1-i(Cm)- (Cg” +i (C3”!"‘)‘ + (Cf)

1
G (5CT+5C7—40m (50t — 4C?)m”
! 51 N 6!

. % (35C7 —245C° +238C° — 40C)m’
o 7!
One can readily see that (35) matches exactly with (11) up to the fourth-order term (O(m*)). A similar
result may be obtained by using TWS algorithm [3], which can be made fourth-order accurate.
As a special case (ref. Section 4), selecting C =1 yields t, =¢, =4 =—t, = —t; and g =1, = (r, +2,)/
3=0=—t;=—1,, hence

— O(m®) (35)

Ax, 1 1
[M], = Ax ((A200L]-[APERT]) = —* [1 1] , )

[U]. = U([A201L}-[APERX]) = % [:i i]

for which the amplification factor of the approximation solution for (10), in terms of wave number m, is

. m om omt omt mtw m m m"
G=1-—lm—'2—+1?!—+E——IF——6!—+1—7T+—8!——'la‘—W
m o P mt mS m' m m'
+lw+T2—!—l—1—3!———1?‘I+11—5!-+W—1ﬁ—'1—8!+-“
=e"=G, (37)

which is exact (matched) with the analytical solution amplification factor g, to eighteenth order.
For another example, selecting C =2 vyields ¢, =t,=2=—1,=—t; and t, =t =(; + LY3=0=
—t;=—t,, hence

[M], = Ax([A200L]-[APERT]) = AXT [0 1] |

1 0 (38)
Uul-1 1
[U]. = U(A201L]-[APERX]) = 5| _|
Here again, the solution amplification factor, in terms of wave number m, is
G=1-12i o am’ 2m' am’ 4m6+,8m7+2m8
=1=2m=om 13+ =15 =45 71315 T 315
am’® 4m"’ 8m'! am"? 8m'"’ 8m'*
~15835 ~ 14175 T 1155925 T 467775 ' 6081075 42567525
—e?"=G, (39)

which is exact (matched) to fourteenth order with the analytical solution amplification factor G,.
However, in this case, one may not obtain the exact solution numerically using (38) (Appendices A and
C). In general, a von Neumann frequency analysis is necessary but not sufficient to guarantee the
approximate solution accuracy. Specifically, matching the coefficients of equal powers of m in (11) and
(2§) only guarantees that the ratio C"/C =1, but does not guarantee the phase velocity relationship
u'=u.

A specific order of solution accuracy, e.g. sixth order, can be achieved by selecting the summation
limits a, B,7,8 in (21a)-(21b) for [APERT] and [APERX], as described in Appendix A. The
corresponding coefficients ¢,-t, in (21a)-(21b) can then be determined. For example, see Appendix B,
selecting B =y =a =& =2 guarantees a sixth-order accurate solution for any a,, 0sr<a,p,vy,d.
Specifically, for # =1/2 and a, = 1, the coefficients in (21a)-(21b) become
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AC* +30C* +6

t,=— ,
: 45C* — 405
(15C* +75C* = 90), + 3C° + 22C* + 47C* + 8
t = .
: 30C* - 30C° - 360
2 _ 2 _ 2
. (6C* - 6)t, + (73c 36)t, + C , (40)
3CT+12
21t, + 721, — 391, + 5C°
18 = - 54 )
Bt + 4+ 2 Lt
ts=— 3 and ¢, = — 3

Although the GMP algorithm needs only two element support for each node, i.e. the equation for Q;
involves Q, | and Q, ., only, the procedure (19)-(20) results can be compared directly with compact
finite difference schemes, cf. [10]. However, the theory and implementation of GMP is much simpler.
Also note that the GMP assembly matrices in (34)—(36) retain the efficiency of a linear basis (or
centered FD) algorithm form.

4. Direct time integration

The necessary condition for the approximation solution of (1) to agree exactly with the continuum
solution (2) is certainly

G=G, (41)
Hence, the formulation (theoretical) goal is for Eqs. (10) and (18) to match to extremum order. The

general rational form of (18)-(19) is

—im im 2im im
ac ta;e ta, a ta;e tae (42)

be " +b,e"+b, b +b,e’"+b,e"

where a, and b,, 1 <i <3, are specific CFD algorithm coefficients. From (6) and (13), one can write
(1,

(a,+a,e™+a, e e = (b, +b,e" + by e

o« L

o -n -n in .
=a 2 <l_ Cn)mn +a? Z (l__ (C+ 1)n>mn +a, 2 <_T(C+2)n>m
1ni() n! n=0 fl! n=0 n.
S i" n S i" n n
663 ()0, 2 (2

—(a,+ay+a,—b,—b,—b)+ > —:z—![a,C"+a2(C+1)"+a3(C+2)"—b2—2"b3]

“o (3)
i.e.
-1 -2 C (C+1) (C+2)
-1 =2° C* (C+1) (C+2)
det|-1 -2° C’ (C+1) (C+2)
-1 -2 ¢* (Cc+1) (Cc+2)
-1 =2° C° (Cc+1y (C+2)
=4C3(C+ 1)AC+2)(C-1)(C~-2)=0 (44)
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The condition (41) yields the following roots for C
C=0,=x1, %2 (45)

For a time integration ranging from ¢ to ¢t + n, At,, where the subscript ‘e’ denotes a specific element,
the weak statement algorithm (12a—c) yields the following 8-implicit relation

Sen((M]. +6 At [U]){AQ}, — Ar.({b}. — [U]{Q"}.)) = {0} (46)
where
T C, Ax
{AQ}, ={Q""' = Q™}.. m.=7 and Ar= leU | : (47)
The condition for (46) to be true is
T|U|
Co="ar (48)

[

Consequently, the weak statement modified to total time 7T is

5. ( (5L e 1+ 80n, AUV (80), (0, A ((BY, - UIUNO™10 ) = (0 (49)

Hence, for element specific C,, taking the continuum total time 7 outside the element matrix assembly
S., one may derive

S(('—LC’—‘ [M]+ auc[m){AQ}e - (b}~ UJU]{Q“}E)) =(0) (50)

The multiplier coefficient of the mass matrix [M] is always positive (and equal to |U,|/C,) while for the
convection matrix [U] the multiplier is strictly U,.
Then, for C, =1, (50) in one dimension becomes

S.((1U|[A200] + 6U [A201]){AQ} — ({b}. — U[A201{Q"}.)) = {0} (5D

Using (51), one can enforce the element specific Courant number C, = 1, and hence, the approximation
solution Q(n, At,, j Ax,) from (12a—c) becomes exactly equal to the analytical solution g in (2) at any
time T. If C#1, then one may derive for one dimension

S((% [A200] + 0Ue[A201]> {80} —({b). - UE[A201]{Q”€}6)> = {0} (52)

5. Multidimensional forms
5.1. Tensor product factorization algorithm

The fluid convection contribution to (1) can be resolved into components parallel to the global
coordinate system x;. The multi-dimensional form of (12a—c) is [2]

S.([M]. + 6 Ac [U]){AQ}. + Ar ([U].{Q"}.)) = {0} (53)

where boldface U indicates a vector field. On assembly over all £, of 2", (53) yields a system matrix
[$] which can be approximated as

[S1=S.(IM]. + 0 Ar [U].) = [SX]®[SY] (54)

where the symbol ® denotes the outer (tensor) matrix product. The product [SX]|®[SY] in (54) is
inexact with truncation error of order (8 Atz), which is the same order as the forward (8 =0) or
backward (6 = 1) Euler integration procedures in (10).
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The definitions for forming (54) are

[SX]=S.([SX].) = S.([MX], + 6 At [UX].) (55a)

[SY]=S.([SY].) = S.([MY], + 6 At [UY],) (55b)
From (55a), via the modified weak statement (50)—-(51), one may derive that for C, =1

n.S,([SX).) = TS.(|U.|[A200] + 6U,[A201]) (56a)

n,S.([SY].) = TS.(|V.|[A200] + 6V,[A201]) (56b)

where U, and V, are element dependent velocity components in the x and y directions, respectively.
The corresponding approximation linear algebra solution procedure for (53) becomes the two-step
sequence

[SX}{P} = —A{R)}
[SYHAQ} = {P}

where {P} is an intermediate array of data.

(57)

5.2. The time-splitting (TS) algorithm

In addition to (54), the residual in (57) may also be approximately resolved into directional
components

{R} ={RX}®{RY} =S.({RX}. + {RY},) (58)
where
{RX},=UJ[A201] and ({RY}. =V,[A201] (59)

The insertion of (58) into (57) is termed time-splitting, and in two dimensions the TS formulation is
operationally

S.ISXI)(P) = — 5 S.(RX(Q)"}.)

» (60a)
Q)" ={0)" + (P}

SUSYIAQ} = - S.((RY(Q)"" 7},
{0} ={0)""" + (A0}

where {Q}"<"'"? is interpreted as an intermediate solution approximation.

(60b)

6. Results and discussion

The analytical solution to (1) in one and two dimensions, for s =0, is exact preservation of the initial
condition translated on {2 over n Ar. Computational results herein verify theory and summarize
performance for the traveling wave propagation verification problem, for a range of Courant numbers
(C<2) and with four different initial condition sets including a Gaussian wave, a full sine function
distribution, and two square waves of different initial wavelength. The two-dimensional unsteady
verification problem is solid body rotation of an axisymmetric initial condition, i.e. the ‘cosine hill
convection problem. The non-dissipative trapezoidal rule (¢ =0.5) time integration algorithm is used
for solving all verification problems.
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6.1. One-dimensional smooth and non-smooth wave convection, C <1

An isolated energy packet is a standard verification problem that has been studied for one-
dimensional pure convection wave propagation by [1,6] using FE and a finite difference (FD)
Crank-Nicolson algorithms. The one-dimensional form of Eq. (1) is

d a
3’(61)=a—‘f+U£=0, on2xtCR' xR* (61)

where U is a constant and the analytical solution g(x,t) is preservation of the initial condition
q(x,t=1,) as it is convected parallel to x. In Fig. 2, the initial and the analytical final solutions of a
Gaussian distribution convection GWS and GMP solution data are compared for Courant number C =1
after 20 timesteps. The initial wave is interpolated across 10 nodes, hence the waveform has been
translated 2 wavelengths. The GWS solution is non-dissipative and dispersive, as theoretically
predicted, with trailing oscillatory maxima about 20% and with peak level reduced (via distortion) by
almost 10%, Fig. 2(a). The comparative GMP algorithm (35) solution is dispersion-free and nodally
exact to within round-off error (order 10™'°), Fig. 2(b).

For propagation of a full sine wave, 20 timesteps at C =1 translates g, two wavelengths and the
leading (negative) extremum of the GWS solution decays by nearly 40% and trailing dispersion error
dominates the entire solution, Fig. 3(a). The companion GMP algorithm solution is totally devoid of
2 Ax error oscillations and the sine wave pattern is nodally exact (to round-off), Fig. 3(b). Fig. 4
documents the companion C=0.5GWS and GMP solutions after 40 timesteps (two wavelengths
displacement). The lower Courant number slightly improves the GWS solution, but it is still
unacceptably polluted by dispersion error, Fig. 4(a). Conversely, for 8 =y=1 and ¢, =¢,=1/8,
t, =ty = —1/8, the GMP algorithm solution remains nodally exact, Fig. 4(b), albeit to a lower order in
round-off (order 10~ °).

A r1ange of CFD algorithms applied to evolution of a square wave (non-smooth) propagation
verification is detailed by Hirsch [7, Ch. 21.3], recall Fig. 1. For an initially 20-node wide square wave,
Fig. 5 compares the GWS and GMP solutions for C = 1 for propagation over 3 wavelengths. The linear
basis GWS solution dispersion error totally distorts the initial wave geometry. In distinction, the GMP
algorithm solution, using (36), is a nodewise exact solution to within round-off error (~107'%).

Solutions obtained for C = 0.5 after 120 timesteps are compared in Fig. 6. In qualitative agreement
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Fig. 2. Gaussian wave propagation, two wavelengths at C = 1. (a) GWS nodal solution; (b) GMP nodal solution.
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with Fig. 1(a), the linear basis GWS solution, Fig. 6(a), remains very dispersive with an error extremum
of 22%. For the data selection in (32), the GMP algorithm is only fourth-order accurate, hence it
produces the dispersive solution shown in Fig. 6(b). However, using 8 =y = 2, which yields tenth-order
accuracy, the GMP solution is again nodally exact to a lower order (~10~") in round-off, Fig. 6(c).
Unlike Fig. 1(b), this excellent non-unit Courant number GMP solution does not suffer from any
artificial diffusion.

The most challenging definition for this problem is the minimum (2 Ax wide) initial wavelength
square wave. Fig. 7 summarizes comparative solutions for this square wave propagation over 10 initial
wavelengths at C=1 and C=0.5. Clearly, the linear basis GWS solution is totally distorted by
dispersion error, with trailing wake and peak loss error of nearly 50%, Fig. 7(a). As predicted by the
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Fig. 5. 20-nodewide square wave propagation, three wavelengths at C = 1. (a) GWS solution; (b) GMP solution.

Fourier modal analysis (37), the corresponding eighteenth-order accurate GMP solution remains
nodally exact (to order 10~ '%) and dispersion-free, Fig. 7(b). The companion C = 0.5 solutions attest to
GMP algorithm relative robustness, Fig. 8(a) and (b).

6.2. Two-dimensional convection via a solid body rotation

Originally developed for atmospheric dispersion prediction CFD assessments, this is an extremely
informative non-diffusive 2-d verification test case for evaluating any algorithm. A finite difference
(FD), a finite volume (FV), and several finite element (FE) algorithm tests are reported by [4], and a
FE adaptive h-p mesh refinement strategy result is published by [5]. The solution to this unsteady,
linear pure convection verification problem satisfies

%9 Vg=0 in{}
ot T#'Vg=0 in

62
g=0 on a{2 (62)

where the imposed solid body rotational velocity field is u = réé,. The ‘rotating cone’ initial condition is
an elevated cosine-hill, see Fig. 9(a), with specification

1

0 otherwise

where 1<j<2 and
p2=(xl—x;)2 O0=x <1 (64)

In (64), x;’ denotes the mesh centroidal coordinate of the axi-symmetrical initial distribution. The
analytical solution is again exact preservation of the initial condition, as the distribution is circularly
convected around the z-plane.

The full-rotation solutions obtained on a uniform 33 X 33 node mesh for k =1 and & =2 FE GWS
algorithms, using the (non-diffusive) trapezoidal time integration scheme and for C =1.0 at the
distribution centroid are shown in Fig. 9(b) and (c). Both GWS solutions suffer large dispersive error
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Fig. 6. 20-nodewide square wave propagation, three wavelengths at C = 0.5. (a) GWS solution; (b) GMP solution (8 =y =0);
(c) GMP solution (8 =y =2).

accumulation on this mesh at this large Courant number. The k = 1 FE solution has trailing wake error
extremum exceeding 25%, Fig. 9(b), and the solution peak is reduced by nearly 30% and severely lags
behind the correct location. Although an improvement in the peak level (~5%) accrues to the
quadratic basis solution, Fig. 9(c), the dispersion error extremum is nominally worsened by 3%.
Therefore, increasing basis degree k of an FE implementation is of marginal impact for this problem.

For comparison, the Crank-Nicolson finite difference (CNFD) solution, Fig. 9(d), after one full
revolution is poorer than either FE result, with solution peak level loss to 45% and a trailing wake error
extremum of 28%. The ‘best appearing’ solution in the literature is the h-p adaptive FE GWS mesh
solution obtained after 400 timesteps for one full revolution [5], reproduced as Fig. 9(¢). The surface
perspective plot appears smooth, but nearly 2% of the peak level is lost even for this low Courant
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Fig. 8. 2-nodewide square wave propagation, ten wavelengths at C=0.5. (a) GWS solution; (b) GMP solution (B=y=2).

number (C ~ 1/6). No results are reported for unit Courant number, which severely aggravates short
wavelength error oscillation creation throughout the entire solution, cf. Fig. 9(b) and (d).

In distinction to each of these solutions, using the time-splitting technique (53)—(60b), the linear basis
modified weak statement GMP solution, for C, =1 after one revolution, yields the nodally exact
solution with absolutely no dispersion error or phase lag (to round-off, order 1074, Fig. 9(f)). The GMP
method utilizes 32 timesteps to complete one full revolution. Further, the peak travelled the correct
distance, and the solution is certainly the ‘best’ among those available for comparison. The mesh
independence of the GMP weak statement formulation (50) for C, =1 is also verified on a 17 X 17 node
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Fig. 9. Rotating cone solutions, one revolution on a 33 x 33 mesh. (a) Initial condition and exact final solution; (b) k= I‘FE
GWS, C=1; (c) k=2FEGWS, C = 1; (d) Crank-Nicolson FD, C=1; (e) h-p FE, C~1/6, At = 21/400; (f) GMP solution,

C.=1, At=2m/32.

uniform mesh using Af=2m/16. The solution after one full revolution, Fig. 10, confirms exact

(b) /Corrwt Peak Position

max = 70.6, min = -24.9

orrect Peak Position
(d)

max = 46.6, min = -28.3

_—

preservation of the initial condition without dispersion error or phase lag to round-off (order 1(.)'4). Via
(48), the GMP mesh measure becomes directly proportional to the solution time-step for a particular C,
in (50). Hence, for a large timestep, the GMP algorithm will produce a nodally accurate (to round-off)

solution only on a very coarse mesh.
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Fig. 10. Rotating cone GMP solution on a 17° mesh, after one revolution at C,=1, Ar=(2m)/16.

7. Conclusions

A weak statement perturbation technique based on Fourier modal analysis of the approximation
solution amplification factor has been developed for generating progressively higher-order accurate
CFD algorithm constructions for non-diffusive (pure convection) applications. The GMP theory is
complete and easy to incorporate in one dimension, or in two dimensions using time-splitting. It
exhibits the efficiency of a strictly linear basis FE GWS (or centered FD) algorithm. The approximation
solution process for the modified weak statement, using a local element Courant number definition is
mesh and time-step independent.

Acknowledgments
This work has been partially supported by grant MSS-9015912 from the National Science Foundation.
The authors gratefully acknowledge the support provided by the UT CFD Laboratory and its corporate

sponsors. The authors also acknowledge the helpful suggestions from Dr. S.B. Mulay and Mr. D.J.
Chaffin.

Appendix A

Consider the standard FE linear basis one-dimensional matrices [A200] and [A201] in (13), i.e.

Ax,[2 1
[M]. = Ax [A200L] === | | 5|,

(A1)

U], = U[A201L —E[_l 1]

Wle=UlA0IL =75 1 1],.,
The corresponding amplification factor (18) for algorithm (12a—c), (24) becomes

(1 +(1-6)C 1) m g 4 (1 (1-6)C 1) i
= - 5)e —t\l=—(1- 5)e
G= 6 2 7 6 6 2 (A.2)
Clocl)emit (Crach)em
g 0C7)e "t g t0C5)e
In general, for linear basis FE and FD, via (A.1), Eq. (A.2) can be written as
+a,z +
flz) =220 (A.3)
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where, a, and b,, 1 <i, are approximation coefficients and z =¢e"".

DEFINITION: 1f p(x)=%,., cx' is a Laurent series (i.e. k could be a negative integer) which is not
identically zero then, by the order of p(x) we mean the least index i such that ¢, # 0. We denote the
order of p(x) by 0(p(x)). For example, if p(x) = —3x + x* — x>+ - - - then O(p(x)) =3, if p(x) =5x"" +
1+x"+ - then O(p(x)) = -2, if p(x)=1—x+x"+--- then O(p(x)) =0, etc.

If O(p(x))=r then one can write p(x)=x"q(x), where g(x) is a power-series (i.e. non-negative
components only) of order zero. For example p(x)=x *(5+x"+x’+---) in the second example
above.

If g(x) is a power-series of order zero, then its reciprocal is also a power-series of order zero.
Therefore, if p(x) is of order r then its reciprocal is x "g*(x), where g*(x) denotes the reciprocal of
q(x). Also, if o(x) is another Laurent series of order s, then the order of p(x)a(x) is exactly r + s, and
the order of p(x)/a(x) is exactly r —s. '

Note that if the Taylor expansions of f(e") in (A.3) and ¢ match up to (and including) the
(r — 1)th power of x then, the order of e — f(e") will be =r ([11]).

C

THEOREM. Assume that C#0, 1, 2. Then, for (A.3) there does not exist any value of a,, b;, such

- . . o
that 0(e™ — f(e'™)) = 6. In other words, for any choice of function f(z) we must have 0™ — f(e'™)) <
5.

PROOF. We have

N . . 42 . 02
blelm( +bze|m(f+l)+b3e\m((+ )_al _azelm_a3e| m

eimC _ eim — :
f( ) bl+bze|m+b3e12m

_Nm)
= Dim) (A.4)
where N(m) and D(m) denotes the numerator and the denominator. Clearly, both N(m) and D(m) are
power series, in particular, O(D(m))=0. Since 0(e"" — f(e'™)) = O(N(m)) — O(D(m)), it follows that
0™ = f(e™)) < O(N(m).

Also, we can see that

NG) = (a, +ay +ay—by = b, =by) + 2 —ru,m” (A.5)
i=1 °
where u, =a,C" +a,(C+1)" +a,(C+2)" — b, —2"b,.
Now suppose that O(N(x)) = 6. Then, we must have u, =---=u,=0, as well as (a, +a, +a;—b, —
b, —b;)=0. Now, u; =+ =u, =0 yields five homogeneous linear equations in a,, a,, a;, b,, b;. The

determinant of this system can be easily computed. Up to a sign, via (44), it turns out to be
4(C —2)(C — 1)*C*(C +1)*(C +2). Since, by assumption C #0, +1, £2, this determinant is non-zero,
forcing a, =a, =b, = b, =0. But then b, =0 too. This is obviously absurd. In conclusion, we must
always have O(N(x)) <5.

Consequently, for (A.3), O(e'"“ - f(e"™)) can never exceed 5. [

For the GMP method (19)-(24), Eq. (A.3) for algorithm (12a—c), is of the form

a taz+-+apzt !
g;e’(z): = (A6)
b, +bz+--+bpz
1 2 P

where P — 3 =2 X max degree (e, B, v, 8). Eq. (A.6) directly relates P to the width of the computation-
al stencil. For example, y =1, B=1, and @ =8 =0 in (21a-b), (A.3) takes the form



S. Roy, A.J. Baker | Comput. Methods Appl. Mech. Engrg. 131 (1996) 209-232 227

3 3 4
a,ta,z+a,z’ ta,z tasz

% =
@ b, +b,z+b2  +b,2" +byz'

(A7)

which is equivalent to the P =5 pentadiagonal (quadratic FE basis, or five point centered FD) for.m.
Again, for y =2 =8, (A.6) is equivalent to the P =9, i.e. 9-wide diagonal (quartic FE basis, or nine
point centered FD), and so on. It can also be shown by induction that

0" — Fe"")<(2P-1) (A.8)

Appendix B

Fora =B=vy=8=2, and A,:lal,A,:1a2, ¥, :psl, ¥,:ps2, I}:gal, I5:ga2, Y :upl, Y,:up2, 4,:aq,
a,:b, in (21a-b) and (27), this appendix, generated using Macsyma (1985) symbolic logic program,
verifies the analytical process leading to the determination of the algorithm order-of-accuracy.

Note: (a) ‘gh’ in (c21) is the same as G in (24),

(b) ‘term?’ in (c29) is A4, in (28),
(¢) ‘term2’ in (c30) is A, in (28),
(d) ‘term3’ in (c36) is A, in (28), ‘term4’ in (c42) is A, in (28),
(e) ‘term5’ in (c50) is A in (28) and ‘term6’ in (c56) is A in (28).
(c2) z:%e (m*7%i)$
(c3) x1:2z -1%
(c4) x2:2%
(c5) theta:1/2% ) R
(c6) lal:tl=( l+a*z —1+bx*z -2)$%
(c7) psl:t2+(l+axz 1+bxz 2)$
(c8) gal: t3*(1+a*z:-1+b*gA-2)$
(c9) upl:té=(l+a*z 1+bxz 2)$
(c10) la2:t5+(1+a*z —1+b*z -2)$
(cl1) ps2:t6=+(l+axz 1+b*z 2)$
(cl2) ga2:t7+(1+axz —1+bxz -2)$
(c13) up2:t8+(l+a*z 1+bxz 2)$
(c14) gal:-(upl+lal+psl)$
(c15) ga2 :-(up2+1a2+ps2)$
(c16) ght:((1-gal)=*x1+(4-lal-upl)+(1-psl)=*x2)/67%
(c17) ghx: ((-ps2)*x2-(la2+up2)-(1+ga2)+x1)/2$%
(c18) ghn:ght-(1~theta)*c*ghx$
(c19) ghd: ght+thetax*c*ghx$
(c20) gh:ratsimp(ghn/ghd)$
(c21) th:taylor(gh,m,0,6)$
(c23) ta:taylor(z -¢,m,0,9)$
(c24) terml:coeff(th,m,1);
(d24) /r/ ((Zib+7%i a+%i) c t8+(2Zib+2%ia+27%i) c t6 + (Zib+Zia+%i) c
t5-2 Zi c)/2
(c25) tal:coeff(ta,m, 1);

(d25) /r/ -Zic
(c26) solve([terml-tal], [t6]);
(426) [t6=— t8-;-t5]

(c27) t6:rhs(Z[1])$%
(c28) th:ev(th,eval)$
(c29) terml:coeff(thm,1);
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(d29)
(c30)
(d30)

(c31)
(d31)
(c32)
(d32)

(e33)
(c34)
(e¢35)
(d35)
(c36)
(d36)

(c37)
(d37)
(c38)
(d38)

(c39)
(c40)
(c41)
(d41)
(c42)
(d42)

(d43)
(c44)
(d45)
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/x/ -Zic
term2:coeff(th,m,2);
/r/ ((3b+3 a+3) c t8+(27 b+15 a+3) c t5+(2b+2 a+2) c t4
+ (4 b+4 a+h) c t2+(2 b+2 a+2) c t1-6c?)/12
ta2:coeff(ta,m,2); o2
/x/ “Ty
solve([term2-ta2],[t5]);
[£5=-((3 b+3 a+3) t8+(2 b+2 a+2) t4
+(4 b+4 a+4d) t2
+(2b+2 a+2) t1)/(27 b+15 a+3)}
t5:rhs(Z[1])%
th:ev(th,eval)$

term2:coeff(th,m,2); o2
/r/ Ty
term3: coeff(th m,3);

/r/ ((60 71 b*? +(66 Zia+12 Z1) b+18 721 a’+6 Zia) ct8
+(31 71 b +(30 %1 a-2%i) b+7 %Zi a —2%1 a-%i) c té4
+ (80 Zib? +(88 %1 a+16 Z1) b+24 71 a +8 %1ia)ct2
+ (=41 Z1ib*+(-46 Zi a- 1071)b 13 Zi a’-6 Z1 a-Zi) c tl
+(27 Z1i b+15 %1 a+3 Zi) c>)/(108 b+60 a+12)
ta3:coeff(ta,m,3); 7ic?
/t/ 3
solve([term3-ta3],[68]);
[t8==((31 b*+(30 a-2) b+7 a*~-2 a-1) t4
+ (80 b*+(88 a+16) b+24 a*+8 a) t2
+(-41 b+(-46 a-10) b-13 a’6 a-1) tl1+
(9 b+5 a+1) c?)
/(60 b*+(66 a+12) b+18 a’+6 a)]
t8:rhs(Z[1])$%
th:ev(th,eval)$
;e;mB:coeff(th,m,3); 71 o3
T
term4:coeff(th,m, 4); 6
/r/ (((10b°+(21a+12)b’+(14 a’+14 a+2) b
+3 a’+4 a*+a) ¢’

+(80Db°+126 a b*+(70 a*+16 a+16) b+12 a’+2 a’+2 a) c) t4
+((20b°+(42a+24) b*+(28a°+28a+4) b

+6 a’+8 a2+2 a) ¢’
+(-20b’+(-42a-24) b*+(- 28a -28a-4)b

—6a —8a -2a)c)

t2+((10b +(21 a+12) b? +(14 a’+14 a+2) b+3 a’+4 a +a) c’
+ (=400 b+ (- 498a+96)b +(- 218a +64a+16)b 36 a’+2 a?
+2a) c) t1+(30 b?+(33 a+6) b+9 a’+3 a) c*
+ (30 b? +(15 a-18) b+3 a’-3 a) c?)
/(720 b*+(792 a+144) b+216 a’+72 a)(c4&3) tas:coeff(ta,m,4);

4
C

/r/ 24
term4 :coeff(th, m, 4);

/r/ (((10 b3+(21 a+12) b®+14 a’+14 a+2) b+3 a’+4 a’+a) ¢’
+ (80 b’+126 a b*+(70 a2+16 a+16) b+12 a3+2 a2+2 a) c) t4
+((201° +(42 a+24) b? +(28 a +28 a4) b+6 a*+8 a 242 a) c?
+(-200b° +( 42 a=24) b*? +( 28 a 2-28 a-4) b-6 a -8 a —2 a) c)
t2+((10 b +(21 a+12) b? +(14 a’+14 a+2) b+3 a’+4 a +a) c3
+ (=400 b?>+(~498 a+96) b*+(-218 a’+64 a+16) b-36 a’+2 a?




(c46)
(d46)

(c47)
(c48)
(c49)
(d49)
(c50)
(d50)

(c51)
(d51)
(c52)
(d52)
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+2a)c) t1+4(30 b%+(33 a+6) b+9 a’+3 a) c*
+ (30 b*+(15 a-18) b+3 a’-3 a) ¢*)

/(720 b%+(792 a+144) b+216 a*+72 a)
solve([termé4-ta4], [t4])§
[ts=-((20 b>+(42 a+24) b*+(28 a’+28 a+4) b+6 a’+8 a?

+2a) c’-20b%+(-42 a-24) b*+(-28 a®’-28 a-4) b—-6 a*-8 a’
-2a) t2+((10b°+(21 a+12) b?+(14 a’+14 a+2) b+3 a’+4 a’+a)
c?-400 b*+(96-498 a) b?+(-218 a’+64 a+16) b-36 a’+2 a’+2 a)
t14(30 b?+(15 a-18) b+3 a’-3 a) c?)

/(10 b3+(21 a+12) b2+ (14 a’+14 a+2) b+3 a’*+4 a’+a) c’+80 b’
+126 a b24(70 a’+16 a+16) b+12 a’+2 a’+2 a)]

t4:rhs(Z[1])%

th:ev(th,eval)$

termé : coeff(th,m,4); ot
[x/ 2%
term5 : coeff(th,m, 5);

/r/ (((50 Zi b*+(155 Z1i a+110 Zi) b°>

+ (175 Zi a®+235 Z1i a+70 Zi) b?+(85 Zi a*+160 Zi a*+85 Zi a+10 Zi)
b+15 Zi a“+35 Zi a’+25 Zi a’+5 %i a) ¢’

+ (950 21 b*+(1955 Z1i a-430 Zi) b>+(1675 Zi a*-5 Zi a+610 Zi) b?
+ (625 Z1i a’+100 Zi a?+445 Zi a+70 Zi) b+75 Zi a*-25 21 a’+25 Zi a?
+5%1ia) c’+(-1000 Zi b*+(-2110 Zi a+320 Zi) b’

+(-1850 Zi a*~-230 Zi a-680 Zi) b?

+(-710 %i a’-260 Zi a®-530 Zi a-80 %i) b-90 Zi a*-10 Zi a’

-50 Zi a’-10 Zi a) ¢) t2+((-200 Zi b*+(-520 Zi a-240 %Zi) b?
+(-490 Z1 a®-400 Z1i a-40 Zi) b*+(-200 %1 a’-220 %1 a’-40%i a) b
-30 Z1 a*~40 Z1 a*-10 Zi a?) ¢*+(2200 Zi b“+(3080 Zi a-1680 Zi)b?
+ (1550 Zi a?-2080 Zi a-40 Z1i) b*+(340 Zi a*-820 Zi a’~40 %Zi a) b
+30 Zi a*-100 Zi a’-10 Zi a®) ¢*+(16000 Zi b*

+ (20840 Zi a-12480 Zi) b>+(11540 Zi a?-9760 Zi a+2240 Zi) b’

+ (3100 Zi a’-2920 Zi a’+440 Zi a) b+360 Zi a*-220 %1 a*+20 Z1i a?) ¢)
t14(~50 Zi b>+(105 Zi a+420 Zi) b?+(65 Z1i a’+260 Zi a-10Zi) b
+25 21 a*-5 %1 a) c’+(520 21 b3+(1272 Zi a+1164 Zi) b?

+ (443 71 a®+428 71 a-76 Zi) b+21 Zi a’+43 Zi a*~8 Zi a) ¢’

+(160 21 b°+252 Zi a b*+9140 Zi a’+32 Zi a+32 Zi) b+24 Zi a°

+4 71 a’+4 Zi a) ¢)/((3600 b3>+(7560 a+4320) b?

+ (5040 a%+5040 a+720) b+1080 a*+1440 a’+360 a) c?+28800 b’
+45360 a b*+(25200 a’+5760 a+5760) b+4320 a’+720 a’+720 a)
ta5:coeff(ta,m,5); 71 ¢S

/x/ 7120

solve([term5-ta5], [t1]);

[t14+(((50b“+(155 a+110) b +(175 a?+235 a+70) b?

+ (85 a’+160 a’+85 a+10) b+15 a*+35 a’+25 a’+5 a) c*

+ (950 b*+(1995 a-430) b>+(1675 a’~5 a+610) b2

+ (625 a’+100 a*+445 a+70) b+75 a“~25 a’+25 a%+5 a) ¢?-1000 b*
+(320-2110 a) b?>+(-1850 a*~230 a~680) b*?

+(-710 a°-260 a*-530 a-80) b-90 a*~10 a’-50 a*~10 a) t2
+(30b°+(63 a+36) b?+(42 a’+42 a+6) b+9 a’+12 a’+3 a) c°®

+ (190 b>+(483 a+420) b*+(275 a®+308 a+38) b+36 a*+31 a’+a) c*
+(520b3+(1272 a+1164) b*+(443 a’+428 a-76) b+21 a*+43 a*-8 a)
c?+160 b>+252 a b?+ (140 a’+32 a+32) b+24 a’+4 a’+4 a)

/(200 b*+(520 a+240) b>*+(490 a’+400 a+40) b*?

+ (200 a’+220 a®+40 a) b+30 a*+40 a’+10 a?) c¢*

+(-2200 b*+(1680-3080 a) b>+(-1550 a®+2080 a+40) b?
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+(-340 a’+820 a?+40 a) b-30 a*+100 a’+10 a?) c?-16000 b*
+(12480-20840 a) b’>+(-11540 a®+9760 a-2240) b’
+(-3100 a’+2920 a®-440 a) b-360 a“+220 a*-20 a*)]

(c53) t1:rhs(Z[1])$

(c54)
(c55)
(d55)
(c56)
(dse6)

(c57)
(d57)
(c60)
(d60)

th:ev(th,eval)$
term5:coeff(th,m,5); 71 o
[t/ 7120

termé : coeff(th,m,6);

/r/ (((500 b>+(1600 a+700) b*+(2005 a’+1620 a+200) b’

+(1235 a’+1395 a®+360 a+20) b?+(375 a“*+530 a’+195 a’+20a) b

+45 a°+75 a“+35 a’+5 a?) ¢’+(-21000 b>+(-51000 a-7800) b*
+(-48030 a’-6480 a+10920) b >+(-23250 a’-4770 a’+7560 a—-2280) b’
+(-5850 a*~2100 a’+2430 a’-480 a) b-630 a°~450 a“+150 a>-30 a?)
c+(220500 b +( 349200 a-252900) b*+(268245 a®-230220 a+102780) b’
+(110115 a*-99045 a*+57240 a+180) b?

+(23175 a*~22230 a’+7155 a?+180 a) b+2205 a°~1125 a*+315 a’

+45 a?) ¢>+(~200000 b*>+(-299800 a+260000) b*

+(-222220 a®+235080 a-113920) b>+(-88100 a*+102420 a’~65160 a
+2080) b2+(-17700 a“+23800 a’-9780 a’+280 a) b-1620 a’+1500 a*
-500 a°-20 a?) ¢) t2+(-100 b“+(-260 a-120) b’

+(-245 a’-200 a-20) b*+(-100 a®*~110 a®-20 a) b-15 a“-20 a’

-5 a2) ¢'4+(120 b*+(276 a+96) b>+(228 a*+120 a-24) b?

+ (84 a’+60 a’-12 a) b+12 a*+12 a’) ¢’

+ (11000 b*+ (1540 a-840) b>+(775 a*-1040 a-20) b?

+(170 a*-410 a*-20 a) b+15 a“*-50 a*~5 a?) c?®

+ (680 b*+(1210 a+1560) b>+(145 a*+280 a-1040) b’

+(-175 a’+40 a*~170 a) b-60 a*-35 a’-5 a*?) c’

+ (8000 b“+ (10420 a-6240) b>+(5770 a%-4880 a+1120) b?

+ (1550 a’~1460 a%®+220 a) b+180 a“*-110 a’+10 a*) c°

+(-37320 b*+(~23472 a+26808) b>+(-5856 a’+9120 a+768) b’
+(-738 2°-690 a®+264 a) b+66 a*-84 a*+30 a*) ¢’

+(-68280 b*+(90 a+77040) b>+(3255 a’+10320 a-1560) b*

+(225 a*+1110 a®-330 a) b-90 a*+135 a’-45 a?) c’

+(-3200 b*+(296 a+2496) b>+(2228 a®+1760 a+1856) b’

+ (604 a’-520 a®+248 a) b+72 a“-28 a*+20 a®) c)

/({72000 b*+(187200 a+86400) b>+( 176400 a*+144000 a+14400) b?

+ (72000 a3+79200 a’+14400 a) b+10800 a*+14400 a*+3600 a*) c*

4+ (-792000 b*+(-1108800 a+604800) b’

+(~558000 a*+748800 a+14400) b?+(-122400 a>+295200 a®+14400 a) b
-10800 a*+36000 a°+3600 a?) c?-5760000 b*+(-7502400 a+4492800) b’
+(-4154400 a®+3513600 a-806400) b’

+(-1116000 a*+1051200 a?~158400 a) b~129600 a“+79200 a>-7200 a*)
ta6:coeff(ta,m,6); b
/r/ —756

solve([termé6-ta6], [t2]);

[t2=-((120 b*+(276 a+96) b’ +(228 a’+120 a-24) b?

+ (84 a’+60 a*-12 a) b+12 a“+12 a*) c®

+ (680 b*+(1210 a+1560) b>+(145 a®*+280 a-1040) b?
+(-175 a’+40 a%*~170 a) b-60 a“*-35 a*-5 a?) c°

+(-37320 b*+(26808-23472 a) b>+(-5856 a’+9120 a+768) b’
+(-738 a®-690 a’+264 a) b+66 a*-84 a*+30 a?) c*

+(~-68280 b“+(90 a+77040) b>*+(3255 a®+10320 a—-1560) b?
+(225 a’+1110 a?-330 a) b-90 a*+135 a>~45 a®) ¢?-3200 b*
+ (296 a+2496) b+(2228 a®+1760 a+1856) b?
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+ (604 a’-520 a*+248 a) b+72 a“-28 a*+20 a®)

/((500 b>+(1600 a+700) b*+(2005 a?+1620 a+220) b’

+(1235 a*+1395 a?+360 a+20) b?+(375 a*+530 a’+195 a’+20 a) b
+45 a’+75 a*+35 a’+5 a?) c®+(-21000 b>+(-51000 a~7800) b*
+(-48030 a®-6480 a+10920) b°+(-23250 a’~4770 a*+7560 a-2280) b?
+(-5850 a“*~2100 a’+2430 a’~480 a) b-630 a°-450 a*+150 a’-30 a*)
c“+(220500 b°+(349200 a-252900) b*+(268245 a®?-230220 a+102780) b’
+(110115 a*~99045 a®+57240 a+180) b?

+ (23175 a*-22230 a’+7155 a’+180 a) b+2205 a°-1125 a*+315 a’

+45 a?) ¢c2-20000 b°+(260000-299800 a) b*

+(-222220 a%+235080 a-113920) b’+(-88100 a’+102420 a’-65160 a
+2080) b2+(~17700 a“*+23800 a>-9780 a?+280 a) b-1620 a’+1500 a*
-500 a’-20 a?)]

t2:rhs(Z[1])$%

th:ev(th,eval);

(d62) /r/
c®m®+6 Zi ¢’ m’-30 ¢* m*-120 Zi ¢’ m*+360 ¢ m*+720 %i c m—-720
720
(c63) termé6:coef(th,m,6); c®

(c65) quit();

Finally, in (d62) the approximation solution G of (28), expanded in Laurent series up to and including
the sixth term, for particular choices of #, matches exactly up to the sixth term of G, in (11). Hence, the
GMP algorithm for 8 =2 =1y is at least sixth-order accurate for any a,, a,.

Appendix C

Via weak statement algorithm (12a-c), the #-implicit relation for (61) is
((M]+6 AUD{Q"""} — (IM]+ 6 AUD{Q"} + AUK{Q"} = {0} (C.1)
In one-dimensional finite element form, for C=1 and 6 = 1/2, (C.1) yields
101 1], 1[=1 17\, nes _(1[1 1] Al[—l 1]> \
(4[1 1]*’4[—1 1]){Q IS VA R s BN DA, (€2)

Hence, the global assembly form of (C.2) is

'0 1 Q1 n+1 Q1
01 0, o,
0 1 1 Q. Ou
L 0 1- Qm+1 - QM+1
It is easy to see that the solution of (C.3) is
Q!''=0Q7 . ie. if{Q"}=1{0.a,b,0,0,...,0,¢,0}"
then {Q""'} ={0,0,a,5,0,...,0,0,¢c}" (C.4)

which 1s exact for C=1.
Similarly, for C =2, the exact one-dimensional solution is
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Q=07 ,ie. if{Q")=1{0.a.5,0,0,...,0,¢,0,0}"
then {Q"*'} ={0,0,0,a,b,...,0,0,0,c}" (C.5)

This is not possible to extract from the tridiagonal matrix form (C.3), since the residual matrix
(right-hand side) has to be at least four-wide, i.e.

01 0, )" [L o0 0 0, 1"
01 1 0, 110 0 0,
01 1 0, | 1t 10 0 0, (C6)
o 1 1|] o, 1 1 0 of| o,
- 0 ]‘J QM+] L 1 O 0- QM+I

such that (C.5) can be satisfied. This is impossible to achieve within the context of linear basis
(tridiagonal) matrix equations.
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